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Abstract. In this work we propose and analyse a new scaled conjugate gradient algorithm
and its implementation, based on an interpretation of the secant equation and on the
inexact Wolfe line search conditions. The best spectral conjugate gradient algorithm by
Birgin and Martinez [6], which mainly is a scaled variant of Perry’s [25], is modified in
such a manner to overcome the lack of positive definiteness of the matrix defining the
search direction. This modification is based on the quasi-Newton BFGS updating formula.
The computational scheme is imbedded into the restart philosophy of Beale-Powell. The
parameter scaling the gradient is selected as spectral gradient or in an anticipative manner
by means of a formula using the function values in two successive points. In very mild
conditions it is shown that, for strongly convex functions, the algorithm is global
convergent. Computational results and performance profiles, for a test set consisting of
500 unconstrained optimization problems, show that this new scaled conjugate gradient
algorithm substantially outperforms known conjugate gradient methods including: spectral
conjugate gradient by Birgin and Martinez, Fletcher and Reeves, Polak and Ribiére, and
Hestens and Stiefel.

Keywords: Unconstrained optimization, conjugate gradient method, spectral gradient
method
AMS Subject Classification: 49M07, 49M 10, 90C06, 65K

1. Introduction

Let us consider the following unconstrained optimization problem:
min f(x) (1)

where f:R" — R is continuously differentiable and its gradient is available. We are
interested to elaborate an algorithm for solving large-scale case for which the Hessian of f

is either not available or requires a large amount of storage and computational costs.
The conjugate gradient methods, we consider in this paper, represent an important
innovation for solving large-scale unconstrained optimization problems. These methods

. . . . * . .
generate a sequence x, of approximations to the minimum x of f, in which

X =X, 0O d,, ()
diwy ==8in T Bid,, (3)
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where g, = Uf(x,), a, is selected to minimize f(x)along the search direction d, , and
B, is a scalar parameter. The iterative process is initialized with an initial point x, and
d, =—g,. We know a lot of versions of conjugate gradient methods which correspond to
the selection procedure of parameter [3, . A history of conjugate gradient and Lanczos
algorithms from the very beginning until 1976 is given by Golub and O’Leary [15].

When the function f is quadratic and @, is selected to minimize f(x)along the
direction d, , then all choices of [3, are equivalent, but for general nonlinear functions,
different choices of 3, give algorithms with very different convergence performances.

These methods start with the paper presented by Hestens and Stiefel [19]2 for
solving symmetric, positive definite systems of linear equations in which 3, is selected as:

T
HS _ gk+lyk
/3k - T ’ (4)
dk Vi
where y, =g,, —&,. Fletcher and Reeves [13] extended this method to nonlinear
unconstrained optimization where the parameter 3, is computed as:

2

R _ Hgk+1

- > (5)
C el

where ||| is Euclidian norm. Zoutendijk [37] and Powell [30] proved that with an exact line

search the Fletcher-Reeves algorithm is global convergent on general functions. Al-Baali [1]
established the global convergence of Fletcher-Reeves method for an approximate line
search. A modification of the Fletcher and Reeves algorithm has been presented by Polak and
Ribiére [26] and Polyak [27]. Their method try to avoid the jamming behaviour of the
Fletcher-Reeves algorithm, observed by Powell [29], and select 3, as:

T
PR _ gk+1yk

kT 2 - (6)
el

In case of jamming g, Og,, hence y, 0O. Therefore B,* 00, and hence
d.,, U g,., ie. the search direction is along the negative gradient. Therefore the Polak
and Ribiere algorithm has a restart feature, this making it more rapid convergent that Fletcher
and Reeves’s. On the other hand, when @, in (2) is obtained by an exact line search, then the
orthogonality condition d/ g,,, =0 gives B, = B/. Powell [30] showed that the Polak
and Ribiere algorithm, with &, computed by an exact line search, can cycle or badly can be

divergent on some functions. To cope with this possible failure of the Polak and Ribicre
algorithm, Gilbert and Nocedal [14] suggested the following scheme for f3, :

B = max{ B .0}, (7)

Therefore, when 3, given by (6) is negative, it is simply replaced by zero. The Gilbert and
Nocedal scheme avoids both jamming and the possibility of convergence failure. For
strongly convex quadratic functions, with an exact line search, it has the n —step

convergence property. In this case, for every k, B kP * > 0. However, due to rounding errors,
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it is possible that B, <0, which implies B, = 0. Therefore, when B, is seted to zero,

the conjugate gradient algorithm is restarted with the negative gradient, leading to slower
convergence.
Some other schemes for computing 3, have been given by Dai and Liao [9], and

Hager and Zhang [16,17]. Dai and Liao suggest
T
o _ e T15) & )
kT T >
di Vi
where #>0 1is a constant parameter and s, = x,,, —x,. They report some numerical

results for # =0.1 and ¢ =1. However, for different choices of ¢ the performance of the
corresponding conjugate gradient algorithm is very different. An adaptive version of Dai and
Liao scheme is that given by Hager and Zhang:

0 g
1
kHZ = dTy ﬁ/k -2d, lyrkﬂ ﬁgkﬂ’ ©)
k Yk k Yk

2
which corresponds to ¢ = 2” Vi H / (s} y,). Hager and Zhang proved that their conjugate

2
, being independent of

gradient scheme satisfy the descent condition g, d, <—(7/ 8)” g

the line search procedure, and is globally convergent when the line search satisfy the Wolfe
conditions. The performance profile of their algorithm, implemented in CG-DESCENT
package [17], shows that it is better than profiles for the L-BFGS quasi-Newton method of
Nocedal [21] and Liu and Nocedal [20], the Polak-Ribiére PR+ method [26], and schemes, of
Dai and Yuan [10].

