
ANOTHER CONJUGATE GRADIENT 
ALGORITHM FOR  
UNCONSTRAINED OPTIMIZATION 
 
Another hybrid conjugate gradient algorithm is proposed and analyzed. The parameter kβ  is 

computed as a convex combination of HS
kβ corresponding to Hestenes-Stiefel and DY

kβ  of 

Dai-Yuan conjugate gradient algorithms, i.e. (1 )C HS
k k k k

DY
kβ θ β θ β= − + . The parameter kθ  

is computed in such a way that the direction corresponding to the conjugate gradient 
algorithm is equating the Newton direction. The algorithm uses the standard Wolfe line search 
conditions. Numerical comparisons with conjugate gradient algorithms using a set of 750 
unconstrained optimization problems, some of them from the CUTE library, show that this 
hybrid computational scheme outperforms the Hestenes-Stiefel and the Dai-Yuan conjugate 
gradient algorithms, as well as some other known conjugate gradient algorithms. 
 
Introduction. For solving the nonlinear unconstrained optimization problem 
                                                             { }min ( ): ,nf x x R∈                                                   (1) 

where : nf R → R  is a continuously differentiable function, bounded from below, starting 
from an initial guess 0

nx R∈ , a nonlinear conjugate gradient method, generates a sequence 

{ }kx  as: 

                                                               1k k k kx x dα+ = + ,                                                      (2) 
where 0kα >  is obtained by line search, and the directions  are generated as: kd
                                                    1 1k k kd g ksβ+ += − + 0 0d g= −,   .                                        (3) 
In (3) kβ  is known as the conjugate gradient parameter, 1k ks x x+ k= −  and . 

Consider 

( )k kg f x= ∇

.  the Euclidean norm and define 1k ky g g+ k= − . The line search in the conjugate 
gradient algorithms often is based on the standard Wolfe conditions: 
                                                 ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                       (4) 

                                                 ,                                                                    (5) 1
T
k k k kg d g dσ+ ≥ T

1.where  is a descent direction and 0kd ρ σ< ≤ <  Plenty of conjugate gradient methods are 
known, and an excellent survey of these methods, with a special attention on their global 
convergence, is given by Hager and Zhang [17]. Different conjugate gradient algorithms 
correspond to different choices for the scalar parameter .kβ  Methods Fletcher and Reeves 
(FR) [14], Dai and Yuan (DY) [11] and Conjugate Descent (CD) proposed by Fletcher [13]: 

1 1
T

FR k k
k T

k k

g g
g g

β + += ,   1 1
T

DY k k
k T

k k

g g
y s

β + += ,   1 1
T

CD k k
k T

k k

g g
g s

β + +=
−

, 

have strong convergence properties, but they may have modest practical performance due to 
jamming. On the other hand, the methods of Polak – Ribière [20] and Polyak (PRP) [21], 
Hestenes and Stiefel (HS) [18] or Liu and Storey (LS) [19]: 

1 ,
T

PRP k k
k T

k k

g y
g g

β +=    1 ,
T

HS k k
k T

k k

g y
y s

β +=    1 ,
T

LS k k
k T

k k

g y
g s

β +=
−

 

in general may not be convergent, but they often have better computational performances. 
In order to exploit the attractive features of each set, the so called hybrid conjugate gradient 
methods have been proposed. The known hybrid conjugate gradient methods, summarized in 
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[5], combine in a projective manner the above conjugate gradient methods. In this paper we 
suggest another approach based on a convex combination of conjugate gradient algorithms. 
 
