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1. Introduction 
Let us consider the nonlinear unconstrained optimization problem 
                                                             { }min ( ): ,nf x x R∈                                                   (1) 

where : nf R → R  is a continuously differentiable function, bounded from below. For solving 
this problem, starting from an initial guess 0

nx R∈ , a nonlinear conjugate gradient method, 

generates a sequence { }kx  as 

                                                               1k k k kx x dα+ = + ,                                                      (2) 
where 0kα >  is obtained by line search, and the directions  are generated as kd
                                                    1 1k k kd g ksβ+ += − + 0 0d g= −,   .                                        (3) 
In (3) kβ  is known as the conjugate gradient parameter, 1k ks x x+ k= −  and . 

Consider 

( )k kg f x= ∇

.  the Euclidean norm and define 1k ky g g+ k= − . The line search in the conjugate 
gradient algorithms often is based on the standard Wolfe conditions: 
                                                 ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                       (4) 

                                                 ,                                                                    (5) 1
T
k k k kg d g dσ+ ≥ T

1.where  is a descent direction and 0kd ρ σ< ≤ <  Plenty of conjugate gradient methods are 
known, and an excellent survey of these methods, with a special attention on their global 
convergence, is given by Hager and Zhang [19]. Different conjugate gradient algorithms 
correspond to different choices for the scalar parameter .kβ  Some of these methods as 

 1



Fletcher and Reeves (FR) [16], Dai and Yuan (DY) [12] and Conjugate Descent (CD) 
proposed by Fletcher [15]: 

1 1
T

FR k k
k T

k k

g g
g g

β + += ,   1 1
T

DY k k
k T

k k

g g
y s

β + += ,   1 1
T

CD k k
k T

k k

g g
g s

β + +=
−

, 

have strong convergence properties, but they may have modest practical performance due to 
jamming. On the other hand, the methods of Polak – Ribière [23] and Polyak (PRP) [24], 
Hestenes and Stiefel (HS) [20] or Liu and Storey (LS) [22]: 

1 ,
T

PRP k k
k T

k k

g y
g g

β +=    1 ,
T

HS k k
k T

k k

g y
y s

β +=    1 ,
T

LS k k
k T

k k

g y
g s

β +=
−

 

in general may not be convergent, but they often have better computational performances. 
In this paper we focus on hybrid conjugate gradient methods. These methods are 

combinations of different conjugate gradient algorithms, mainly they being proposed to avoid 
the jamming phenomenon. One of the first hybrid conjugate gradient algorithms has been 
introduced by Touati-Ahmed and Storey [28], where the parameter kβ  is computed as: 

1
2

2
1

2

, if 0 ,

, otherwise.

T
PRP PRP FRk k
k k

kTS
k
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k

k

g y
g

g
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β β
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+

⎧
= ≤⎪

⎪
= ⎨
⎪ =⎪
⎩

kβ≤

 

The PRP method has a built-in restart feature that directly addresses to jamming. Indeed, 
when the step  is small, then the factor  in the numerator of ks ky PRP

kβ  tends to zero. 

Therefore, PRP
kβ  becomes small and the search direction 1kd +  is very close to the steepest 

descent direction  Hence, when the iterations jam, the method of Touati-Ahmed and 
Storey uses the PRP computational scheme. 

1.kg +−

Another hybrid conjugate gradient method was given by Hu and Storey [21], where kβ  in (3) 
is: 

{ }{ }max 0,min ,HuS PRP FR
k kβ β= kβ . 

As above, when the method of Hu and Storey is jamming, then the PRP method is used 
instead.  
The combination between LS and CD conjugate gradient methods leads to the following 
hybrid method: 

{ }{ }max 0,min ,LS CD LS CD
k kβ β− = kβ . 

The CD method of Fletcher [15] is very close to FR method. With an exact line search, CD 
method is identical to FR. Similarly, for an exact line search, LS method is also identical to 
PRP. Therefore, the hybrid LS-CD method with an exact line search has similar performances 
with the hybrid method of Hu and Storey. 
Gilbert and Nocedal [17] suggested a combination between PRP and FR methods as: 

{ }{ }max ,min ,GN FR PRP FR
k k kβ β β= − kβ . 