Another way of thinking the conjugate gradient methods has been considered by
Perry [25], Oren and Spedicato [24] and Shanno [32]. They link conjugate gradient methods
to quasi-Newton ideas, thus obtaining very powerfull conjugate gradient algorithms. Using
the Hestens and Stiefel formula for updating f3, , Perry suggests a formula for computing the
search direction d,,, which satisfy a system of linear equations, similar but not identical, to
the quasi-Newton equation. Shanno [32] reconsiders the method of Perry and interpret it as a
memoryless BFGS updating formula. Using a scaling procedure suggested by Oren [22],
Oren and Luenberger [23] and Oren and Spedicato [24], combined with Beale® restarts and
Powell’s restart criterion, Shanno presents an algorithm in which g,,, is modified by a
positive definite matrix which best estimates the inverse Hessian, without any additional
storage requirement. At every nonrestart step a double update scheme is considered. Under
an inexact line search Shanno [33] proved that this computational scheme is global
convergent for convex functions. For general functions, Powell [28] proved that it may be not
convergent, even that the exact line search is used. However, the Shanno’s scheme is
convergent if restarts are considered, but in this case the speed of convergence is reduced.
Using the Wolfe line search, Han, Liu and Yin [18] proved that the Shanno’s memoryless
quasi-Newton method for nonconvex problems is convergent to a stationary point when

lim H Vi H =0 and the gradient of f is Lipschitz continuous. This computational scheme,
00

using an inexact line search, implemented in CONMIN [34], proved to be one of the most
powerfull conjugate gradient subroutine able to solve a large variety of unconstrained
optimization problems.

This paper is motivated by a variant of the conjugate gradient algorithm, called
spectral conjugate gradient, given by Birgin and Martinez [6]. Preserving the nice
geometrical properties of Perry’s direction, Birgin and Martinez present a conjugate gradient
algorithm in which the parameter scaling the gradient defining the search direction is selected

3E.M.L. Bedle (1928-1985)



by means of a spectral formula, firstly suggested by Barzilai and Borwein [4]. Numerical
experiments with this algorithm proved that this computational scheme outperforms Polak-
Ribiére and Fletcher-Reeves, and is competitive with CONMIN of Shanno [34] and SGM of
Raydan [31]. In this paper we modify the best algorithm of Birgin and Martinez in order to
overcome the lack of positive definiteness of the matrix defining the search direction. This is
done using the quasi-Newton BFGS updating philosophy. Using the restart technology of
Beale-Powell, we get a new scaled conjugate gradient algorithm in which the scaling
parameter is selected as spectral gradient or in an anticipative manner using the function
values in two successive points. The algorithm implements both Wolfe conditions.

The paper is organized as follows: In section 2, following the developments of Birgin
and Martrinez [6], we present the scaled conjugate gradient method. Section 3 is dedicated to
the scaled conjugate gradient with memoryless BFGS updating formula. The scaled
conjugate gradient with restart is presented in section 4. Section 5 presents two procedures
for selection the scaling parameter: spectral and anticipative. A complete description of the
scaled conjugate gradient algorithm is given in section 6. The algorithm performs two types
of steps: a normal step in which a double quasi-Newton updating scheme is used, and a
restart one where the current information is used to define the search direction. The
convergence analysis of the algorithm, for strong convex functions, is described in section 7.
In section 8 we present the computational results on a set of 500 unconstrained optimization
problems and compare the Dolan and Moré [11] performance profiles of the new scaled
conjugate gradient scheme to the profiles for the Birgin and Martinez’s method.

2. Scaled conjugate gradient method

For solving (1) we consider the iterative process (2), where for k£ =0,1,... the stepsize a, is
positive, and the directions d, are generated by:

diyy = =60,080a + BiSis (10)

in which 8,,, and [, are parameters which follow to be determined.

Observe that if 6,,, =1, then we get the classical conjugate gradient algorithms
according to the value of the scalar parameter [3,. On the other hand, if [, =0, then we
get another class of algorithms according to the selection of the parameter 8,,, . There are
two possibilities for 8,,, : a positive scalar or a positive definite matrix. If 8,,, =1 we have
the steepest descent (Cauchy [8]) algorithm. If 8, ,, = 0* f (xkﬂ)_l, or an approximation of
it, then we get the Newton or the quasi-Newton algorithms, respectively. Therefore, we see
that in general case, when 8,,, # 0 is selected in a quasi-Newton manner, and 3, #Z 0, (10)
represents a combination between the quasi-Newton and conjugate gradient methods.

Now, like in [6], assuming that f is a quadratic function and B = [0° f(x, ), its
Hessian, is positive definite, then this implies y, #0 for every k& =0,1,.... Therefore,

x satisfies:
X =X, td, 1D
where

Bd" =-g.,. (12)
Now, premultiplying (12) by S,{ , we get:

yid ==s/g... (13)



The relation (13) has the following geometric interpretation. The optimum increment
belongs to the following hyperplane:

P ={a0R"yIE- sTg.). (14)

Observe that if s, g,,, =0, then the null direction d = 0 belongs to P,.

Having in view this property of the quadratic functions with positive definite
Hessian, it is natural to consider that

d., 0P, (15)
i.e. the search direction for the general problem (1) belongs to the hyperplane P, for every

k. Then by (10) we get:

T — T
yk[_6k+lgk+1+Bksk] = S 8o
i.e.