The hybrid conjugate gradient algorithm as a convex combination of HS and DY 
algorithms. Our algorithm generates the iterates  computed by means of the 
recurrence (2), where the stepsize 

0 1 2, , ,x x x …
0kα >  is determined according to the Wolfe conditions (4) 

and (5), and the directions  are generated by the rule: kd
                                                 , d1 1

C
k k k ksd g β+ += − + 0 0g= −

k k k k

,                                           (6)  
where  

                            (1 )C HS DY
k

1 1(1 )
T T
k k k k

k kT
k k k k

g y g g
y s y s

θ θ 1
T

+ + += − +                      (7) β θ β θ β= − +

and kθ  is a scalar parameter satisfying 0 k 1θ≤ ≤ , which follows to be determined. Observe 

that if 0kθ = , then C H
k k

Sβ β= , and if 1kθ = , then  On the other hand, if .C DY
k kβ β=

0 1kθ< < , then C
kβ  is a convex combination of HS

kβ  and .DY
kβ   

The HS method has the property that the conjugacy condition  always holds, 

independent of the line search. With an exact line search 
1 0T

k ky d + =
HS PR
k k

Pβ β= . Therefore, the 
convergence properties of the HS methods are similar to the convergence properties of the 
PRP method. As a consequence, by Powell’s example [22], the HS method with the exact line 
search, for general nonlinear functions, may not converge. The HS method has a built-in 
restart feature that addresses directly to the jamming phenomenon. Indeed, when the step 

1k kx x+ −  is small, then the factor 1k ky g g+ k= −  in the numerator of HS
kβ  tends to zero. 

Hence, HS
kβ  becomes small and the new direction 1kd +  is essentially the steepest descent 

direction  The performance of HS method is better than the performance of DY [17]. 1.kg +−
The DY method, on the other side, always generates descent directions, and in [8] Dai 
established a remarkable property for the DY conjugate gradient algorithm, relating the 
descent directions to the sufficient descent condition. It is shown that if there exist constants 
γ 1  and γ 2  such that γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ ( , )0 1 , there exists a 

constant such that the sufficient descent condition c > 0 g d c gi
T

i ≤ −
2

i holds for at least 

⎣ ⎦pk  indices i k∈ [ , ],0 where ⎣ ⎦j  denotes the largest integer ≤ j.  
From (6) and (7) it is easy to see that  

                                   1 1
1 1 (1 )

T T
k k k k

k k k k kT T
k k k k

y g g gd g s
y s y s

θ θ+ +
+ += − + − + 1

ks+ .                             (8) 

In our algorithm the parameter kθ is selected in such a manner that the direction  given 

by (8) is the Newton direction . Therefore, from the equation 
1kd +

2 1
1 1( )N

k kd f x −
+ += −∇ 1kg +

2 1 1 1
1 1 1( ) (1 )

T T
k k k k

k k k k k kT T
k k k k

y g g g 1
kf x g g s

y s y s
θ θ− + +

+ + +−∇ = − + − + s+

k

, 

having in view that 2
1( )k kf x s y+∇ = , after some algebra, we get 

                                                               1

1

T
k k

k T
k k

s g
g g

θ +

+

= − .                                                         (9) 

Theorem 1.  Assume that  is a descent direction and kd kα  in algorithm (2) and (8) where 

kθ  is given by (9) is determined by the Wolfe line search (4) and (5). If 0 1kθ< < , and 
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21 1

1
( )( )T T

k k k k
kT

k k

y g s g g
y s
+ +

+≤ ,                                             (10) 

 then the direction  given by (8) is a descent direction. 1kd +

 
Proof. From (8) and (9) we get 

              
2

21 1 1
1 1 1

1 1

( ) ( )( )1 1
( )( )

T T T
T k k k k k k k k
k k kT T T T

k k k k k k k k

s g y g s g s gg d g
g g y s y s g g

+ + +
+ + +

+ +

⎡ ⎤ ⎡
= − + + +⎢ ⎥ ⎢

⎣ ⎦ ⎣
1

T
+ ⎤
⎥
⎦

.     (11) 

Since it follows that  i.e. 0,T
k ks g < 1 ,T T T T

k k k k k k k ks g y s s g y s+ = + <

                                                                 1 1.
T
k k

T
k k

s g
y s

+ <                                                            (12)                                  

On the other hand, 0 k 1θ< < , hence  

                                                          1

1

0 1 1.
T
k k
T
k k

s g
g g

+

+

< + <                                                       (13) 