Since FR
kβ  is always nonnegative, it follows that GN

kβ  can be negative. The method of 
Gilbert and Nocedal has the same advantage of avoiding jamming. 
Using the standard Wolfe line search, the DY method always generates descent directions and 
if the gradient is Lipschitz continuously the method is global convergent. In an effort to 
improve their algorithm, Dai and Yuan [13] combined their algorithm with other conjugate 
gradient algorithm, proposing the following two hybrid methods: 

{ }{ }max ,min ,hDY DY HS DY
k k kcβ β β= − kβ , 
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                                          { }{ }max 0,min ,hDYz HS DY
k kβ β= kβ , 

where (1 ) /(1 )c σ σ= − + . For the standard Wolfe conditions (4) and (5), under the Lipschitz 
continuity of the gradient, Dai and Yuan [13] established the global convergence of these 
hybrid computational schemes. 

In this paper we propose another hybrid conjugate gradient as a convex combination 
of PRP and DY conjugate gradient algorithms. We selected these two methods to combine in 
a hybrid conjugate gradient algorithm because PRP has good computational properties, on 
one side, and DY has strong convergence properties, on the other side. Often PRP method 
performs better in practice than DY and we speculate this in order to have a good practical 
conjugate algorithm. The structure of the paper is as follows. In section 2 we introduce our 
hybrid conjugate gradient algorithm and prove that it generates descent directions satisfying 
in some conditions the sufficient descent condition. Section 3 presents the algorithms and in 
section 4 we show its convergence analysis. In section 5 some numerical experiments and 
performance profiles of Dolan-Moré [14] corresponding to this new hybrid conjugate gradient 
algorithm and some other conjugate gradient algorithms are presented. The performance 
profiles corresponding to a set of 750 unconstrained optimization problems in the CUTE test 
problem library [6], as well as some other unconstrained optimization problems presented in 
[1] show that this hybrid conjugate gradient algorithm outperform the known hybrid 
conjugate gradient algorithms. 
 
2. New hybrid conjugate gradient algorithms 
The iterates  of our algorithm are computed by means of the recurrence (2) where 
the stepsize 

0 1 2, , ,x x x …
0kα >  is determined according to the Wolfe conditions (4) and (5), and the 

directions  are generated by the rule: kd
                                                ,   1 1

N
k k k kd g sβ+ += − + 0 0d g= − ,                                          (6)  

where  

                            (1 )N PRP DY
k k k k k

1 1(1 )
T T
k k k k

k kT
k k k k

g y g g
g g y s

θ θ 1
T

+ + += − +                     (7) β θ β θ β= − +

and kθ  is a scalar parameter satisfying 0 k 1θ≤ ≤ , which follows to be determined. Observe 

that if 0kθ = , then , and if N PR
k kβ β= P 1kθ = , then  On the other hand, if .N D

k kβ β= Y

0 1kθ< < , then N
kβ  is a convex combination of PRP

kβ  and .DY
kβ   

Referring to the PRP method, Polak and Ribière [23] proved that when function f  is 
strongly convex and the line search is exact, then the PRP method is global convergent. In an 
effort to understand the behavior of the PRP method, Powell [25] showed that if the step 
length  approaches to zero, the line search is exact and the gradient 1k ks x x+= − k ( )f x∇  is 
Lipschitz continuous, then the PRP method is globally convergent. Additionally, assuming 
that the search direction is a descent direction, Yuan [29] established the global convergence 
of the PRP method for strongly convex functions and a Wolfe line search. For general 
nonlinear functions the convergence of the PRP method is uncertain. Powell [26] gave a 3 
dimensional example, in which the function to be minimized is not strongly convex, showing 
that even with an exact line search, the PRP method may not converge to a stationary point. 
Later on Dai [7] presented another example this time with a strongly convex function for 
which the PRP method fails to generate a descent direction. Therefore, theoretically the 
convergence of the PRP method is limited to strongly convex functions. For general nonlinear 
functions the convergence of the PRP method is established under restrictive conditions 
(Lipschitz continuity, exact line search and the stepsize tends to zero). However, the 
numerical experiments presented, for example, by Gilbert and Nocedal [17] proved that the 
PRP method is one of the best conjugate gradient methods, and this is the main motivation to 
consider it in (7).  
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On the other hand, the DY method always generates descent directions, and in [8] Dai 
established a remarkable property for the DY conjugate gradient algorithm, relating the 
descent directions to the sufficient descent condition. It is shown that if there exist constants 
γ 1  and γ 2  such that γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ ( , )0 1 , there exists a 