_ (C Al )T 8+

16
B T, (16)
With this, the corresponding direction is as follows:
(B =50)" &in
di = =018 t+ S (17)

T
Vi Sk

The following particularizations can be remarked. If 6,,, =1, then (17) is the direction

considered by Perry [25]. If S_]ngﬂ =0, j=0,,...,k, then from (17) we get:

T
011 Vi i

S (18)
akeknggk g

iy =080 +

which is the direction corresponding to a generalization of th Polak and Ribi¢re formula. Of
course, if 8,,, =0, =1 in (18), we get the classical Polak and Ribiere formula. If

sf g+ =0, j=0,1,....,k and additionally the successive gradients are orthogonal, then
from (17)

6 T
1 &k &k

d
akeknggk

i = 08 Sk (19)

which is the direction corresponding to a generalization of the Fletcher and Reeves formula.
We see that (17) is a general formula for direction computation in a conjugate gradient
manner including the classical Fletcher and Reeves [13], and Polak and Ribiére [26]
formulas.

Computational experiments given by Birgin and Martinez, with a spectral gradient
selection choice of parameter 8, ., , show that the algorithm (17) of Perry outperforms the
variants (18) of Polak and Ribi¢re and (19) of Fletcher and Reeves, and compare favourable
with CONMIN computational scheme of Shanno and Phua [34]. It is worth saying that the
efficiency of (17) also is comming from a procedure for initial choice of the step-length in
line searching algorithm implementing the Wolfe conditions, procedure we also consider in
our developents.



3. Scaled conjugate gradient with memoryless BFGS updating

Shanno [32,33] proved that the conjugate gradient methods are exactly the BFGS quasi-
Newton method where at every step the approximation to the inverse Hessian is restarted as
the identity matrix. In this section we extend this result for the scaled conjugate gradient.

Before considering the developments of the scaled conjugate gradient algorithms
with memoryless BFGS updating formula, let us present the following technical lemmas,
which can be proved by direct computation.

Lemma 1. If x,y,z OR" then: (x" y)z=(zy" )x. ®
Lemma 2. If x,y,z O R" then: x" (yz')=(x"y)z'. m

From (17) we have:

k+1

T 1 T
kTSk (Vi &xr1)Sk _ylzsk (S¢ e )Si-

diy =08 n + v

Using lemma 1 we can write:

(ykTng)Sk = (glfﬂyk)sk = (SkykT)ng >

(5 oSk = (eSS, =(5,5) -
Therefore, the direction given by (17) can be written as:

0 syl s, O
d+:_ +1_6+M+# a = "Upy B 20
k+1 K+ k+ ykrsk ykrsk %kl O 18+ (20)

where

S, VLSS
_ _ Yk KOk
Qk+1 - 9k+ll 9k+1 T

.
YiSe  ViSk

21
If 8,,, =1, we have:

O syl s/ 0
d, =- _2k Yk PRk » 2
K+ EI ylzsk ylzsk Egkl (22)

which is exactly the Perry formula. Using lemma 2, by direct computation, we can prove

Proposition 1.
VO =s,. 1 (23)

Observe that (23) is similar, but not identical, to the quasi-Newton equation, which requires
that an update to the inverse Hessian H,, is in such a way as to satisfy:

Hi .y, =5, (24)

A major difficulty with (20) is that the matrix (,,,,defined by (21), is not symmetric and
hence not positive definite. Thus, the directions d,,, from (20) are not necessarily descent
directions and therefore numerical instability can result. Besides, another difficulty arising
from this lack of symmetry is that the true quasi-Newton equation (24) is not satisfied.

In order to overcome this difficulty and to get a true quasi-Newton updating we first
make the matrix Q,,, from (21) symmetric as follows:



T T T
S y( +y SC S SC
Qk+l = 9k+11 _6k+l = T et kT : . (25)

Vi Sk YiSk

Now, we force Q,,, to satisfy the quasi-Newton equation (24) yielding the following
symmetric update:

T
. s, +s Os, s”
Qk+1 = 9k+ll _6k+1 yk ‘ T kyk +H + 9k+l y];"yk H - . (26)

Vi Sk Vi S Wi Sk

By direct computation it is very easy to proof that QZ+1 satisfy the quasi-Newton equation,
ie.

Proposition 2.
Oy =5, W (27)

Notice that
k+1 - Qk+1gk+1 (28)

does not actually require the matrix QZ+1 , 1.e. the direction d,,, can be computed as:

O
_ %kﬂ k yk yk k+lSk gk+1yk
diy = =008n 64 BV % +0,., yTS yTS -6, y < Eﬂbka (29)
k* k kk k "k

involving only 4 scalar products. Again observe that if g,fﬂs . =0, then (29) reduces to:

T
_ i1 Vi

diy = =008n *6i 7 Sp- (30)
YiSk

Thus, in this case, the effect is simply one of multiplying the Hestens and Stiefel search
direction by a positive scalar.

As we know, the BFGS update to the inverse Hessian, which currently is the best
update of the Broyden class, is defined by:

H, y.s +s yiH (H, y, Us s/
H. =H, - kY Sk . K Vi g +B+J’ Yk H kS . 31)
Vi Sk Vi s Wi Sk

Therefore, we can immediately see that the conjugate gradient method (28), where Q,tﬂ is
given by (26), is exactly the BFGS quasi-Newton method, where at every step the
approximation of the inverse Hessian is restarted as the identity matrix multiplied by the
scalar 6,,,.

In order to ensure the convergence of the algorithm (2), with d,,, given by (29), we
need to constrain the choice of ,. We consider line searches that satisfy the Wolfe
conditions [35,36]:

f(x, ta,d, )_f(xlc)Saakgkdlc (32)
Uf (x+ a,d, )" dz 0,8, dk (33)
where 0 <0, <0, <.