Therefore, from (10) we have 
2

2 21 1
1 1 1 1

1 1

( )1 1
( )( )

T T
T k k k k
k k k kT T T

k k k k k k

s g s gg d g g
g g y s g g

+ +
+ + + +

+ +

⎡ ⎤ ⎡
≤ − + + +⎢ ⎥ ⎢

⎣ ⎦ ⎣

⎤
⎥
⎦

 

                                    21 1
1

1

1
T T
k k k k

kT T
k k k k

s g s g g
g g y s

+ +
+

+

⎛ ⎞ ⎡ ⎤
= − − ≤⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦
0.

1

                                            (14) 

proving that the direction  is a descent direction. ■ 1kd +

 
Theorem 2. Assume that the conditions in Theorem 1 hold. If there exists a constant 

such that 1 0,c > 10 kc θ< ≤ < , then there exists a constant 0δ >  such that  

                                                        
2

1 1 1 ,T
k k kg d gδ+ + +≤ −                                                   (15) 

i.e. the direction 1kd +  satisfies the sufficient descent condition. 
Proof. From (14) we have 

                                           21
1 1 1

1

T T
T k k k k
k k kT T

k k k k

s g s gg d g
g g y s

+
+ + +

+

⎛ ⎞⎛ ⎞
≤ −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
.                                    (16) 

Since  and , it follows that there exists a constant , such that 

 On the other hand, since 

0T
k ky s > 0T

k ks g ≤ 2 0c >

2 ( )T T
k k k kg s c y s≤ − < 0. 0,11 k cθ> ≥ >  then 

 Therefore, from (16) we have 1 1 1(T T
k k k ks g c g g+ ≤ − ).+

2 21
1 1 1 1 2 1 1

1

,
T T

T k k k k
k k k k kT T

k k k k

s g s gg d g c c g g
g g y s

δ+
+ + + + +

+

⎛ ⎞⎛ ⎞
≤ − ≤ − ≡ −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

2  

where 1 2 0.c cδ = >  ■ 
 
The parameter kθ  given by (9) can be outside the interval [0 . However, in order to have a 
real convex combination in (7) the following rule is considered: if 

,1]
0,kθ ≤  then set 0kθ =  in 

(7), i.e.  if ;C HS
k kβ β= 1kθ ≥ , then take 1kθ =  in (7), i.e.  Therefore, under this 

rule for 
.C DY

k kβ β=

kθ  selection, the direction 1kd +  in (8) combines in a convex manner the HS and DY 
algorithms. 
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The NDHSDY algorithm 
Step 1. Initialization. Select 0

nx R∈  and the parameters 0 1.ρ σ< ≤ <  Compute 0( )f x  and 

 Consider  and set 0.g 0d = − 0g 0 01/ .gα =  

Step 2. Test for continuation of iterations. If 610kg −
∞
≤ , then stop. 

Step 3. Line search. Compute 0kα >  satisfying the Wolfe line search condition (4) and (5) 
and update the variables 1k k k kx x dα+ = + . Compute 1( )kf x + , 1kg +  and , 

 
1k ks x x+= − k

1 .k k ky g g+= −

Step 4. kθ  parameter computation. If 1 0T
k kg g + = , then set 0kθ = , otherwise compute kθ  as 

in (9). 
Step 5. C

kβ  conjugate gradient parameter computation. If 0 k 1,θ< <  then compute C
kβ  as in 

(7). If 1kθ ≥ , then set  If .C DY
k kβ β= 0,kθ ≤  then set .C H

k k
Sβ β=  

Step 6. Direction computation. Compute . If the restart criterion of Powell 1
C

k kd g sβ+= − + k

                                                       
2

1 0.2 ,T
k k kg g g+ ≥ 1+

1k

                                                    (17) 

is satisfied, then restart, i.e. set 1kd g+ += −  otherwise define 1kd + d= . Compute the initial 

guess α αk k k kd d= − −1 1 / ,  set k k= +1 and continue with step 2.  
 