constant such that the sufficient descent condition c > 0 g d c gi
T

i ≤ −
2

i holds for at least 

⎣ ⎦pk  indices i k∈ [ , ],0 where ⎣ ⎦j  denotes the largest integer ≤ j. Therefore, this property 
is the main reason we consider DY method in (7) 

It easy to see that:  

                           1 1
1 1 (1 )

T T
k k k k

k k k k kT T
k k k k

y g g gd g s
g g y s

θ θ+ +
+ += − + − + 1

ks+

0

.                        (8) 

Supposing that  is a descent direction (kd 0d g= − ), then for the algorithm given by (2) and 
(8) we can prove the following result. 

 
Theorem 1.  Assume that kα  in algorithm (2) and (8) is determined by Wolfe line search (4) 
and (5). If 0 1kθ< < , and 

                                               
2 1 1

1 2

( )(T T
k k k k k k

kT
k k k

g s g y g sg
y s g

+ +
+ ≥

)T

1

,                                          (9) 

then direction  given by (8) is a descent direction. 1kd +

  
Proof. Since 0 kθ< < , from (8) we get 

2 1 1 1
1 1 1 1 1(1 )

T T
T Tk k k k
k k k k k k k k kT T

k k k k

y g g gg d g g s g s
g g y s

θ θ+ + +
+ + + + += − + − + T  

                                     
2 1 1 1

1 1

T T
T Tk k k k

k k kT T
k k k k

y g g gg g s
g g y s

+ + +
+ +≤ − + + 1k kg s+  

                                      21 1
1 11

T T
Tk k k k

k kT T
k k k k

g s y gg g
y s g g
+ +

+ +

⎛ ⎞
= − + +⎜ ⎟
⎝ ⎠

ks  

                                      
2 1

1 1

T T
Tk k k k

k kT T
k k k k

g s y gg g
y s g g

+
+ += + ks . 

But, by (5) and since 0T
k ky s > 0T

k kg s ≤ , it follows that 

2
1 0

T
k k

kT
k k

g s g
y s + ≤ . 

Therefore, from (9), it follows that 1 1 0T
k kg d+ + ≤ , i.e. the direction 1kd +  is a descent one. ■ 

 
Theorem 2. Suppose that 1 1( )( ) 0T T

k k k kg y g s+ + .≤  If 0 1kθ< <  then the direction  given 
by (8) satisfies the sufficient descent condition 

1kd +

                                              21
1 1 11

T
T k k
k k k kT

k k

g sg d g
y s

θ +
+ + +

⎛ ⎞
≤ − −⎜ ⎟

⎝ ⎠
.                                       (10) 

Proof. From (8) we have: 
2 1 1

1 1 1 1 1(1 )
T T

T Tk k k k
k k k k k k k kT T

k k k k

g y g gg d g g s g s
g g y s

θ θ+ +
+ + + + += − + − + 1 T

k
+  
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2 21 1

1 1
( )((1 )

T T
k k k k k k

k k k kT T
k k k k

g s g y g sg g
y s g g

θ θ+ +
+ += − + + − 1 )T

+  

                                      21
11 0

T
k k

k kT
k k

g s g
y s

θ +
+

⎛ ⎞
≤ − − ≤⎜ ⎟

⎝ ⎠
. 

Observe that, since  by (5) and since  then 

 Therefore, if 

0T
k ky s > 1 ,T T T T

k k k k k k k kg s y s g s y s+ = + <

1/T T
k k k ky s g s+ >1. 1,0 kθ< <  it follows that Therefore 1/T T

k k k k ky s g sθ +< .

11 0
T
k k

k T
k k

g s
y s

θ +− >  

proving the theorem. ■ 
 

To select the parameter kθ  we consider the following two possibilities. In the first 
hybrid conjugate gradient algorithm the parameter kθ is selected in such a manner that the 

conjugacy condition  is satisfied at every iteration, independent on the line search. 