Theorem 1. Suppose that O, in (2) satisfies the Wolfe conditions (32) and (33), then the
direction d,,, given by (29) is a descent direction.

2
Proof: Since d, = —g,, we have g, d, = —HgOH < 0. Multiplying (29) by g,.,, we have

1

T [ —
indin = [ 0 u

2
T N2 (J’kTSk)z +29k+l(ngﬂyk)(ngﬂSk)(ykTSk)
(yk Sk)

8+

_(ng+1Sk)2 (ykTSk) -0, (J’kTJ’k )(ng+1Sk)2]-

1
Applying the inequality u'v < E(”u”2 +||v||2) to the second term of the right hand side of

the above equality, with u = (s, y,)g,,, and v =(g/,,s,)y, we get:

_ (ngHSk)2

T (34)
yk Sk

T
i S

But, by Wolfe condition (33), y, s, > 0. Therefore, g,,,d,,, <0 forevery k=0,1,...®

Observe that the second Wolfe condition (33) is crucial for the descent character of
direction (29). More than this, we see that the estimation (34) is independent by the
parameter 6, .

4. Scaled conjugate gradient with restart

Usually, all conjugate gradient algorithms are periodically restarted. The standard restarting
point occurs when the number of iterations is equal to the number of variables, but some
other restarting methods can be considered. One such restarting method was proposed by
Powell [29], based on an earlier version suggested by Beale [5]. The Powell restarting
procedure is to test if there is very little orthogonality left between the curent gradient and the
previous one. At step 7 when:

2

; (35)

‘g;il gr ‘ 2 O'ZngH

we restart the algorithm using the direction given by (29).
Another restarting procedure, considered by Birgin and Martinez [6], consists of
testing if the angle between the current direction and — g,,, is not acute enough. Therefore,

at step 7 when:

d’g,. >-107d | |g.. (36)

27

the algorithm is restarted using the direction given by (29).
At step rwhen one of the two criteria (35) or (36) is satisfied, the direction is

computed as in (29). For k = +1, we consider the same philosophy used to get (26), i.e.
that of modifying the gradient g, ., with a positive definite matrix which best estimates the
inverse Hessian without any additional storage requirements. Therefore, the direction d,,,,
for k = r +1, is computed using a double update scheme as:



diw =—H &> (37)

where
H sh+s 0] "H Us, s”
H.=H., - aViSe TSy H +B+yk Tr+lyk kT k (38)
J’k S Vi Sk Wi Sk
and
7
yr r ryl yl yl I‘ r

= 9r+l[ - er

r+l

+H +0 B—yr " (39)

As above, observe that this computational scheme does not involve any matrix. Indeed, using
lemma 1, H,,,g,,, and H, , v, can be computed as:

—_ H 9 9 kT+1Sr |:|
V= -+ + = r+ + - r r
18 k4 18k + 1 erSr Hy
r O
yr yl k+1 r gk+1yr
++6,,, LT Rl I (40)
% V.S, byrs, O

and

w=H_ v, =0,y — %HV

r,
y,y, ; ykyr
+[M+06.,, U -6, , 41
% S Dyl r rlyfsl‘ %‘r ( )

involving 6 scalar products. With these the direction (37), at any nonrestart step can be
computed as:

(gk+lSk)W+(gk+lW)Sk _S_'_ ykTWD 1{+1Sk
yksk L ylzsk DJ’kSk

d, = Sy, (42)

involving only 4 scalar products. We see that d,,, from (42) is defined as a double quasi-

Newton update scheme.
Before considering some other aspects of the algorithm concerning for example the

selection of O,,, parameter and its convergence, it is useful to note that y,s, >0 is
sufficient to ensure that the direction d,,, given by (42) is well defined and it is always a
descent direction.

5. Selection of 6,

In this section we shall consider some formulas for computation of 8,,, . As we have already
seen, in our algorithm 6,,, is defined as a scalar approximation of the inverse Hessian.

According to the procedures for a scalar estimation of the inverse Hessian we get a family of
scaled conjugate gradient algorithms. The following procedures can be considered.



8, ., spectral. Motivated by the spectral gradient method introduced by Barzilai and Borwein
[4] and analyzed by Raydan [31] and Fletcher [12], we consider a spectral gradient choice for
8,, as:
s kT Sk
00 = . (43)

T
Vi Sk

The parameter 6, ,, given by (43) is the inverse of the Rayleigh quotient:

U
sgaﬂzf(x,j tsk)dtB'k /s]s,,
which lies between the largest and the smallest eigenvalue of the Hessian average
Jor pag 1s,).
0

Again we notice that y; s, > 0 is sufficient to ensure that 0,,, in (43) is well defined.

8, ., anticipative. Recently, Andrei [2], using the information in two successive points of the
iterative process, considered another scalar approximation of Hessian of function f
obtaining a new algorithm which compares favourable with Barzilai-Borwein's. Indeed, in
point x,,, = x, +0,d, we can write

F(ve) = f(x) 40,8l d, +5ad] T (),

where z is on the line segment connecting x, and x,,,. Having in view the local character
of the searching procedure and that the distance between x, and x,,, is enough small we
can choose z = x,,, and consider Y,,, as a scalar approximation of the 0° f(x,.,), where
Y.+ U R. This is an anticipative view point, in which a scalar approximation of the Hessian
at point x,,, is computed using only the local information from two successive points: X,
and x,,,. Therefore, we can write:

Yin = 515 [f(xk+1) S(x,) = akgk ] (44)

dda

Observe that for convex functions y,,, >0. If f(x,,,)~ f(x,)-0a,g,d, <0, then the
reduction f(x,,,)= f(x,) in function value is smaller than @, g, d,. In these cases the
idea is to change a little the stepsize O, as ', —I],, maintaining the other quantities at their
values, in such a manner that y,,, to be positive. To get a value for 1], let us select a real
0 >0, enough small”, but comparable with the value of the function, and consider

Ny 8k d +5] (45)
with which a new value for y,,, can be computed as:
2
Yin = [f(xk+1) f(x )=, -n, )gk ] (46)

dzdk (ak nk)

With these, the value for parameter 8, ,, is selected as:

10



1

’
Yk+l

9k+l = (47)

where Y., is given by (44) or (46).

