SCALCG: A Nonlinear Scaled Conjugate Gradient
Algorithm for Unconstrained Optimization

Neculai Andrei

Research Institute for Informatics,

Center for Advanced Modeling and Optimization,
8-10, Averescu Avenue, Bucharest 1, Romania,
E-mail: nandrei@ici.ro

SCALCG is a package of Fortran 77 subroutines for solving large-scale unconstrained optimization
problems by means of a scaled conjugate gradient method. In this algorithm the searching direction is a
combination of the Newton direction and that corresponding to the conjugate gradient method with
scalled gradient, which satisfy the quasi-Newton equation. The steplength is computed using the Wolfe
line search conditions. The computational scheme is embedded into the restart philosophy of Beale-
Powell [4,23]. The parameter scaling the gradient is selected as spectral gradient, as suggested by
Raydan [24], or in an anticipative manner by means a formula using the function values in two
successive points [1]. In very mild conditions it is shown that, for strongly convex functions, the
algorithm is global convergent. Computational results and performance profile by Dolan and Moré¢ [8],
for a test set consisting of 700 unconstrained optimization problems (some of them from CUTE [6]),
show that this new scaled nonlinear conjugate gradient algorithm substantially outperforms known
conjugate gradient methods including: spectral conjugate gradient SCG by Birgin and Martinez [5],
scaled Fletcher and Reeves, and Polak and Ribiére, CG_DESCENT by Hager and Zhang [11,12] and
CONMIN by Shanno and Phua [27].

Categories and Subject Descriptors: G 1.6 [Numerical Analysis]: Optimization - Unconstrained
optimization, gradient methods; G.4 [Mathematies of Computing]: Mathematical Software -
Algorithm design and analysis, Efficiency; Reliability and robustness.

General Terms: Algorithms

Additional Key Word and Phrases: Conjugate gradient method, quasi-Newton method, scaling,
Rayleigh quotient

1. INTRODUCTION

In [1] we introduced a new scaled nonlinear conjugate gradient method for solving large-
scale unconstrained optimization problem:

min f(x), (1)

where f:R" — R is continuously differentiable and its gradient is available. SCALCG is a
double-precision Fortran package for solving (1) implementing this algorithm. The searching
direction is a combination of the Newton direction and that corresponding to the conjugate
gradient method with scalled gradient, which satisfies the quasi-Newton equation. The
steplength is computed to satisfy the Wolfe line search conditions. The computational
scheme is embedded into the restart philosophy of Beale-Powell [4,23]. The parameter
scaling the gradient is selected as spectral gradient, as suggested by Raydan [24], or in an
anticipative manner by means of a formula using the function values in two successive points
[1]. The algorithm in SCALCG has been developed for functions with a large number of
variables. To access the package, the user must supply a subroutine for function of the
problem and its derivative calculations, as well as a driver program for calling the package
with appropriate options specifications and input parameters. The performance of the

package depends on the initial guess and on the input parameters, all of them being provided
by the user.

In the next section, we describe the method and prove that the direction is a descent
one. In Section 3 we present the algorithm. Section 4 is dedicated to present the convergence
analysis for strongly convex functions, and in Section 5 we provide some details of the
package as well as a numerical study and comparisons with conjugate gradient algorithms
Fletcher-Reeves [9] and Polak-Ribiére [21] and Polyak [22], and packages: SCG by Birgin
and Martinez [5], CG DESCENT by Hager and Zhang [12] and CONMIN by Shanno and
Phua [27].

2. THE METHOD
The algorithm generate a sequence x, of approximations to the minimum x of f,in
which

X =X, 0, (2)

divy = =6,080a + BiSis (3)

where g, = Uf(x,), a, is selected to minimize f(x)along the search direction d, , and
B, is a scalar parameter. The iterative process is initialized with an initial point x, and
dy ==g,-

Observe that if 6,,, =1, then we get the classical conjugate gradient algorithms
according to the value of the scalar parameter [3,. On the other hand, if [, =0, then we
get another class of algorithms according to the selection of the parameter 8,,, . There are
two possibilities for 8,,, : a positive scalar or a positive definite matrix. If 8,,, =1 we have
the steepest descent algorithm. If 8,,, = 0% f(x,,,)”", or an approximation of it, then we get
the Newton or the quasi-Newton algorithms, respectively. Therefore, we see that in general
case, when 6,,, # 0is selected in a quasi-Newton manner, and 3, # 0, (3) represents a
combination between the quasi-Newton and conjugate gradient methods.

To determine [3, consider the following procedure. As we know the Newton

direction for solving (1) is given by d,,, = - f(x 4l Y'g w41+ Therefore, from the equality
- sz(xkﬂ)_lgkﬂz = 0,&ut Bisi

we get:

9k+1S£D2f(xk+l)8 ™ Slzgkﬂ

= 4
g S0 (s, @

Using the Taylor development, after some algebra we obtain:
B, = (CA _Sk)Tgk+1 ’ (5)

T
yk Sk

where s, =x,,, —x,and y, =g,,, —g,. Birgin and Martinez [5] arived at the same
formula for 3, , but using a geometric interpretatioin for quadratic function minimization.
The direction corresponding to [3, given in (5) is as follows:

(S Sk)Tgk+1

T
Vi Sk

diy ==0,8n + Sk (6)

This direction is used by Birgin and Martinez [5] in their SCG (spectral conjugate gradient)
package for unconstrained optimization, where 8,,, is selected in a spectral manner, as
suggested by Raydan [24]. The following particularizations can be remarked. If 6,,, =1,
then (6) is the direction considered by Perry [20]. At the same time we see that (6) is the
direction given by Dai and Liao [7] for ¢# =1, obtained this time by an interpretation of the

conjugacy condition. Additionally, if S_]T gm =0, j=0,...,k, then from (6) we get:

