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For solving large-scale unconstrained optimization problem { }min ( ): ,nf x x R∈  

where : nf R → R

k

 is a continuously differentiable function, bounded from below, two main 
approaches are operational to date. The first one is based on the line-search concept which 
assures the global convergence of the methods. The idea is to use a quadratic model in order 
to generate a search direction and then find a suitable stepsize along the direction. Although it 
is successful at most time it does not use sufficiently the quadratic model, especially for the 
steplength determination. The second approach is based on the trust-region concept in which 
the quadratic model is minimized subject to the constraint the new iterate to stay in a local 
neighborhood of the current iterate.  
In this paper we focus on line-search algorithms for solving large-scale unconstrained 
optimization problems. Line search methods generate the iterates by the algorithm 

1k k kx x dα+ = + , where  is a search direction and kd 0kα >  is chosen so that 

1( ) ( )k .kf x f x+ <  The most important line-search algorithms for solving large-scale problems 
we consider in this paper, are the quasi-Newton methods, truncated Newton and conjugate 
gradient. These methods proved to be efficient, robust and relatively inexpensive in term of 
computation. The quasi-Newton and truncated Newton methods are versions of basic Newton 
method.  
Quasi-Newton methods gradually build up an approximate Hessian matrix (or an approximate 
inverse Hessian matrix) by using the gradient information from some of the previous iterates. 
Given the current iterate kx  and the approximate Hessian matrix kB  at kx , the so called the 
Newton system ( )k k kB d f x= −∇  is solved in order to generate the direction . The best 
known quasi-Newton method is BFGS. However, the BFGS approach is not affordable due to 
the memory requirements. The limited BFGS variant introduced by Nocedal [21] overcomes 
this difficulty by approximating the product 

kd

( )k kd H f xk= − ∇ , where  is a positive 
definite approximation to the inverse of the Hessian at 

kH

kx , in terms of the most recently 

computed  pairs {m },i is y , where 1i is x x+ i= −  and 1( ) ( )i iy f x f x+ .i= ∇ −∇  When the 

 pair is computed, the oldest pair is discarded and its location in the memory is replaced 
by the new one.  

1m +

On the other hand, the truncated Newton method stops the solving of the Newton system as 
soon as a suitable termination criterion is satisfied. In these methods the direction  satisfies 

the condition
kd

2 ( ) ( ) ( )k k k k kf x d f x f xη∇ +∇ ≤ ∇ , for some (0,1)kη ∈ , known as the 

“forcing” sequence.  Dembo, Eisenstat and Steihaug [10] choose the forcing terms as: 
1min , (
2

r
k kc f xη ⎧ ⎫= ∇⎨ ⎬

⎩ ⎭
, 

where  is a positive constant and c 0 r 1.< ≤  Other formula for kη  selection is given in [12]. 
The conjugate gradient algorithms are another class of algorithms for large-scale 
unconstrained optimization in which the search direction is computed as 

1 1 .k k kd g kdβ+ += − +  The parameter kβ  defines the algorithm, and plenty of conjugate 
gradient methods are known. Mainly, these algorithms are motivated by the success of linear 
conjugate gradient method in minimizing quadratic functions with positive definite Hessians. 
In these methods the direction is a combination of the negative gradient with another direction 
selected in such a manner that the searching direction is descendent. An excellent survey of 
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conjugate gradient methods, with a special attention on their global convergence, is given by 
Hager and Zhang [15]. The conjugate gradient methods can be classified as: classical 
conjugate gradient algorithms, hybrid, scaled, modified and parametric. A description of these 
algorithms and their performance profiles are presented in [7]. 
In this paper we compare the Dolan-Moré [11] performance profile of line-search algorithms 
implemented in the following software packages, as in Table 1. 
 