Proposition 3. Assume that f(x)is continuously differentiable and Uf (x)is Lipschitz
continuous, with a positive constant L. Then at point x,,,

Via S2L. (48)

Proof: From (44) we have:

S0+ OrE)" de Sy aPf(x)"d,]

2
.|

k+1 s

where &, is on the line segment connecting x, and x,,,. Therefore

rErose) 6
k+1 ‘ dk 2 .

a,

Using the inequality of Cauchy and the Lipschitz continuity it follows that

2|0/ (&, x 0 f(x)
< <

21, - x, 3 21
e Hdk Ha k ) ‘

dk a, - Hdk

Xie1 — Xp

a,

=2L. m

Therefore, from (47) we get a lower bound for 8, ,, as:

1
YA

i.e. it is bounded away from zero.

6. The algorithm

Having in view the above developments and the definitions of g,, s, and y,,as well as the
selection procedures for 8,,, computation, the following family of scaled conjugate gradient
algorithms can be presented.

Algorithm SCALCG
Step 1. Select x,[JR", and the parameters 0<0, <0, <l. Compute f(x,) and

2o = Of (x,). Set d, = —g, and a, =1/g,]. Set k =0.

Step 2. Line search. Compute 0, satisfying the Wolfe conditions (32) and (33). Update the
variables x,,, =x, +a,d,. Compute f(x,,, ), and S, =X,,, =X,, V, = &1s1 —&s-
Step 3. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
elseset k =k +1.

Step 4. Compute 8, using a spectral (43) or an anticipative (47) approach.

Step 5. Compute the (restart) direction d, as in (29).

Step 6. Line search. Compute the initial guess of the step-length as

Crk =a k-1 ‘ dk—l HZ / ‘ dk

) Using this initialization compute «, satisfying the Wolfe

11



conditions (32) and (33). Update the variables x,,, =x, +a,d,. Compute
S (Xp)s Grw and S =X, — X4, Vi T &hay ~ &y

Step 7. Store 8 =60, s=s, and y = y,.

Step 8. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
elseset k =k +1.

Step 9. 1f the Powell restart criterion (35), or the angle restart criterion (36), is satisfied, then
go to step 4 (a restart step); otherwise continue with step 10 (a normal step).
Step 10. Compute

T
A %ND v yBeis _ pgivh
T YOS s R S%is ysa
_6%5—1SD+E+GJ’ yDykl ykly
yTsE( % yisOy's ySH

and
_ (gksk 1)W+(gk w)S, O ylf—lw Dglfsk—l
d,=-v+ -+ B Ry
J’k 15 k-1 U ViaSia WVeaSia

Step 11. Line search. Compute the initial guess of the step-length as
a, =a,. Hdk_l H2 /Hdk H2 Using this initialization compute o, satisfying the Wolfe
conditions (32) and (33). Update the variables x,,, =x, +a,d,. Compute

S (X)), raand s, =X =X, Vi = & ~ &
Step 12. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
else set k =k +1 and go to step 9. W

It is well known that if f is bounded below along the direction d,, then there exists
a steplength «, satisfying the Wolfe conditions. The initial selection of the step-length
crucially affects the practical behavior of the algorithm. At every iteration k£ =1 the starting

d,|, /|

guess for the step ', in line search is computed as a ,{_1‘

to be one of the best.
Concerning the stop criterion used in steps 3, 8 and 12 we consider the following

|l This selection prove
2

tests:

| f ()= f(x)
< Ef.
1+] ()

lg.], <&, or (49)

If (49) is satisfied, then the iterations are stoped.

7. Convergence analysis for strong convex functions

Throughout this section we assume that f is strongly convex and Lipschitz continuous on
the level set

L={xOR": f(xx f(x,}. (50)

That is, there exists constants [ >0 and L such that

FrOfOoN & » ke (51)

and

lorerorod Lk (52)

12



for all x and y from L,. For the convenience of the reader we include here the following
lemma (see [16]).

Lemma 3. Assume that d, is a descent direction and Uf satisfies the Lipschitz condition

) (33)

lrero g Lk s,

for every x on the line segment connecting x, and x,,,, where L is a constant. If the line
search satisfies the second Wolfe condition (33), then

1_02 ‘ngdk‘

(54)

Proof: Subtracting g,{ d, from both sides of (33) and using the Lipschitz condition we have

2
dk

(o, _l)ngdk < (&en _gk)Tdk SLak‘ (55)
Since d, is a descent direction and 0, <1, (54) follows immediately from (55). B

Lemma 4. Assume that Uf is strongly convex and Lipschitz continuous on L. If 8., is
selected by spectral gradient, then the direction d,,, given by (29) satisfies:

2 2L I
Hdkﬂ < H[j + F +F@glm . (56)
Proof: By Lipschitz continuity (52) we have
Hyk H = Hgkﬂ ~— 8 :H Lf (x+ a,d, Df(xkﬂ Lak‘dk LHSk H (57)
On the other hand, by strong convexity (51)
visez pls] (58)
Selecting 8,,, as in (43), it follows that
6,., = L% il _ 1 (59)

s uls M

Now, using the triangle inequality and the above estimates (57)-(59), after some algebra on