6k+l ykTng

diyy =0, n + T
) o a,6,g,8,

Sko (7

which is the direction corresponding to a generalization of the Polak and Ribiere formula. Of
course, if 6,,, =6, =1 in (7), we get the classical Polak and Ribiére formula [21]. If

S_]T g&m =0, j=0,,...,k and additionally the successive gradients are orthogonal, then
from (6)

T
0118118k

S)
akekglfgk g

diyy =6080 +

which is the direction corresponding to a generalization of the Fletcher and Reeves formula
[9]. Therefore, (6) is a general formula for direction computation in a conjugate gradient
manner including the classical Fletcher and Reeves [9], and Polak and Ribiére [21] formulas.
We see that the direction given by (6) can be written as:

T T[]
S,V S, S
Yk Sk _
Y Bl yTS +yTS gkﬂ =0 184>)
Sk Sk

K+

where

T T
_ Ve, SkSk
Qk+1 = 6k+l[_6k+1 T . (10)

T
YiSe ViSk

If 6,,, =1, we have:

kyk S Sk

Ain = EI J/k Sk +ykSk ngﬂj (I

which is exactly the Perry formula. A major difficulty with (9) is that the matrix
0,.,,defined by (10), is not symmetric and hence not positive definite. Thus, the directions
d,,, from (9) are not necessarily descent directions and therefore numerical instability can
result. Besides, another difficulty arising from this lack of symmetry is that the true quasi-
Newton equation H,,,y, = s, isnot satisfied.

In order to overcome this difficulty and to get a true quasi-Newton updating we first
make the matrix Q,,, from (10) symmetric as follows:
T T T
S Ve TSk | SiSk
Opn =0,,1 -6, T - (12)
' ' ' Vi Sk Vi Sk
Now, we force Q,,, to satisfy the quasi-Newton equation H,, vy, =s, yielding the

following symmetric update:

T T |:| T |:| T
. YiSk T80k Vi Vi =SkSk
0., =0,1-6,, ~4 "k G419 e (13)
k+1 k+l k+l ylz‘sk % k+ y]Z"Sk yZ;Sk
By direct computation it is very easy to proof that Q,:H satisfy the quasi-Newton equation,

ie. 0., v, =s,. Notice that

dpy = Qk+1gk+1 (14)

does not actually require the matrix Q,: 1> 1.e. the direction d,,, can be computed as:

d.=-0g. +6 %l\ilk +0 YkYkB§k+1Sk 9 ngHykEb (15)
K+l o8 T T E[Vk % kLT kT e

Vi kDykSk Vi Sk

involving only 4 scalar products. Again observe that if g ,fﬂs . =0, then (15) reduces to:

T
din = =0,081m TO, Msk' (16)
Vi Sk
Thus, in this case, the effect is simply one of multiplying the Hestens and Stiefel [14] search
direction by a positive scalar.

In order to ensure the convergence of the algorithm (2), with d,,, given by (15), we
need to constrain the choice of ,. We consider line searches that satisfy the Wolfe
conditions [29,30]:

S(x, +akdk)_f(xk)So-lakg/fdk’ (17)
Of (x+ akdk)Tde O-zg/fdka (18)
where 0 <0, <0, <.

Theorem 1. Suppose that Q, in (2) satisfies the Wolfe conditions (17) and (18), then the
direction d,,, given by (15) is a descent direction.

Proof: Since d, = go, we have g, d, = —Hgou <0. Multiplying (15) by g,,,, we have

-1 [
(r7's,) [
~(gls) (5 =0, (I vl s)]

8+ (yk Sk) +206, (gkﬂyk)(gkﬂsk)(yk i)

8r+1%n

1
Applying the inequality u'v < E(llull2 +[[vI*) to the second term of the right hand side of

the above equality, with u = (s; y,)g,,, and v =(g/,,s,)y, We get:

(gk+1 Sk)
ngHdkﬂ S yk Sk (19)

But, by Wolfe condition (18), y, s, > 0. Therefore, g,,,d,, <0 forevery k=0,1,...®
Observe that the second Wolfe condition (18) is crucial for the descent character of direction
(15). Moreover, we see that the estimation (19) is independent by the parameter 8, ., .

Usually, all conjugate gradient algorithms are periodically restarted. The standard
restarting point occurs when the number of iterations is equal to the number of variables, but
some other restarting methods can be considered. The Powell restarting procedure [23] is to
test if there is very little orthogonality left between the curent gradient and the previous one.
At step 7 when:

2
ng+1gr 2 O'2’H<g'r+l s (20)
we restart the algorithm using the direction given by (15). Another restarting procedure,
considered by Birgin and Martinez [5], consists of testing if the angle between the current
direction and — g,,, is not acute enough. Therefore, at step 7 when:
drTgr+1 >-107 N
the algorithm is restarted using the direction given by (15).

€2y

At step r when one of the two criteria (20) or (21) is satisfied, the direction is
computed as in (15). For £k = r+1, we consider the same philosophy used to get (13), i.e.
that of modifying the gradient g,,, with a positive definite matrix which best estimates the
inverse Hessian without any additional storage requirements. Therefore, the direction d,,,,
for k = r +1, is computed using a double update scheme as:

dk+1 = _Hk+1gk+1’ (22)
where
g ooy HevesitsoyiHa O yiH Dy 23
! i ykTSk H ykTSk ykTSk .
and
H,=6,,1-0,, 2550 +H+9 Yo o B— (4)
V, S,

As above, observe that this computational scheme does not involve any matrix. Indeed,
H, . g.,ad H .y, canbe computed as:

T

s O
- —_ _ k+1° r
VEH 8 =60, —0,.4 yTS Hyr

r r

T l
y; yl k+1 r gk+1yr
++6,., Nl (25)
% y/s, L yls, O
and
— k I D
w= Hl‘+1yk = 61‘+1 yk 61 +l D_yr S,_ %yr
T, U
yl yr r yk yr
+[M +6,,, Dy -0, (5, , 26
% S Dyr r ™ yfsl‘ U ' ()

involving 6 scalar products. With these the direction (22), at any nonrestart step, can be
computed as:

diy =7v+

(g£+lsk)w + (g]fﬂ W)Sk - D + yl{w Eglfﬂ Sk Sk: (27)

T T T
Vi Sk YiSr UV Sk

involving only 4 scalar products. It is useful to note that y,f s, >0 is sufficient to ensure that
the direction d,,, given by (27) is well defined and it is always a descent direction.