It is well known that if f is bounded along the direction  then there exists a stepsize dk α k  
satisfying the Wolfe line search conditions (4) and (5). In our algorithm when the Powell 
restart condition is satisfied, then we restart the algorithm with the negative gradient − +gk 1 .  
Under reasonable assumptions, conditions (4), (5) and (17) are sufficient to prove the global 
convergence of the algorithm.  
The first trial of the step length crucially affects the practical behavior of the algorithm. At 
every iteration k ≥ 1 the starting guess for the step α k in the line search is computed as 

α k k kd d− −1 1 2
/

2
.  This selection was considered for the first time by Shanno and Phua in 

CONMIN [23]. It is also considered in the packages: SCG by Birgin and Martínez [6] and in 
SCALCG by Andrei [2,3,4]. 
 
Convergence analysis. Assume that: 
(i) The level set { }0: ( ) ( )nS x R f x f x= ∈ ≤  is bounded. 

(ii) In a neighborhood  of , the function N S f is continuously differentiable and its 
gradient is Lipschitz continuous, i.e. there exists a constant  such that 0L >

( ) ( )f x f y L x∇ −∇ ≤ − y , for all , .x y N∈  

Under these assumptions on f , there exists a constant 0Γ ≥  such that ( )f x∇ ≤ Γ , for all 
.x S∈   

In [10] it is proved that for any conjugate gradient method with strong Wolfe line search the 
following general result holds: 
Lemma 1. Suppose that the assumptions (i) and (ii) hold and consider any conjugate gradient 
method (2) and (3), where  is a descent direction and kd kα  is obtained by the strong Wolfe 
line search 
                                             ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                         (18) 

                                              1 .T
k k k kg d g dσ+ ≤ T                                                                    (19) 

If 
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                                                               2
1

1
k kd≥

= ∞∑ ,                                                         (20) 

then 
                                                             liminf 0.k

k
g

→∞
=  ■                                                    (21) 

For uniformly convex functions which satisfy the above assumptions we can prove that the 
norm of  generated by (8) and (9) is bounded above. Thus, by Lemma 1 we have the 
following result. 

1kd +

Theorem 3. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm (2) and 
(8)-(9), where  is a descent direction and 1kd + kα  is obtained by the strong Wolfe line search 
(18) and (19). If for , 0k ≥ 0 k 1θ< <  and there exists the nonnegative constant 1η  such that 

                                                             2
1 1kg η+ ≤ ks ,                                                       (22) 

and the function f  is a uniformly convex function, i.e. there exists a constant 0µ ≥  such 
that for all ,x y S∈  

                                           2( ( ) ( )) ( )Tf x f y x y x yµ∇ −∇ − ≥ − ,                                    (23) 
then 
                                                                  lim 0.kk

g
→∞

=                                                           (24) 

Proof. From (23) it follows that 
2 .T

k k ky s sµ≥  Now, since 0 k 1θ< < , from uniform 
convexity and (22) we have: 

                                 1 1 1+
T T

C k k k k
k T T

k k k k

y g g g
y s y s

β + +≤ + 1 1
2

k k k

k k

g y s

s s

η

µ µ
+≤ + 2 .                          (25) 

But ky L s≤ k , therefore 

1 .C
k

k k

L
s s

ηβ
µ µ
Γ

≤ +  

Hence, with (25) we have 
1

1 1 ,C
k k k k

Ld g s ηβ
µ+ +

Γ +
≤ + ≤ Γ +  

which implies that (20) is true. Therefore, by Lemma 1 we have (21), which for uniformly 
convex functions is equivalent to (24). ■ 
For general nonlinear functions the convergence analysis of our algorithm exploits insights 
developed by Gilbert and Nocedal [15], Dai and Liao [9] and that of Hager and Zhang [16]. 
Global convergence proof of NDHSDY algorithm is based on the Zoutendijk condition 
combined with the analysis showing that the sufficient descent condition holds and kd  is 

bounded. Suppose that the level set  is bounded and the function S f  is bounded from 
below. Additionally, assume that there exists a constant 0γ ≥ , such that .kgγ ≤  
Theorem 4. Suppose that the assumptions (i) and (ii) hold and  for every  there exist 
the constants 