‘ dk+1

Lemma 5. Assume that Uf is strongly convex and Lipschitz continuous on L. If 8., is

,where d,,, is given by (29), we get (56). B

selected by the anticipative procedure, then the direction d, ., given by (29) satisfies:

13



ur 2L 1 I
+—+— +—
myu 4 my

M E (60)

k+1||*

Proof: By strong convexity on L, , there exists the constant m >0, such that

0% f(xg ml, forall xOL,. Therefore, for every k, V,,, =m. Now, from (47) we see
that, for all k&,

By < (61)

1
e
With this, like in lemma 4, we get (60). B

The convergence of the scaled conjugate gradient algorithm (SCALCG) when fis
strongly convex is given by

Theorem 2. Assume that f is strongly convex and Lipschitz continuous on the level set L.

If at every step of the conjugate gradient (2) with d,,, given by (29) and the step length

a, selected to satisfy the Wolfe conditions (32) and (33), then either g, =0 for some k, or
lim g, =0.

k 5o

Proof: Suppose g, # 0 forall k. By strong convexity we have

2
y;fdk = (g _gk)Tdk 2 Hakudku . (62)
By theorem 1, g/d, <0. Therefore, the assumption g, # 0implies d, #0. Since

a, >0, from (62) it follows that y,d, >0. But f is strongly convex over L,, therefore
f is bounded from below. Now, summing over & the first Wolfe condition (32) we have

Zakngdk > —eo.
=

Considering the lower bound for o, given by (54) in lemma 3, and having in view that d, is
a descent direction, it follows that

Z sid ‘ (63)

o

Now, from (34), using the inequality of Cauchy and (58) we get

T 2 2 2 2
_(8ra8i) < _Hgkﬂ Hsk H _ Hgkﬂ
T - 2 -
Vs, s u

T
k+ldk+1 -

Therefore, from (63) it follows that

Z Hgk

(64)
o

Now, inserting the upperbound (56), or (60), for d, in (64) yields

14



- 2

2 lel <o

=0
which completes the proof. B

For general functions the convergence of the algorithm is comming from theorem 1

and the restart procedure. However, our algorithm is very close to Perry/Shanno
computational scheme. Therefore, for convex functions and under inexact line search it is
global convergent, but in general, even when the line search is exact, it may be divergent. If
restarts are employed, the algorithm is convergent, but the speed of converegence can
decrease. On the other hand, the convergence of the proposed algorithm can be established
using the analysis given by Shanno in [33].

8. Computational results and comparisons

In this section we present the performance of a Fortran implementation of the SCALCG
algorithm on a number of test unconstrained optimization problems. At the same time, we
compare the performance of SCALCG to the best spectral conjugate gradient algorithm, SCG
(Perry-M1), of Birgin and Martinez. The test problems are the unconstrained problems in the
CUTE [7] library, or MINPACK-2 [3] library, along with other large-scale optimization test
problems.

In order to compare SCALCG with SCG we manufactured a new SCG code of Birgin
and Martinez by introducing a sequence of code to compute the 8,,, anticipative according
to (47). Concerning the restart criterion, we implemented both the Powell and angle criterion.
Both these criteria have a crucial role on the practical efficiency of the algorithms. However,
for SCALCG the Powell criterion is more performant than the angle criterion. As the
numerical experiments prove a large percentage of the SCALCG’s iterations are restart
iterations. Our numerical experiments show that the Powell restart criterion in SCG package
is not profitable. Therefore we compare SCALCG algorithm with Powell restart criterion to
SCG algorithm with angle restart criterion, each of them in two variants: 8,,, spectral and
8, ., anticipative, respectively.

The Wolfe conditions are implemented as in SCG with g, =0.0001 and o, = 0.9.

The initial guess of the step-length at the first iteration is a, =1/ Hgo H At the following
iteration, both for SCALCG and SCG, the starting guess for the step Q, is computed as

a e ld,a, /)
length.

) This proved to be one of the best selection of the initial guess of the step

In all experiments we stopped the iterations whenever (49) is satisfied, where |.[.,
denotes the maximum absolute component of a vector and €, = 107 and € ;= 107",

The numerical results concerning the number of iterations, number of restart
iterations, number of function and gradient evaluations, cpu time in seconds, for each of the
methods are posted at the following web site:

http://www.ici.ro/camo/neculai/ansoft.htm/scalcg

Table 1 shows the number of iterations and cpu time corresponding to SCALCG and
SCG algorithms for 6,,, spectral (8" ) and anticipative (6“ ), for 50 test functions. For

each test function we present the total number of iterations and total cpu time (seconds) for
solving 10 problems with n =1000,2000,...,10000 . For example, for Extended Freud. &

Roth function we considered 10 numerical experiments in which » =1000,2000,...,10000.

The total number of iterations and the total cpu time for solving these 10 problems, with
SCALCG and SCG respectively, are give in the table.
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Table 1. Cumulative results for test functions.