In the following we shall consider some formulas for computation of 8,,, . As we
have already seen, in our algorithm 8,,, is defined as a scalar approximation to the inverse
Hessian. According to the procedures for a scalar estimation to the inverse Hessian we get a
family of scaled conjugate gradient algorithms. The following procedures can be considered.

8, ., spectral. This is given as the inverse of the Rayleigh quotient:

T
Si Sk

By = (28)

.
Vi Si

9

Observe that in point x,,, = x, +s, we can write:

r | R
S(x) = f(x) +g s, +5Sk 0" f(2)sy»

where z is on the line segment connecting x, and x,,,. Now, considering the local character
of searching we can take z = x,,,. On the other hand, in point x, = x,,, —s, we have:

1
S(x) = f(x) —g;fﬂsk +ESI{ sz(xkﬂ)sk'

With these, considering V,.,, as a scalar approximation of (0* f(x,,,), and addind these two
equalities we get exactly the Rayleigh quotient. The inverse of Rayleigh quotient is the
spectral value of the scaling parameter. Again we notice that y,{sk >0 is sufficient to
ensure that 6, in (28) is well defined.

6,,, anticipative. Recently, Andrei [1], using the information in two successive
points of the iterative process, considered another scalar approximation to Hessian of
function f obtaining a new algorithm which compares favourable with Barzilai and
Borwein's [3]. This is only a half step from the spectral procedure we presented above.
Indeed, in point x,,, = x, +a,d, we can write

S = f(x)+a,g,.d, +%ak2dkT [f(2)d,, (29)
where z is on the line segment connecting x, and x,,,. As above, having in view the local
character of the searching procedure and that the distance between x, and x,,, is enough
small we can choose z =x,,, and consider y,,, as a scalar approximation of the

0% f(x,,,), where y,, O R. This is an anticipative view point, in which a scalar
approximation of the Hessian at point x,,, is computed using only the local information
from two successive points: x, and xk+l Therefore, we can write:

dl d/ ak [f(xk+1) f(xk) akgk] (30)

Observe that for convex functions y,,, >0. If f(x,,,)= f(x,)-0a,g,d, <0, then the

reduction f(x,,,)= f(x,) in function value is smaller than @, g, d,. In these cases the
idea is to change a little the stepsize O, as ', —1],, maintaining the other quantities at their

yk+l -

values, in such a manner that y,,, to be positive. To get a value for], let us select a real
0 >0, enough small”, but comparable with the value of the function, and consider

ne = kgkd +5] (31
with which a new value for Yy, ,, can be computed as:
2
= X X a, — 32
Ven = T o nu[f(“d JCARICIE BT A) (32)
With these, the value for parameter 6, ,, is selected as:
1
(] =, (33)
! yk+l

where Y, ., is given by (30) or (32).
Proposition 1. Assume that f(x) is continuously differentiable and [f(x)is Lipschitz
continuous, with a positive constant L. Then at point x,,,,

Vi S2L. (34)

Proof: From (30) we have:

S o, O ED) A fOnr aDf(x,)]

k+l T 2 5 >
.| a;
where &, is on the line segment connecting x, and x,,,. Therefore
T
A Er0se) 4
k+l T 2 :
AR

Using the inequality of Cauchy and the Lipschitz continuity it follows that
A orel 2dé -x] _2tx. -

| Jar, faJoc = lada,

=2L. m

k+1 =

Therefore, from (33) we get a lower bound for 8,,, as:
1
O 250

i.e. it is bounded away from zero.

3. SCALCG ALGORITHM

Having in view the above developments and the definitions of g,, s, and y,,as well as the
selection procedures for 8,,, computation, the following family of scaled conjugate gradient
algorithms can be presented.

Step 1. Initialization. Select x,[0 R", and the parameters 0 <0, <0, <1. Compute

f(x,) and g, = Of (x,). Set d, = —g, and &, =1/g,]. Set k =0.

Step 2. Line search. Compute O, satisfying the Wolfe conditions (17) and (18). Update the
variables x;,, = x; +a,d,. Compute f(X;,,), 8y and s, =X, X4, Vi T &huy ~ &y
Step 3. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
elseset k =k +1.

Step 4. Scaling factor computation. Compute 6, using a spectral (28) or an anticipative (33)

approach.
Step 5. Restart direction. Compute the (restart) direction d, as in (15).

Step 6. Line search. Compute the initial guess of the step-length as:

O =0 Hdk—l Hz /Hdkuz'
Using this initialization compute ', satisfying the Wolfe conditions (17) and (18). Update
the wvariables x,,, =x, +a,d,. Compute f(x,,), & and s, =x., —X,,
Yi = 8knt ~ 8
Step 7. Store: 8 =0,, s=s, and y=y,.
Step 8. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
else set k =k +1.
Step 9. Restart. 1f the Powell restart criterion (20), or the angle restart criterion (21), is

satisfied, then go to step 4 (a restart step); otherwise continue with step 10 (a normal step).
Step 10. Normal direction. Compute:

v:agk_e%gﬁw @i i’“fﬁ
%kl v yOyis ykly
0 H* @Jrey sOy’ s O

Dys K

and

T T T T
_V+(gk S)W H (g WS, _D yiaw Hgis

dk: 1+

T T T k-1
Yi-15k1 U YiearSiar Ve84
Step 11. Line search. Compute the initial guess of the step-length as:
ak :ak—l‘dk—luz /‘dk 2°