0k ≥
0η ≥  and 0ω ≥  such that: 1k kg sη+ ≤  and  

2 2
1 / .k kg g sω+ ≤ k  If  

is a descent direction and 
kd

( )f x∇  is a Lipschitz function on then for the computational 
scheme (2) and (8)-(9), where 

,S

10 1kc θ< ≤ < k and α  determined by the Wolfe line search 
(4)-(5) is bounded, either  for some  or 0kg = k

                                                             liminf .
k

gk
→∞

= 0                                                        (26) 
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Proof. Since 0 1kθ< <  we can write 

                                 11 1 1
1 .

T T
kC k k k k

k kT T T
k k k k k k

gy g g g y g
y s y s y s

β ++ + +
+k⎡ ⎤≤ + ≤ +⎣ ⎦                           (27) 

By the Wolfe condition (5) we have: 

1( ) ( 1)T T T
k (1 ) T

k kg sσ= − −k k k k k ky s g g s g sσ+= − ≥ −
1

. 
On the other hand, since 10 kc θ< ≤ < , then from theorem 2 there exists the constant 0δ >  

such that, 
2 .T

k k kg s gδ≤ − Therefore, 
2(1 ) .T

k k ky s gσ δ≥ −  Hence, 

1 1
2 2

1 .
(1 )(1 )

k k
T
k k k k

g g
y s g s

ω
σ δσ δ

+ +≤ ≤
−−

 

On the other hand, from Lipschitz continuity we have y g g L sk k k= − ≤+1 .k  With 
these, from (27) we get 

                              2
1 ( .

(1 ) (1 )
C
k k k

kk

LL s s
ss

) 1ω ω ηβ η
σ δ σ δ

+
⎡ ⎤≤ + =⎣ ⎦− −

                      (28) 

                                     
Now, we can write 

                                         1 1
( ) .

(1 )
C

k k k k
Ld g s ω ηβ
σ δ+ +
+

≤ + ≤ Γ +
−

                                  (29) 

Since the level set  is bounded and the function S f  is bounded from below, from (4) it 
follows that 

                                                          
2

2
0

( )0
T
k k

k k

g d
d

∞

=

< < +∞∑ ,                                               (30) 

i.e. the Zoutendijk condition holds. Therefore, the descent property 
2T

k k kg s gδ≤ −  yields: 
4 24

2 2 22
0 0 0

( )1 ,
T

k k k

k k kk k k

g g s
s s s
γ

δ

∞ ∞ ∞

= = =

≤ ≤ <∑ ∑ ∑ ∞  

 
which contradicts (29). Hence, liminf 0.kg

k
γ = =

→∞
  

 
Numerical experiments. In this section we present the computational performance of a 
Fortran implementation of the NDHSDY algorithm on a set of 750 unconstrained 
optimization test problems. The test problems are the unconstrained problems in the CUTE 
[7] library, along with other large-scale optimization problems presented in [1]. We selected 
75 large-scale unconstrained optimization problems in extended or generalized form. Each 
problem is tested 10 times for a gradually increasing number of variables: 

 At the same time we present comparisons with other conjugate 
gradient algorithms, including the performance profiles of Dolan and Moré [12]. All 
algorithms implement the Wolfe line search conditions with 

n = 1000 2000 10000, , ,… .