Function 6 SCALCG SCG
# iter Time (s) # iter Time (s)
1) Ex. Freud. & Roth 9° 87 2.09 111 3.35
9¢ 90 2.14 115 3.46
2) Ex. Trigonometric 6° 369 18.29 343 17.41
0 537 24.83 479 25.87
3) Ex. Rosenbrock 9° 248 7.85 280 10.55
9¢ 265 8.24 272 10.55
4) Ex. White & Holst 9° 232 6.79 261 9.44
9¢ 265 7.09 282 9.88
5) Ex. Beale 9° 100 1.87 134 3.19
9¢ 117 2.08 138 3.30
6) Ex. Penalty 9° 118 4.51 111 5.00
9¢ 110 4.95 115 5.05
7) Perturbed Quadratic 0° 5827 88.32 9249 225.25
0 5798 87.38 9928 246.95
8) Raydan 1 9° 2256 38.06 585 12.25
9¢ 2234 37.68 619 13.40
9) Raydan 2 9° 30 0.88 40 1.15
2l 30 0.88 40 1.21
10) Diagonal 1 9° 2043 35.70 663 15.99
9¢ 2058 35.59 653 16.09
11) Diagonal 2 9° 3816 73.93 3496 98.97
0 3727 70.14 3593 102.71
12) Diagonal 3 9° 1896 46.47 459 13.24
9¢ 1942 48.12 462 13.29
13) Hager 9° 412 10.93 183 6.04
9¢ 409 10.54 177 5.88
14) Gen. Tridiagonal 1 6° 150 7.41 118 6.65
9¢ 150 7.36 118 6.64
15) Ex. Tridiagonal 1 6° 87 2.42 78 3.07
9¢ 83 2.31 131 4.34
16) Ex. Three Expo Term 6° 70 2.42 75 2.86
9¢ 70 242 72 2.86
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Table 1 (continued)

Function 6 SCALCG SCG
# iter Time (s) # iter Time (s)
17) Gen. Tridiagonal 2 9° 456 17.08 548 25.38
9¢ 466 16.97 534 24.71
18) Diagonal 4 6° 31 0.66 44 1.15
9¢ 31 0.67 44 1.15
19) Diagonal 5 9° 30 2.20 30 1.93
9¢ 30 2.25 30 1.92
20) Ex. Himmelblau 9° 60 1.09 70 1.76
0 59 1.11 87 2.14
21) Gen. PSCl1 9° 1095 90.63 314 26.14
9¢ 1155 102.82 367 31.20
22) Ex. PSCl1 9° 60 4.72 60 4.51
0 50 4.07 58 4.34
23) Ex. Powell 9° 719 15.27 1386 34.17
9¢ 1290 27.84 1339 38.23
24) Ex. BD1 9° 181 4.17 310 20.65
9¢ 209 7.75 411 19.71
25) Ex. Maratos 9° 479 8.46 481 11.92
9¢ 461 8.13 479 11.75
26) Ex. Cliff 9° 221 3.90 222 4.72
9¢ 207 2.97 218 4.89
27) Quadratic Diag. Per. 9° 2046 32.95 15472 423.08
9¢ 1899 31.92 16887 474.33
28) Ex. Wood 9° 495 16.64 991 38.84
0 637 19.99 829 34.00
29) Ex. Hiebert 9° 543 9.01 542 13.18
0 543 9.01 540 13.24
30) Quadratic QF1 9° 6322 54.54 9729 168.02
9¢ 6228 52.34 9756 180.37
31) Ex. QP1 9° 60 2.90 55 1.75
2l 59 2.58 61 1.82
32) Ex. QP2 9° 300 12.86 324 15.60
Q¢ 282 11.26 313 14.66
33) Quadratic QF2 9° 6502 177.35 10660 393.93
9¢ 6626 178.89 10585 389.75
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Table 1 (continued)

Function 6 SCALCG SCG
# iter Time (s) # iter Time (s)
34) Ex. EP1 0° 19 0.44 20 0.38
9¢ 19 0.49 20 0.50
35) Ex. Tridiagonal 2 6° 224 3.35 116 2.58
9° 218 3.19 115 2.46
36) BDQRTIC 0° 1440 102.16 5739 554.26
9¢ 1065 72.39 5429 514.49
37) TRIDIA 0° 20349 302.74 58034 1435.70
9° 20270 299.18 60143 1532.26
38) ARWHEAD 9° 59 9.08 94 29.93
6¢ 49 6.32 187 156.15
39) NONDIA 6° 69 3.35 86 4.18
6¢ 68 3.24 86 4.13
40) NONDQUAR 6° 20236 785.10 53994 10588.97
9° 22049 898.14 56098 2674.75
41) DQDRTIC 0° 72 3.02 101 4.50
9¢ 72 2.96 101 4.50
42) EG2 0° 984 23.79 3170 110.24
9° 1015 26.86 1296 51.41
43) DIXMAANA 9° 53 5.93 70 7.25
6¢ 53 5.93 80 8.24
44) DIXMAANB 0° 100 8.95 111 10.16
9° 100 9.01 110 9.94
45) DIXMAANC 0° 134 11.86 147 13.40
9° 130 11.31 148 13.40
46) DIXMAANE 0° 3840 296.66 5483 482.41
6¢ 3985 313.63 5240 461.48
47) Partial Pert. Quadratic 6° 551 22591 2759 1878.56
6¢ 557 233.76 2732 1933.44
48) Broyden Tridiag. 6° 608 5.01 678 10.99
9° 544 4.50 400 5.99
49) Almost Pert. Quad. 6° 5889 50.60 9719 172.08
6¢ 5750 48.34 9620 171.97
50) Tridiag. Pert. Quad. 6° 5878 88.92 9493 233.21
6¢ 6139 91.28 9800 243.60
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Table 2 shows the global characteristics, corresponding to these 500 test problems, refering
to the total number of iterations and total cpu time for SCALCG and SCG with spectral and
anticipative variants of parameter 6,,, selection, respectively. Considering the number of
iterations we see that, for theta spectral, SCALCG is about 2.11 times more performant than
SCG and about 6.28 times fastest. On the other hand, for theta anticipative, SCALCG is
about 2.1 times more performant, and 3.32 times fastest than SCG.