Using this initialization compute O, satisfying the Wolfe conditions (17) and (18). Update
the variables x,,, =x, +a,d,. Compute f(x,,), &g, and s, =X, —X,,
Vi = 8kn T &k

Step 12. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
else set k =k +1 and go to step 9. W

It is well known that if f is bounded below along the direction d,, then there exists
a steplength ', satisfying the Wolfe conditions. The initial selection of the step-length
crucially affects the practical behavior of the algorithm. At every iteration k£ =1 the starting

guess for the step @ in line search is computed as O, _, Ha’k_1 Hz / Hdk Hz This selection,

considered for the first time by Shanno and Phua in CONMIN [27], prove to be one of the
best. Concerning the stopping criterion used in steps 3, 8 and 12 one could consider any of
the following tests:

le.]. <e. o aleld|<e |fx) (35a)
le. [, < max{e,., 2.} (35b)
Hgk 2 = gg’ (350)

where €, and €, are tolerances specified by the user. € . specify the desired accuracy of the
computed solution, € specify the desired accuracy for the gradient norm. The second

criterion in (35a) says that the estimated change in the function value is insignificant
compared to the function value itself.

4. CONVERGENCE ANALYSIS FOR STRONGLY CONVEX FUNCTIONS

Assume that f is strongly convex and Lipschitz continuous on the level set

L ={x0R": f(xk f(x,}. (36)
That is, there exists constants [>0 and L such that
D EFOron & » u (37

and

IDfeororod L s (38)
for all x and y from L,. For the convenience of the reader we include here the following
lemma (see [12]).

Lemma 1. Assume that d, is a descent direction and Uf satisfies the Lipschitz condition

lreorord Lk x, (39)
for every x on the line segment connecting x, and x,,,, where L is a constant. If the line
search satisfies the second Wolfe condition (18), then

1- o, ‘ngdk‘
a, = .
S A

(40)

Proof: Subtracting g,{ d, from both sides of (18) and using the Lipschitz condition we have

2
(g, —l)g;fdk <(&in _gk)Tdk SLakHdkH . (41)
Since d, is a descent direction and 0, <1, (40) follows immediately from (41). B

Lemma 2. Assume that Uf is strongly convex and Lipschitz continuous on L. If 8., is
selected by spectral gradient, then the direction d,., given by (15) satisfies:

Hd <E|2—+2—L+L—2@g (42)
k+1|| — D[l u 2 u 3 k+L||*
Proof: By Lipschitz continuity (38) we have
Hyk H = Hgkﬂ ~— & H :H Lf (x+ a,d, - Df(xkﬂ Lakudk:ﬁ LHSkH' (43)
On the other hand, by strong convexity (37)
visez pls] (44)
Selecting 8,,, as in (28), it follows that
o st bl -
k+1

T, = >~
vese s [H
Now, using the triangle inequality and the above estimates (43)-(45), after some algebra on

|

,where d,,, is given by (15), we get (42). B

Lemma 3. Assume that Uf is strongly convex and Lipschitz continuous on L. If 8., is
selected by the anticipative procedure, then the direction d, ., given by (15) satisfies:

g |<fs 2Ly L @g
k|| = k+l

. (46)

Proof: By strong convexity on L, , there exists the constant m >0, such that

0% f(xg ml, forall x O L,. Therefore, for every k, V,,, =m. Now, from (33) we see
that, for all k&,

(47)

1
8., < ;

With this, like in lemma 2, we get (46). B

The convergence of the scaled conjugate gradient algorithm (SCALCG) when f is
strongly convex is given by

Theorem 2. Assume that f is strongly convex and Lipschitz continuous on the level set L.

If at every step of the conjugate gradient (2) with d,,, given by (15) and the step length

a, selected to satisfy the Wolfe conditions (17) and (18), then either g, =0 for some k, or
limoo g, =0.

Proof: Suppose g, # 0 forall k. By strong convexity we have
2

Vid, = (g —8) ' d, 2 llakudku . (48)

By theorem 1, g/d, <0. Therefore, the assumption g, # 0implies d, #0. Since

a, >0, from (48) it follows that y, d, >0. But f is strongly convex over L, therefore
f is bounded from below. Now, summing over k the first Wolfe condition (17) we have

zakgkd > —00,
k=0

Considering the lower bound for o, given by (40) in lemma 1, and having in view that d, is
a descent direction, it follows that

‘gk ‘

o] v
=
Now, from (19), using the inequality of Caucfly and (44) we get
(g,m Sk Hg/m ‘ S Hg/m ’

lad,,, < < =

Ekn1Gin yk 5, - HHS,CH 7
Therefore, from (49) it follows that

slal . .

o, |
Now, inserting the upperbound (42), or (46), for d, in (50) yields

- 2
el <,
=0

which completes the proof. B

For general functions the convergence of the algorithm is comming from theorem 1
and the restart procedure. Our algorithm is very close to Perry/Shanno computational
scheme. Therefore, for convex functions and under inexact line search it is global
convergent. If restarts are employed, the algorithm is convergent, but the speed of
convergence can decrease. On the other hand, for general functions that are bounded from
below with bounded level sets and bounded second partial derivatives, the convergence of
the proposed algorithm can be established using exactly the same analysis given by Shanno
in [26].

5. NUMERICAL STUDY AND COMPARISONS

In this section we present a numerical study concerning the performance of SCALCG - scaled
conjugate gradient algorithm on a number of 700 test unconstrained optimization problems.
At the same time, we compare the performance of SCALCG to SCG (betatype=1,Perry-M1)
the best spectral conjugate gradient algorithm (6) by Birgin and Martinez [5], to
CG _DESCENT - a conjugate gradient method with guaranteed descent by Hager and Zhang
[11,12], to scaled Polak-Ribiere algorithm (7) and scaled Fletcher-Reeves algorithm (8) and
to CONMIN conjugate gradient algorithm by Shanno and Phua [27].