Table 1. Line-search methods and software package. 
Method Package Author(s) 

Limited quasi-Newton LBFGS(m=3) Nocedal [21] 
Liu and Nocedal [17] 

Truncated Newton TN Nash [19] 
Nash and Nocedal [ 20] 

Conjugate gradient CONMIN Shanno[22, 23], 
Shanno and Phua [24] 

 CG_DESCENT Hager and Zhang [13,14] 
 SCALCG Andrei [1-4] 
 NDHSDY Andrei [6] 

 
Concerning the conjugate gradient algorithms we selected only the most successful variants 
CONMIN, CG_DESCENT, SCALCG and NDHSDY. CONMIN is a preconditioned 
memoryless BFGS conjugate gradient algorithm. CG_DESCENT is a modification of 
Hestenes and Stiefel [16] method, SCALCG is a scaled conjugate gradient algorithm and 
NDHSDY is a hybrid conjugate gradient algorithm as a convex combination of Hestenes-
Stiefel and Dai-Yuan [9] conjugate gradient algorithms where the parameter in convex 
combination is computed using the Newton direction [6]. 
To see the performance profiles of these algorithms we selected 75 large-scale unconstrained 
optimization problems in extended or generalized form, most of them from CUTE library [8], 
along with other large-scale optimization problems presented in [5]. Each problem is tested 10 
times for a gradually increasing number of variables: n = 1000 2000 10000, , ,… .  Therefore 
we have a set of 750 unconstrained optimization test problems. 
All algorithms implement the Wolfe line search conditions with 0.0001ρ =  and 0.9σ = , 

and the same stopping criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute 

component of a vector. In LBFGS the step length is computed by means of the line search 
routine MCVSRCH, which is a slight modification of the routine CSRCH written by Moré 
and Thuente [18]. The line search in TN package is a variant of Gill and Murray. CONMIN, 
SCALCG and NDHSDY implement the Wolfe line search conditions using the cubic 
interpolation. In CG_DESCENT the Wolfe line search is implemented in two manners: the 
classical Wolfe line search and the approximate Wolfe line search which is based on a very 
fine interpretation of the numerical issue concerning the first Wolfe condition. The 
comparisons of algorithms are given in the following context. Let and  be the 
optimal value found by ALG1 and ALG2, for problem 

f i
ALG1 f i

ALG2

i = 1 750, ,… ,  respectively. We say 
that, in the particular problem  the performance of ALG1 was better than the performance 
of ALG2 if:  

i,

                                                          f fi
ALG

i
ALG1 2 10− < −3                                               (31) 

and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. In this numerical study 
we declare that a method solved a particular problem if the final point obtained has the lowest 
functional value among the tested methods (up to 310− tolerance as it is specified in (31)). 
Clearly, this criterion is acceptable for users that are interested in minimizing functions and 
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not finding critical points. All codes are written in double precision Fortran and compiled 
with f77 (default compiler settings) on an Intel Pentium 4, 1.8GHz workstation.  
In the first set of numerical experiments we compare LBFGS(m=3) to TN, CONMIN, 
CG_DESCENT, SCALCG and NDHSDY, respectively. Figure 1 shows the performance 
profiles of these algorithms. For each algorithm, we plot the fraction of problems for which 
the algorithm is within a factor of the best CPU time. The left side of these Figures gives the 
percentage of the test problems, out of 750, for which an algorithm is more successful; the 
right side gives the percentage of the test problems that were successfully solved be each of 
the algorithms. Mainly, the right side represents a measure of an algorithm’s robustness. 
 
 

 
Fig.1. Performance profiles of LBFGS(m=3) versus TN, CONMIN, CG_DESCENT,  

SCALCG and NDHSDY. 
 
Observe that, the limited memory BFGS method is top performer in this class of algorithms. 
Close to LBFGS is CONMIN, but concerning the robustness, CG_DESCENT tends to the 
same robustness as LBFGS. Figure 2 shows the cumulative performance profiles of these 
algorithms. 
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Fig. 2. Cumulative performance profiles. 

 
In the second set of numerical experiments we compare CONMIN to TN, CG_DESCENT, 
SCALCG and NDHSDY. Figure 3 presents the performance profiles of these algorithms. 

 

 
 

Fig. 3. Performance profiles of CONMIN versus TN, CG_DESCENT, SCALCG and NDHSDY. 
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The figures indicate that relative to CPU time metric, under the stopping criterion 
gk ∞

−≤ 10 6 , LBFGS(m=3) is fastest, followed by CONMIN and followed by SCALCG. 
LBFGS appears to generate the best search direction, on average.  
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