Hence, from 
1 0T

k ky d + =

1 0T
k ky d + =  after some algebra, using (8), we get: 

                                        1 1
2 2

1 1

( )( ) ( )( .
( )( )

T T T T
k k k k k k k k

k T T
k k k k k k

y g y s y g g g
y g y s g g

θ + +

+ +

−
=

−

)
                                    (11) 

In the second algorithm the parameter kθ is selected in such a manner that the direction 1kd +  
from (8) is the Newton direction, i.e. 

                       2 1 1 1
1 1 1( ) (1 )

T T
k k k k

k k k k k kT T
k k k k

y g g g 1 .kf x g g s s
g g y s

θ θ− + +
+ + +−∇ = − + − + +

,

                (12) 

Having in view that 2
1( )k k kf x s y+∇ = from (12) we get: 

                                    
2

1 1 1
2 2

1 1

( ) ( )(
.

( )( )

T T T T
k k k k k k k k k

k T T
k k k k k k

y g s g g g y y s

g g g y y s
θ + + +

+ +

− −
=

−

)
                             (13) 

Observe that the parameter kθ  given by (11) or (13) can be outside the interval [0 . 
However, in order to have a real convex combination in (7) the following rule is considered: 
if 

,1]

0,kθ ≤  then set 0kθ =  in (7), i.e.  if ;N PRP
k kβ β= 1kθ ≥ , then take 1kθ =  in (7), i.e. 

 Therefore, under this rule for .N DY
k kβ β= kθ  selection, the direction 1kd +  in (8) combines the 

properties of PRP and DY algorithms. 
 
 
3. The New Hybrid Algorithms (CCOMB, NDOMB) 
Step 1. Initialization. Select 0

nx R∈  and the parameters 0 1.ρ σ< ≤ <  Compute 0( )f x  and 

 Consider  and set the initial guess: 0.g 0d = − 0g 0 01/ .gα =  

Step 2. Test for continuation of iterations. If 610kg −
∞
≤ , then stop. 

Step 3. Line search. Compute 0kα >  satisfying the Wolfe line search condition (4) and (5) 
and update the variables 1k k k kx x dα+ = + . Compute 1( )kf x + , 1kg +  and , 

 
1k ks x x+= − k

1 .k k ky g g+= −

Step 4. kθ  parameter computation. If 
2 2

1 1( )( )T T
k k k k k ky g y s g g+ + 0− = , then set 0kθ = , 

otherwise compute kθ  as follows: 
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CCOMB algorithm ( kθ  from Conjugacy Condition): 

1 1

1 1 1

( )( ) ( )( .
( )( ) ( )(

T T T T
k k k k k k k k

k T T T T
k k k k k k k k

y g y s y g g g
y g y s g g g g

θ + +

+ + +

−
=

−
)
)

 

NDOMB algorithm ( kθ  from Newton Direction): 
2

1 1 1
2 2

1 1

( ) ( )(
.

( )( )

T T T T
k k k k k k k k k

k T T
k k k k k k

y g s g g g y y s

g g g y y s
θ + + +

+ +

− −
=

−

)
 

Step 5. N
kβ  conjugate gradient parameter computation. If 0 k 1,θ< <  then compute N

kβ  as in 

(7). If 1kθ ≥ , then set  If .N D
k kβ β= Y 0,kθ ≤  then set  .N PR

k kβ β= P

kStep 6. Direction computation. Compute . If the restart criterion of Powell 1
N

k kd g sβ+= − +

                                                       
2

1 0.2 ,T
k k kg g g+ ≥ 1+

1k+ d

                                                    (14) 

is satisfied, then set  otherwise define1kd g+ = − 1kd + = . Compute the initial guess 

α αk k k kd d= − −1 1 / ,  set k k= +1 and continue with step 2.  
 