The SCALCG code is authored by Andrei, while the SCG is co-authored by Birgin
and Martinez and CG DESCENT is co-authored by Hager and Zhang. Polak-Ribiere and
Fletcher-Reeves algorithms are implemented into the frame of SCG. CONMIN is authored
by Shanno and Phua [27]. All codes are written in Fortran and compiled with f77 (default
compiler settings) on a work station 1.8Ghz.

SCALCG code implements both the scaled conjugate gradient with spectral choice of
scaling parameter 6,,, , as well as with anticipative choice of this parameter, using Powell
restart criterion. Basically, SCALCG can be described by the following components: an user-
supplied driver, the main subroutine implementing SCALCG algorithm, a line-search
subroutine implementing the Wolfe line search, a subroutine specifying the function to be
minimized and its gradient, and a subroutine with the initial guess. The line search is
implemented in the same manner as that given by Shanno and Phua in their CONMIN
package.

10

In order to compare SCALCG with SCG, scaled Polak-Ribiére and scaled Fletcher-
Reeves we manufactured a new SCG code of Birgin and Martinez by introducing a sequence
of code to compute the 8,,, anticipative according to (33) and the Powell restart criterion.
Therefore, SCG code implements both restart criteria: Powell (20) and angle (21).
CG_DESCENT code contains both variants implementing the Wolfe line search and the
variant corresponding to approximate Wolfe conditions, using restarting at every n
iterations. On the other hand, CONMIN implements a BFGS modification of Perry method
[20] with Wolfe line search and Powell restart criterion.

The test problems are the unconstrained problems in the CUTE [6] library, along
with other large-scale optimization test problems. We selected 70 large-scale unconstrained
optimization test problems (22 from CUTE library) in extended or generalized form. For
each test function we have considered 10 numerical experiments with number of variables
n =1000,2000,...,10000.

The numerical results concerning the number of iterations, number of restart
iterations, number of function and gradient evaluations, cpu time in seconds, for each of the
methods are posted at the following web site:

http://www.ici.ro/camo/neculai/ansoft.htm/scalcgt

In the following we present the numerical performances of all these codes, including
the performance profiles of Dolan and Moré [8] subject to the number of iterations, the
number of function evaluations and cpu time metrics, respectively. For SCALCG and
CONMIN we present their performances on some applications from MINPACK-2 library.

5.1. SCALCG with 8° versus SCALCG with 6
In SCALCG code the computations are terminated as soon as (35a) is satisfied, where
£, = 10° and & ;= 107°. The Wolfe line search conditions are implemented with the
following values of parameters 0, and 0, : 0, = 0.0001 and 0, =0.9.

Concerning the restart criterion, we implemented both the Powell and angle criteria.
Both these criteria have a crucial role on the practical efficiency of the conjugate gradient
algorithms. However, we observed that for SCALCG the Powell criterion is more performant
than the angle criterion. As the numerical experiments prove a large percentage of the
SCALCG’s iterations are restart iterations. Therefore we compare SCALCG algorithms with
Powell restart criterion where 8,,, is selected in a spectral or in an anticipative manner.

Table 1 shows the global characteristics, corresponding to these 700 test problems,
refering to the total number of iterations, total number of function evaluations and total cpu
time for these algorithms.

Table 1. Global characteristics of SCALCG with 8° versus SCALCG with 6 ¢ .

700 problems.
Global characteristics 6° 6¢
Total number of iterations 644287 628485
Total number of function evaluations 900365 837906
Total cpu time (seconds) 3056.13 2830.91

Out of 700 problems solved in this set of experiments the criterion Hgk Hm <€, in

(35a) stopped the iterations for 614 problems, i.e. 87.7%, in case of SCALCG with 8°, and
for 587 problems, i.e. 83.8%, in case of SCALCG with 8¢ .
Table 2 shows the number of problems, out of 700, for which SCALCG with 6° and

SCALCG with 8“ achieved the minimum number of iterations, minimum number of
function evaluations and the minimum cpu time, respectively.

11

Table 2. Performance of SCALCG algorithms.

700 problems.
Performance criterion # of problems

SCALCG (0") achieved minimum # of iterations in 423
SCALCG (0 “) achieved minimum # of iterations in 488
SCALCG (0") and SCALCG (8 “) achieved the same # of iterations in 211
SCALCG (0 ") achieved minimum # of function evaluations in 416
SCALCG (6 “) achieved minimum # of function evaluations in 474
SCALCG (6") and SCALCG (0 “) achieved the same # of function

evaluations in 190
SCALCG (8") achieved minimum cpu time in 384
SCALCG (6 “) achieved minimum cpu time in 484
SCALCG (6") and SCALCG (8 “) achieved the same cpu time in 168

Observe that the total number in Table 2 exceeds 700 due to ties for some problems. The
performance of these algorithms have been evaluated using the profiles of Dolan and Mor¢
[8]. That is, for each algorithm, we plot the fraction of problems for which the algorithm is
within a factor of the best number of iterations and cpu time, respectively. The left side of
these Figures gives the percentage of the test problems, out of 700, for which an algorithm is
more performant; the right side gives the percentage of the test problems that were
succesfully solved by each of the algorithms. Mainly, the right side represents a measure of
an algorithm’s robustness. In Figures 1 and 2 we compare the performance profiles of

SCALCG with 8% and SCALCG with @“ refering to the number of function evaluations
and cpu time, respectively.

theta spectral B

IR=R3 theta anticipative 4

SCALCG - Sealed Conjugate Gradient
06 Function evaluations metric, 700 problerms 7

Fig.1. Function evaluations performance profile of SCALCG.