0.0001ρ =  and 0.9σ = , and 

the same stopping criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute component of 

a vector. The comparisons of algorithms are given in the following context. Let and 
 be the optimal value found by ALG1 and ALG2, for problem  

respectively. We say that, in the particular problem  the performance of ALG1 was better 
than the performance of ALG2 if:  

f i
ALG1

f i
ALG2 i = 1 750, ,… ,

i,
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                                                          f fi
ALG

i
ALG1 2 10− < −3                                               (31) 

and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. In this numerical study 
we declare that a method solved a particular problem if the final point obtained has the lowest 
functional value among the tested methods (up to 310− tolerance as it is specified in (31)). 
Clearly, this criterion is acceptable for users that are interested in minimizing functions and 
not finding critical points. All codes are written in double precision Fortran and compiled 
with f77 (default compiler settings) on an Intel Pentium 4, 1.8GHz workstation. All these 
codes are authored by Andrei. 
In the first set of numerical experiments we compare the performance of NDHSDY to the HS 
and DY conjugate gradient algorithms. Figure 1 presents the Dolan and Moré CPU 
performance profiles of NDHSDY versus HS and DY, respectively. 

 

 
Fig. 1. Performance based on CPU time. NDHSDY versus HS and DY.  

 
 When comparing NDHSDY to HS, subject to the number of iterations, we see that NDHSDY 
was better in 277 problems (i.e. it achieved the minimum number of iterations in 277 
problems), HS was better in 244 problems and they achieved the same number of iterations in 
183 problems, etc. Out of 750 problems, only for 704 problems the criterion (31) holds. 
Similarly, we see the number of problems for which NDHSDY was better than DY. Observe 
that the convex combination of HS and DY, expressed as in (7), is far more successful than 
HS or DY algorithms.   
Figure 2 presents the performance profiles of NDHSDY versus the conjugate gradient 
algorithms: PRP, PRP+, LS and CD. It seems that the best algorithm is the hybrid algorithm 
NDHSDY given by a convex combination of HS and DY, where the parameter in the convex 
combination is obtained using the Newton direction. 
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Fig. 2. Performance profiles of NDHSDY versus some conjugate gradient algorithms. 

 
Observe that the NDHSDY algorithm is top performer. Since these codes use the same Wolfe 
line search and the same stopping criterion they differ in their choice of the search direction. 
Hence, among these hybrid conjugate gradient algorithms we considered here, NDHSDY 
appears to generate the best search direction. Also, the algorithm has better performance 
profiles than those corresponding to HS and DY. In this numerical study we noticed that for 
most of the iterations the NDHSDY algorithm uses C

kβ . Referring to the condition (10) we 

noticed that  tends to zero faster than1 1( )( ) /T T T
k k k k k ky g s g y s+ +

2
1kg + . For most of the 

iterations the condition (10) is satisfied, i.e. the algorithm has a self-adjusting property in the 
sense given in [8]. It is worth saying that the condition (10) is more satisfied after those 
iterations in which C

kβ is computed according to the HS or DY rules. Introducing (10) as a 
restart criterion, does not improve the performances of the algorithm. On the other hand, the 
conditions 1kg η+ ≤ ks  and  

2
1 /k kg gω+ ≤ 2

ks  from theorem 4 say that 
3 2

1 .kg ωη+ ≤ 2
kg  We noticed that there exists a  such that for any iteration  the 

above condition 

0k 0k k≥
3 2

1kg ωη+ ≤ 2
kg is satisfied, illustrating the global convergence. 

 
Conclusion. We know a large variety of conjugate gradient algorithms. In this paper we have 
presented a new hybrid conjugate gradient algorithm in which the famous parameter kβ  is 

computed as a convex combination of HS
kβ  and .DY

kβ  For uniformly convex functions if the 

gradient is bounded in the sense that 
2

1 1kg sη k−≤  and the line search satisfy the strong 
Wolfe conditions, then our hybrid conjugate gradient algorithm is globally convergent. For 
general nonlinear functions if the parameter kθ  from C

kβ  definition is bounded, and both 

1k kg sη+ ≤  and 2
1 /k kg gω+ ≤ 2

ks  are satisfied, where η  and ω  are nonnegative 
constants, then our hybrid conjugate gradient is globally convergent. The performance profile 
of our algorithm was higher than those of the well established conjugate gradient algorithms 
for a set consisting of 750 unconstrained optimization problems some of them from CUTE 
library and some others we presented in [1].  
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