 It is well known that if f is bounded along the direction  then there exists a 
stepsize 

dk

α k  satisfying the Wolfe line search conditions (4) and (5). In our algorithm when 
the Powell restart condition is satisfied, then we restart the algorithm with the negative 
gradient − +gk 1 .  More sophisticated reasons for restarting the algorithms have been proposed 
in the literature [10], but we are interested in the performance of a conjugate gradient 
algorithm that uses this restart criterion, associated to a direction satisfying the conjugacy 
condition or is equal to the Newton direction. Under reasonable assumptions, conditions (4), 
(5) and (14) are sufficient to prove the global convergence of the algorithm. We consider this 
aspect in the next section. 
 The first trial of the step length crucially affects the practical behavior of the 
algorithm. At every iteration k ≥ 1 the starting guess for the step α k in the line search is 

computed as α k k kd d− −1 1 2
/

2
.  This selection was considered for the first time by Shanno 

and Phua in CONMIN [27]. It is also considered in the packages: SCG by Birgin and 
Martínez [5] and in SCALCG by Andrei [2,3,4]. 
 
4. Convergence analysis 
Throughout this section we assume that: 
(i) The level set { }0: ( ) ( )nS x R f x f x= ∈ ≤  is bounded. 

(ii) In a neighborhood  of , the function N S f is continuously differentiable and its 
gradient is Lipschitz continuous, i.e. there exists a constant  such that 0L >

( ) ( )f x f y L x∇ −∇ ≤ − y , for all , .x y N∈  

Under these assumptions on f , there exists a constant 0Γ ≥  such that ( )f x∇ ≤ Γ , for all 

.x S∈   
In [11] it is proved that for any conjugate gradient method with strong Wolfe line search the 
following general holds: 
 
Lemma 1. Suppose that the assumptions (i) and (ii) hold and consider any conjugate gradient 
method (2) and (3), where  is a descent direction and kd kα  is obtained by the strong Wolfe 
line search. If 
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                                                               2
1

1
k kd≥

= ∞∑ ,                                                         (15) 

then 
                                                             liminf 0.k

k
g

→∞
=  ■                                                    (16) 

 
For uniformly convex functions which satisfy the above assumptions we can prove that the 
norm of  generated by (8) is bounded above. Thus, by lemma 1 we have the following 
result. 

1kd +

 
Theorem 3. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm (2) and 
(8), where  is a descent direction and 1kd + kα  is obtained by the strong Wolfe line search.  

                                                 ( ) ( ) T
k k k k k k k ,f x d f x g dα ρα+ − ≤                                     (17) 

                                                 1
T
k k k kg d g dσ+ ≤ − T .                                                              (18) 

If for , 0k ≥ ks  tends to zero and there exists the nonnegative constants 1η  and 2η  such 
that 
                                            

2 2
1kg η≥ ks    and   

2
1 2kg η+ ≤ ks ,                                  (19) 

and the function f  is a uniformly convex function, i.e. there exists a constant 0µ ≥  such 
that for all ,x y S∈  

                                           
2( ( ) ( )) ( )Tf x f y x y x yµ∇ −∇ − ≥ − ,                                    (20) 

then 
                                                                  lim 0.kk

g
→∞

=                                                           (21) 

 
Proof. From (20) it follows that 

2 .T
k k ky s sµ≥  Now, since 0 k 1θ≤ ≤ , from uniform 

convexity and (19) we have: 

1 1 1+
T T

N k k k k
k T T

k k k k

g y g g
g g y s

β + +≤ + 1 2
2 2

1

k k k

k k

g y s

s s

η

η µ
+≤ + . 

But ky L s≤ k , therefore 

2

1

.N
k

k k

L
s s

ηβ
η µ
Γ

≤ +  

Hence, 
2

1 1
1

N
k k k k

Ld g s ηβ
η µ+ +
Γ

≤ + ≤ Γ + + , 

which implies that (15) is true. Therefore, by lemma 1 we have (16), which for uniformly 
convex functions is equivalent to (21). ■ 
 
Powell [25] showed that for general functions the PRP method is globally convergent if the 
steplengths 1k ks x x+= − k  tend to zero, i.e. 1k ks s −≤  is a condition of convergence. For 

convergence of our algorithms from (19) we see that along the iterations, for , the 
gradient must be bounded as: 

1k ≥
2 2

1 k k ks g sη η2 1−≤ ≤ . If the Powell condition is satisfied, 

i.e. ks  tends to zero, then 
2

1k ks s −  and therefore the norm of gradient can satisfy (19). 
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In the numerical experiments we observed that (19) is always satisfied in the last part of the 
iterations. 
 