0° versus 8¢ .

12

theta spectral

theta anticipative

SCALCG - Scaled Conjugate Gradient
cpu tirme metric, YOO problems

2 4 & g 10 12 14 16

Fig. 2. CPU time performance profile of SCALCG.

0° versus B¢

The top curve corresponds to the algorithm that solved the most problems in a
number of function evaluations (Figure 1) or in a cpu time (Figure 2) that was within a given
factor T of the best number of function evaluations or cpu time, respectively. Since the top

curve in Figures 1 and 2 corresponds to SCALCG with 8¢, this algorithm is clearly better

than SCALCG with 8" . However, both codes have similar performances for almost all
values of T . Therefore, we see that the anticiaptive selection of the scaling parameter

compares favourable, being slightly better then spectral approach.
As we know, different stopping criteria change the performances of the algorithms,
as well as the accuracy of the solution. For example, considering the stopping criteria (35a)-

(35¢), then the performance of SCALCG (6 “), for solving this set of 700 test problems, is
given as in Table 3.

Table 3. Global characteristics of SCALCG (8 “) subject to different
stopping criteria. 700 problems.

Stopping criteria # iter # fg cpu (s)
35a 628485 837906 2830.91
35b 637296 852515 3062.24
35¢ 819160 1102347 4225.28

5.2. SCG with 8" versus SCG with 8°
The direction in SCG code by Birgin and Martinez [5] is computed as in (6), where 8,

determined in a spectral (28), or in an anticipative (33), manner. The Wolfe line search
conditions are implemented like in SCALCG with g, =0.0001 and 0, =0.9. In SCG the
iterations are stopped when (35a) is satisfied. The original stopping criterion used in SCG

was: HDf(x,c) S ngax{l,

optimum, this criterion often leads to a premature termination. In fact, for some problems,
when f is large at the starting point, SCG stop the iterations almost immediately, far from

, s

f(x /c+lﬁ . However, except the cases in which f vanishes at an

the optimum. Therefore, we changed the stopping criteria as in (35a). Like in SCALCG the
initial guess of the step-length at the first iteration is selected as: 1/ Hgo H At the following

13

iterations the starting guess for the step @, is computed as o, _, Hd . H2 / Hd f H2 Tables 4 and

5 show the global characteristics corresponding to these 700 test problems, where the
iterations are restarted using the Powell (20) or angle (21) restart criterion, respectively.

Table 4. Global characteristics of SCG with 8° versus SCG with 8¢ .

Powell restart. 700 problems.

Global characteristics 6° g°
Total number of iterations 555874 543574
Total number of function evaluations 894892 1131209
Total cpu time (seconds) 4948.08 6750.37

Table 5. Global characteristics of SCG with 8° versus SCG with ¢ .
Angle restart. 700 problems.

Global characteristics 6° 6¢
Total number of iterations 953032 954041
Total number of function evaluations 1266262 1278089
Total cpu time (seconds) 7801.14 7868.20

Observe that both codes have similar performances. Since the codes only differ in the
procedure for 8,,, computation we see that 8,,, computed in an anticipative manner, which
is based only on the function values in two successive points, is competitive with the spectral
formula which considers the Hessian average between two successive iterations. It is worth
saying that out of 700 problems solved by SCG with 8¢ in this numerical experiment, only
for 178 (i.e. 25.42%) Y., in (30) was negative in case of Powell restart, and for only 177
(i.e. 25.2% Vy,,, in (30) was negative in case of angle restart. From Tables 4 and 5 we see
that SCG with Powell restart criterion, in both implementations using 8* or 8¢, is slightly
better than SCG with angle criterion. For example, for solving this set of 700 problems SCG

with Powell restart and @ * is with 2853 seconds fastest than SCG with angle restart and 6 .

5.3. CG_DESCENT with Wolfe line search (W) versus CG_DESCENT with
approximate Wolfe line search (aW)

Recently, for solving (1), Hager and Zhang [12] presented a new conjugate gradient
algorithm with guaranteed descent and the performance of the Fortran 77 package
CG_DESCENT which implements it. The directions d, are computed by the following rule:

diwy ==8in ¥ B4y, (51)

1 O J’kTJ’k
=— -2 d , 52
A dkTyk ¢ dkTyk k%ghl 42

d, = —g,. We sce that the above direction d,,, of Hager and Zhang, given in (51)-(52),

HZ
denoted d,], can be expressed as:

Vi Vi %&gkﬂ Y Or O
BT (53)
Skyk U] Skyk yk Yk D

On the other hand, the direction generated by Shanno, let call it d w41 » 18 given as (see (2) in

[26]):

HZ _ _
dk+1 - gk+1

T

d} :—T

k+1

T
S, 8+
+ 2y (54)

T
Vi Vi

_D Skgk+l ykTgk+l D
S TR ey vy o

14

After some simple algebra we see that the direction d,? of Hager and Zhang is related to

the direction d ,fﬂ of Shanno in the following way:

T T T T
45 = eV 5, + 5k 8k i J = Vi Vi 5 — Sk 8k
T T Bikﬂ T ka or kT T K+ T k*
Vi Vi Sk Vi S Vi Sk Vi

With other words, the direction d ,ZZI is obtained from d ,fﬂ by deleting from this direction
the term
T
LRy, (55)
yk yk
In their algorithm Hager and Zhang restrict [3, to be nonnegative. This is motivated
by the work of Gilbert and Nocedal [10] who modified the Polak and Ribiére updating

formula as B, = max{ B ,{,O} and proved the global convergence of this computational
scheme for general nonlinear functions. Similar to the approaches considered by Gilbert and
Nocedal [10], Han, Liu, Sun and Yin [13], and Wang, Han and Wang [28] in their studies on
the Polak-Ribiere version of the conjugate gradient method, Hager and Zhang prove the
convergence for general nonlinear functions by restricting the lower bound of f3, in the
following manner:

Ay = ~&in +B_k dy, (56)
B, = max{[ik,nk}, (57)

N =) (58)
C amindn.Je.

where [3, is given by (52), and the parameter 17 > 0 is a user specified constant. (Suggested
value: N =0.01, considered in all numerical experiments).