Table 2. Global characteristics of SCALCG and SCG

Global characteristics 6 SCALCG SCG
Total number of iterations. 500 problems 9° 97846 207238
Q¢ 100200 211337
Total cpu time (seconds). 500 problems 9° 2729.24 17159.94
Q¢ 2862.85 9508.40

Table 3 shows the number of problems, out of 500, for which SCALCG and SCG algorithms
achieved the minimum number of iterations and the minimum cpu time, respectively. We see
that SCALCG is more performant than SCG, both in number of iterations and cpu time.
Refering to the number of iterations SCALCG is about 2.14 times more performant than
SCG. Considering cpu time, SCALCG is 3.16 fastest than SCG. On the other hand, we see
that both spectral and anticipative variants of the algorithms have almost the same
performances. In particular, for spectral variant SCALCG achieved the minimum number of
iterations for about 75.4% of the test problems, and 73.8% for the anticipative variant.
Considering the cpu time, for spectral variant SCALCG achieved the minimum cpu time for
about 80.4% of the test problems, and 79.8% for the anticipative variant. Clearly, SCG is
dominated by SCALCG, both in number of iterations and time.

Table 3. Performance of SCALCG and SCG

# of problems
Performance criterion o6° 0°
SCALCG achieved minimum # of iterations in 377 369
SCG achieved minimum # of iterations in 176 172
SCALCG and SCG achieved the same # of
iterations in 53 41
SCALCG achieved minimum cpu time in 402 399
SCG achieved minimum cpu time in 127 130
SCALCG and SCG achieved the same cpu time in 29 29

The performance of these two algorithms, both for spectral and anticipative variants, have
been evaluated using the profiles of Dolan and Mor¢é [11]. That is, for each algorithm, we
plot the fraction of problems for which the algorithm is within a factor of the best number of
iterations and cpu time, respectively. In figures 1-4 we compare the performance of
SCALCG and SCG codes refering to the number of iterations and cpu time, both for spectral
and anticipative variants. The left side of these figures gives the percentage of the test
problems, out of 500, for which an algorithm is more performant; the right side gives the
percentage of the test problems that were successfully solved by each of the algorithms. The
top curve corresponds to the algorithm that solved the most problems in a number of
iterations (fig. 1, fig.3) or in a cpu time (fig. 2, fig. 4) that was within a given factor of the
best number of iterations and time, respectively.
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Since the top curves in these figures correspond to SCALCG, this algorithm is clearly more
performant both from view points of the number of iterations and cpu time, and both in
spectral and anticipative variants, for this set of 500 test problems with dimensions ranging
from 1000 to 10,000.

It is worth saying that both SCALCG and SCG conjugate gradient algorithms with

0° are very close tothose using 8“. Refering to the number of iterations, from table 2 we
see that, for this set of 500 test problems, SCALCG with @° is about 1.02 times more
performant than SCALCG with @“. Concerning the cpu time SCALCG with 8° is about
1.04 times fastest than SCALCG variant with 6. Therefore, @“ approach compares
favourable with 6°. Besides, the numerical experiments show that the number of problems,

out 500, for which y,,, <0 is only 58, representing 11.6%. More than this, out of a total of

100200 iterations, for solving 500 problems, only 154 iterations involved y,,, <0, ie.
0.153%. The salient difference between SCALCG and SCG algorithms is that while the
percentage of restart iterations for SCALCG is about 90%, SCG involves maximum 10%.

Performances on MINPACK-2 test problem collection. In table 4, we present the

performance of SCALCG algorithm for some unconstrained optimization problems from
MINPACK-2 collection [3].

Table 4. Performance of SCALCG for MINPACK-2 test problems

Problem / # iterations Time (s)
Parameters n 90° ¢ 0 ¢ f(x")

Elastic-Plastic Torsion, 10000 252 203 15.66 | 12.30 | -0.439163197
nx =100, ny =100,
c=5.
Pressure Distributionina | 10000 542 490 34.05 | 30.38 -0.28284
Journal Bearing,
nx =100, ny =100,
ecc=01, b=10.
Optimal Design with 10000 512 581 39.77 | 44.65 -0.01137724
Composite Materials,
nx =100, ny =100,
lambda = 0.008
Inhomogeneous 1000 7422 | 5560 | 134.02 | 102.54 | .920843E-06
Superconductors
(1-dimensional Ginzburg-
Landau problem),
t=1.
Leonard-Jones Cluster 3000 1538 | 1469 | 358.50 | 333.07 -6658.1153
Problem,
ndim=3, natoms=1000
Steady State Combustion | 10000 330 278 | 37.90 | 31.20 -0.07008636

(Solid fuel ignition),
nx =100, ny =100,
lambda = 0.07
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9. Conclusion

The best algorithm of Birgin and Martinez, which mainly is a scaled variant of Perry’s, was
modified in order to overcome the lack of positive definiteness of the matrix defining the
search direction. This modification takes the advantage of the quasi-Newton BFGS updating
formula. Using the restart technology of Beale-Powell, we get a scaled conjugate gradient
algorithm in which the parameter scaling the gradient is selected as spectral gradient or in an
anticipative manner by means of a formula using the function values in two successive
points. Although the update formulas (29) and (40)-(42) are more complicated the scheme
proved to be efficient and robust in numerical experiments. The algorithm implements the
Wolfe conditions, and we prove that the steps are along the descent directions.

The performance profiles for our scaled conjugate gradient algorithm was higher than those
of spectral conjugate gradient method of Birgin and Martinez for a test set consisting of 500
unconstrained optimization problems.
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