For general nonlinear functions the convergence analysis of our algorithm exploits 
insights developed by Gilbert and Nocedal [17], Dai and Liao [9] and that of Hager and 
Zhang [18]. Global convergence proof of these new hybrid conjugate gradient algorithms is 
based on the Zoutendijk condition combined with the analysis showing that the sufficient 
descent condition holds and kd  is bounded. Suppose that the level set  is bounded and the 

function 

L
f  is bounded from below. 

 
Lemma 2. Assume that  is a descent direction and kd f∇  satisfies the Lipschitz condition 

( ) ( )k kf x f x L x x∇ −∇ ≤ −  for all x  on the line segment connecting kx  and 1kx + , where 
 is a constant. If the line search satisfies the second Wolfe condition (5), then L

                                                            2
1 .

T
k k

k
k

g d
L d
σα −

≥                                                     (22) 

Proof. Subtracting  from both sides of (5) and using the Lipschitz condition we have T
k kg d

                                         
2

1( 1) ( )T T
k k k k k k kg d g g d L dσ +− ≤ − ≤ .α                                (23) 

Since  is a descent direction and kd 1σ < , (22) follows immediately from (23). ■ 
 
Theorem 4. Suppose that the assumptions (i) and (ii) holds, 0 1kθ< ≤ , 

 for every  there exists a positive constant 1 1( )( )T T
k k k kg y g s+ + ≤ 0, 0k ≥ ,ω  such that 

 and there exists the constants 11 ( ) /( )T T
k k k k kg s y sθ +− 0ω≥ > γ  and Γ , such that for all , k

kgγ ≤ ≤ Γ . Then for the computational scheme (2) and (8), where kα  is determined by the 

Wolfe line search (4) and (5), either 0kg =  for some  or k

                                                             liminf .
k

gk
→∞

= 0                                                        (24) 

 
Proof. By the Wolfe condition (5) we have: 
                                                       (25) 1( ) ( 1) (1 )T T T

k k k k k k k k ky s g g s g s g sσ+= − ≥ − = − − .Tσ
By Theorem 2, and the assumption 11 ( ) /( )T T

k k k k kg s y sθ ω+− ≥ , it follows that 

                                     21
1

1 1

1 .
T

T k k
k k k k kT

k k

g sg d g g
y s

θ −
−

− −

⎛ ⎞
≤ − − ≤ −⎜ ⎟

⎝ ⎠

2ω                          

Therefore, 
                                                              

2 .T
k k kg d gω− ≥                                                   (26) 

Combining (25) with (26) we get 
                                                           2(1 ) .T

k k ky s σ ωα γ≥ −                                               

On the other hand y g g L sk k k= − ≤+1 .k  Hence  

                                                 1 1
T
k k k k kg y g y L s+ +≤ ≤ Γ .                                         

With these, from (7) we get 

1 1
T T

N k k k k
k T T

k k k k

g y g g
g g y s

β 1+ + +≤ + . 

But, 
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11
2 2 ,

T
k k kk k

T
k k

g y L sg y LD
g g γ γ γ

++ Γ Γ
≤ ≤ ≤ 2  

where { }max : ,D y z y z= − ∈S  is the diameter of the level set  .S
On the other hand, 

2
1 1

2 .
(1 )

T
k k

T
k k k

g g
y s σ ωα γ
+ + Γ

≤
−

 

Therefore, 

                                               
2

2 (1 )
N
k

k

LD Eβ
γ σ ωα γ
Γ Γ

≤ + ≡
− 2 .                                       (27) 

Now, we can write 
                                              1 1 .N

k k k kd g s Eβ+ +≤ + ≤ Γ + D                                        (28) 

Since the level set L  is bounded and the function f  is bounded from below, using Lemma 2, 
from (4) it follows that 

                                                             
2

2
0

( )0
T
k k

k k

g d
d

∞

=

< < ∞∑ ,                                               (29) 

i.e. the Zoutendijk condition holds. Therefore, from Theorem 2 using (29), the descent 
property yields: 