An important innovation given by Hager and Zhang in their approach consists of a
new efficient and highly accurate line search procedure. This is based on the Wolfe
conditions (17)-(18) and on a very fine interpretation of the numerical issue concerning the
first Wolfe condition (17). In CG _DESCENT the iterations are stopped whenever

Hg/c
CG_DESCENT with: g, = 0.1 and 0, = 0.9. These values represent a compromise between
the desire for a rapid termination of line search with a semnificative improvement in the
function value. The line search implementing the aproximate Wolfe conditions is very
sophisticated with a lot of parameters which can be specified by the user. In our numerical
experiments we considered the values of these parameters given by default. The algorithm is
restarted at every multiple of 7. Table 6 shows the global characteristics of CG_DESCENT
with Wolfe line search (W), as well as of CG_DESCENT with approximate Wolfe line
search (aW), corresponding to these 700 test problems.

L SE,, where g, =107 . The Wolfe line search conditions are implemented in

Table 6. Global characteristics of CG_DESCENT.

700 problems.
Global characteristics W aW
Total number of iterations 460920 484429
Total number of function evaluations 941037 963294
Total cpu time (seconds) 5006.28 5967.41

In Figures 3 and 4 we compare the performance profiles of CG_DESCENT with Wolfe line
search and CG_DESCENT with approximate Wolfe line search refering to the number of
function evaluations and cpu time, respectively.

15

The best performance, relative to the function evaluations metric or cpu time metric,
was obtained by CG DESCENT with approximate Wolfe line search, the top curve in
Figures 3 and 4. In CG_DESCENT the search directions are always descent directions,
independent of the accuracy in the line search [12]. Since both codes generate the same
direction, it follows that the CG_DESCENT with approximate Wolfe line search is more
performant, subject to these metrics, because it generates a more accurate step length.

/
093+ B
096+ CG-DESCEMNT with Wolfe line search B
0.94 - B
CG-DESCEMT with approximate Walfe line search
092r B
03ar CG-DESCEMT: Function evaluations metric)
700 problems

DBB 1 1 1 1 1 1 1

0 2 4 5] g 10 12 14 16

Fig. 3. CG_DESCENT: Performance based on number of function evaluations.

T T T T
09r b
ol CG-DESCENT with Walfa line search
0.7r b
CG-DESCENT with appraximate VWalfe line search
06+ B
0sr . . B
CG-DESCENT: cpu time metric
700 problems

Dd 1 1 1 1 1 1 1

0 2 4 5 8 10 12 14 16

Fig. 4. CG_DESCENT: Performance based on CPU time.

Observe, in Figure 3, that the CG_DESCENT with approximate Wolfe line search code is the
top performer, relative to the function evaluation metric for almost all values of T . From
Figure 4 we note that relative to the cpu time metric, both codes have similar performances
for all values of T , CG_DESCENT with approximate Wolfe line search being slightly better.
Therefore, the overall poor performance of CG DESCENT with Wolfe line search, both in
the function evaluation and cpu time, is connected with the performance of the line search.
Hager and Zhang [11,12] give computational evidence that their CG_DESCENT is better
than L-BFGS - Limited Memory quasi-Newton method by Nocedal [16] and Liu and Nocedal
[15], and than PRP+ version of the conjugate gradient method developed by Gilbert and
Nocedal [10].

16

5.4. Scaled Polak-Ribiére and scaled Fletcher-Reeves

The search direction in scaled Polak-Ribiére or scaled Fletcher-Reeves algorithms is
computed as in (7) or (8) respectively, where the scaling parameter 6, is selected in a
spectral or an anticipative manner. The iterations are stopped whenever (35a) is satisfied.
Like in SCALCG, the initial guess of the step-length at the first iteration is selected as:

1/ ”g0 ” At the following iterations the starting guess for the step @, is computed as
a,_ ”d -1 ”2 / ”d p ”2 Tables 7 and 8 show the global characteristics corresponding to these

700 test problems, where both variants of the algorithms implement the Powell restart
criterion.

Table 7. Global characteristics of Polak-Ribiére.
700 problems. Powell restart.

Global characteristics 6° g°
Total number of iterations 516246 505004
Total number of function evaluations 814305 863769
Total cpu time (seconds) 4662.16 4918.43

Table 8. Global characteristics of Fletcher-Reeves.
700 problems. Powell restart

Global characteristics 6° ¢
Total number of iterations 521889 500817
Total number of function evaluations 847201 823806
Total cpu time (seconds) 4497.10 4359.46

We see that while there are differences, both these variants of Polak-Ribiére and Fletcher-
Reeves algorithms have similar performances, Fletcher-Reeves with 8 “ being slightly more
competitive, at least for this set of test problems considered in this study.

5.5. Comparison: SCALCG versus SCG and CG_DESCENT
Motivated by the results given in the above Tables and Figures in the following we compare

SCALCG (0“) with SCG (0°) and CG DESCENT (aW). Both SCALCG and SCG restart

iterations using the Powell criterion. Table 9 shows the global characteristics, corresponding
to these 700 test problems, refering to the total number of iterations, total number of function
evaluations and total cpu time for these algorithms.

Table 9. Global characteristics of SCALCG (8), SCG (0") and CG DESCENT (aW).

Powell restart. 700 problems.