4 24

2 2 22
0 0 0

( )1 ,
T

k k k

k k kk k k

g g d
d d d
γ
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which contradicts (28). Hence, liminf 0.kg

k
γ = =

→∞
  

Therefore, when 0 1kθ< ≤  our hybrid conjugate gradient algorithms are globally 
convergent, meaning that either 0kg =  for some  or (24) holds. Observe that in conditions 
of Theorem 2 the direction  satisfies the sufficient descent condition independent on the 
line search.  

k

1kd +

 
 
5. Numerical experiments 

In this section we present the computational performance of a Fortran implementation 
of the CCOMB and NDOMB algorithms on a set of 750 unconstrained optimization test 
problems. The test problems are the unconstrained problems in the CUTE [6] library, along 
with other large-scale optimization problems presented in [1]. We selected 75 large-scale 
unconstrained optimization problems in extended or generalized form. Each problem is tested 
10 times for a gradually increasing number of variables: n = 1000 2000 10000, , ,… .  At the 
same time we present comparisons with other conjugate gradient algorithms, including the 
performance profiles of Dolan and Moré [14].  
 All algorithms implement the Wolfe line search conditions with 0.0001ρ =  

and 0.9σ = , and the same stopping criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum 

absolute component of a vector. 
 The comparisons of algorithms are given in the following context. Let and 

be the optimal value found by ALG1 and ALG2, for problem  
respectively. We say that, in the particular problem  the performance of ALG1 was better 
than the performance of ALG2 if:  

f i
ALG1

f i
ALG2 i = 1 750, ,… ,

i,
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                                                       f fi
ALG

i
ALG1 2 10− < −3                                                 (30) 

and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. 
All codes are written in double precision Fortran and compiled with f77 (default compiler 
settings) on an Intel Pentium 4, 1.8GHz workstation. All these codes are authored by Andrei. 
The performances of these algorithms have been evaluated using the profiles of Dolan and 
Moré [14]. That is, for each algorithm we plot the fraction of problems for which the 
algorithm is within a factor of the best CPU time. The left side of these Figures gives the 
percentage of the test problems, out of 750, for which an algorithm is more performant; the 
right side gives the percentage of the test problems that were successfully solved by each of 
the algorithms. Mainly, the right side represents a measure of an algorithm’s robustness.  
 

In the first set of numerical experiments we compare the performance of CCOMB to 
NDOMB. Figure 1 shows the Dolan and Moré CPU performance profiles of CCOMB versus 
NDOMB. 

 
Fig. 1. Performance based on CPU time. CCOMB versus NDOMB.  

 
Observe that CCOMB outperforms NDOMB in the vast majority of problems. Only 730 
problems out 750 satisfy the criterion (30). Referring to the CPU time, CCOMB was better in 
575 problems, in contrast with NDOMB which solved only 72 problems in a better CPU time. 

 
 In the second set of numerical experiments we compare the performance of CCOMB 
to the PRP and DY conjugate gradient algorithms. Figures 2 and 3 show the Dolan and Moré 
CPU performance profiles of CCOMB versus PRP and CCOMB versus DY, respectively. 
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Fig. 2. Performance based on CPU time. CCOMB versus Polak-Ribière-Polyak (PRP).  

 

 
Fig. 3. Performance based on CPU time. CCOMB versus Dai-Yuan (DY).  

  
When comparing CCOMB to PRP (Figure 2), subject to the number of iterations, we see that 
CCOMB was better in 324 problems (i.e. it achieved the minimum number of iterations in 
324 problems), PRP was better in 196 problems and they achieved the same number of 
iterations in 191 problems, etc. Out of 750 problems, only for 711 problems the criteria (30) 
holds. Similarly, in Figure 3 we see the number of problems for which CCOMB was better 
than DY. Observe that the convex combination of PRP and DY, expressed as in (7), is far 
more successful than PRP or DY algorithms.   
 The third set of numerical experiments refers to the comparisons of CCOMB to 
hybrid conjugate gradient algorithms: hDY, hDYz, GN, HuS, TS and LS-CD. Figures 4-9 
presents the Dolan and Moré CPU performance profiles of these algorithms, as well as the 
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number of problems solved by each algorithms in minimum number of iterations, minimum 
number of function evaluations and minimum CPU time, respectively. 

 
Fig. 4. Performance based on CPU time. CCOMB versus hybrid Dai-Yuan (hDY).  

  

 
Fig. 5. Performance based on CPU time. CCOMB versus hybrid Dai-Yuan (hDYz).  
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Fig. 6. Performance based on CPU time. CCOMB versus Gilbert-Nocedal (GN).  

 

 
Fig. 7. Performance based on CPU time. CCOMB versus Hu-Storey (HuS). 
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Fig. 8. Performance based on CPU time. CCOMB versus Touati-Ahmed - Storey (TS). 

 

 
Fig. 9. Performance based on CPU time. CCOMB versus Liu-Storey – Conjugate Descent (LS-CD). 

 
From these Figures above we see that CCOMB is top performer. Since these codes use the 
same Wolfe line search and the same stopping criterion they differ in their choice of the 
search direction. Hence, among these conjugate gradient algorithms we considered here, 
CCOMB appears to generate the best search direction. 

In the fourth set of numerical experiments we compare CCOMB to CG_DESCENT 
conjugate gradient algorithm of Hager and Zhang [18]. The computational scheme 
implemented in CG_DESCENT is a modification of the Hestenes and Stiefel method which 
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satisfies the sufficient descent condition, independent of the accuracy of the line search. The 
CG_DESCENT code, authored by Hager and Zhang, contains the variant CG_DESCENT 
(HZw) implementing the Wolfe line search and the variant CG_DESCENT (HZaw) 
implementing an approximate Wolfe line search. There are two main points associated to 
CG_DESCENT. Firstly, the scalar products are implemented using the loop unrolling of 
depth 5. This is efficient for large-scale problems (over  variables). Secondly, the Wolfe 
line search is implemented using a very fine numerical interpretation of the first Wolfe 
condition (4). The Wolfe conditions implemented in CCOMB and CG_DESCENT (HZw) can 
compute a solution with accuracy of the order of the square root of the machine epsilon.  

610

 
Fig. 10. Performance based on CPU time. CCOMB versus CG_DESCENT with Wolfe line search 

(HZw). 
 

 
Fig. 11. Performance based on CPU time. CCOMB versus CG_DESCENT with approximate Wolfe 

line search (HZaw). 
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In contrast, the approximate Wolfe line search implemented in CG_DESCENT 
(HZaw) can compute the solution with accuracy of the order of machine epsilon. Figures 10 
and 11 present the performance profile of these algorithms in comparison to CCOMB. We see 
that CG_DESCENT is more robust than CCOMB. 
 
5. Conclusion 
We know a large variety of conjugate gradient algorithms. The known hybrid conjugate 
gradient algorithms are based on projection of classical conjugate gradient algorithms. In this 
paper we have proposed new hybrid conjugate gradient algorithms in which the famous 
parameter kβ  is computed as a convex combination of PRP

kβ  and ,DY
kβ  i.e. 

(1 ) PRP DY
k k k k kβ θ β θ β= − + . The parameter kθ  is computed in such a manner that the 

conjugacy condition is satisfied, or the corresponding direction in hybrid conjugate gradient 
algorithm is the Newton direction. For uniformly convex functions if the stepsize  

approaches zero, the gradient is bounded in the sense that 
ks

2 2
1 2k k ks g sη η −≤ ≤ 1  and the 

line search satisfy the strong Wolfe conditions, then our hybrid conjugate gradient algorithms 
are globally convergent. For general nonlinear functions if the parameter kθ  from N

kβ  
definition is bounded, i.e. 0 k 1θ< < , then our hybrid conjugate gradient is globally 
convergent. The Dolan and Moré CPU performance profile of hybrid conjugate gradient 
algorithm based on conjugacy condition (CCOMB algorithm) is higher than the performance 
profile corresponding to the hybrid algorithm based to the Newton direction (NDOMB 
algorithm). The performance profile of CCOMB algorithm was higher than those of the well 
established conjugate gradient algorithms (hDY, hDYz, GN, HuS, TS and LS-CD) for a set 
consisting of 750 unconstrained optimization test problems, some of them from CUTE 
library. Additionally the proposed hybrid conjugate gradient algorithm CCOMB is more 
robust than the PRP and DY conjugate gradient algorithms. However, CCOMB algorithm is 
outperformed by CG_DESCENT.  
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