Global characteristics SCALCG SCG CG_DESCENT
Total number of iterations 628485 555874 484429
Total number of function evaluations 837906 894892 963294
Total cpu time (seconds) 2830.91 4948.08 5967.41

Table 10 illustrates the number of problems, out of 700, for which the above algorithms
achieved the minimum number of iterations, minimum number of function evaluations and

minimum cpu time, respectively.

17

Table 10. Performance of SCALCG (6 “), SCG (6) and CG DESCENT (aW).
Powell restart. 700 problems.

Performance criterion # of problems
SCALCG (8 “) achieved minimum # of iterations in 451
SCG (0 ") achieved minimum # of iterations in 105
CG_DESCENT (aW) achieved minimum # of iterations in 198
SCALCG (8 “) achieved minimum # of function evaluations in 419
SCG (0)achieved minimum # of function evaluations in 201
CG_DESCENT (aW) achieved minimum # of function evaluations in 215
SCALCG (8 “) achieved minimum cpu time in 583
SCG (0 ") achieved minimum cpu time in 62
CG_DESCENT (aW) achieved minimum cpu time in 117

In Figures 5 and 6 we compare the performance profiles of all these three algorithms subject
to function evaluations and cpu time metrics, respectively.

1

09k
SCG with theta spectral
nar
07 B
CG-DESCEMT with approximate ¥YWaolfe line search
06 B
nst B
SCALCG with theta anticipative
04F B
03f . ; - 1
Function evaluations metric, 700 problems

D 2 1 L 1 1 1 1 1

1] 2 4 5 g 10 12 14 16

Fig. 5. Performance based on number of function evaluations.
SCALCG (0 “) versus SCG (6 °) and CG DESCENT (aW).

0ar

08
SCG with theta spectral
0.7

06F A
CG-DESCEMT with approximate Wolfe line search

0af
041
SCALCG with theta anticipative
03f
02f

0.1F cpu time metric, 700 problems B

Fig. 6. Performance based on cpu time.
SCALCG (0 “) versus SCG (8") and CG_DESCENT (aW).

18

Notice that relative to the function evaluations and cpu time metrics from Figures 5
and 6 it follows that SCALCG (6 “) is the top performer for all values of T. The Figures

indicate that relative to these metrics SCALCG (0 “) appears to be the best, followed by

SCG(60") and followed by CG_DESCENT (aW).

Now, since the SCALCG and SCG codes use the same line search (with the same
values for 0, and O, parameters), these codes only differ in their choice of the search
direction. Therefore, on average, SCALCG appears to generate a better search direction than
SCG. From Table 10 we see that refering to the number problems solved in minimum
number of iterations SCALCG is about 4.3 times more performant than SCG. Considering
the function evaluations it is about twice more performant. Refering to the cpu time we see
that SCALCG is about 9.4 times fastest than SCG.

In the function evaluation metric, from Table 10, we see that, at least for this set of
700 problems, with dimensions ranging from 10°to 10*, SCALCG is about twice more
performant than CG_DESCENT. In the cpu time metric SCALCG is about 5 times more
performant than CG_DESCENT, i.e. the fraction of problems for which SCALCG achieved
the best time is about 5 times greater than that corresponding to CG DESCENT. In Figures 5
and 6 these performances are illustrated for T = 1. The salient point computationaly is that,
even the CG DESCENT uses the loop unrolling to a depth of 5, however SCALCG is faster.
In the line search, more function evaluations are needed by CG_DESCENT with approximate
Wolfe to achieve the stopping criterion, while in SCALCG the number of calls of the Wolfe
line search subroutine is substantially smaller than the number of iterations, i.e. the initial
guess of the step-length is accepted as satisfying the Wolfe conditions at the very first
iteration of the subroutine. This has a great influence on the cpu time. Concerning the total
cpu time for solving this set of 700 problems, from Table 9 we see that SCALCG is almost
twice fastest than CG_ DESCENT.

The SCALCG and CG DESCENT algorithms (and codes) differ in many respects.
Since both of them use the Wolfe line search (however, implemented in different manners),
mainly these codes differ in their choice of the search direction. SCALCG appears to
generate a better search direction, on average. The direction d,,, used in SCALCG is more
claborate, it satisfy the quasi-Newton equation in a restart environment. Although the update
formulas (15) and (25)-(27) are more complicated than the computational scheme (52) and
(56)-(58), this scheme proved to be more efficient and more robust in numerical experiments.
However, since each of these codes are different in the amount of linear algebra required in
each iteration and in the relative number of function and its gradient evaluations, it is quite
clear that different codes will be superior in different problem set.

5.6. Comparisons: SCALCG versus SCG, CG_DESCENT and CONMIN
In the following we compare SCALCG (0“) with SCG (6"), CG_DESCENT (aW) and

CONMIN by Shanno and Phua. Table 11 shows the general characteristics, corresponding to
these 700 test problems, refering to the total number of iterations, the total number of
function evaluations and the total cpu time for these algorithms.

Table 11. Global characteristics of SCALCG (0 “), SCG (6 °), CG_DESCENT (aW)
and CONMIN. 700 problems.

Global characteristics
Algorithm # iterations | # function evals cpu time (seconds)
SCALCG (8“) 628485 837906 2830.91
SCG(8°) 555874 894892 4948.08
CG_DESCENT (aW) 484429 963294 5967.41
CONMIN 434349 1509312 9127.65

19

In Figures 7 and 8 we compare the performance profiles of these algorithms subject to the
number of function evaluations and cpu time, respectively.

__._..--'—'.""'—_.F—_
0.9 \ -
natb COMMIN i
0.7 - .
SCG with theta spectral
0E L and Powell restart |
0AF CG-DESCENT with approximate T
Walfe line search

0.4r .
0l SCALCE with theta anticipative)
0.2 Function evaluations metric, 700 problems 7
D"I | 1 1 1 1 1 |

0 2 4 B g 10 12 14 16

Fig. 7. Performance based on number of function evaluations.

il L%
09t \ i
0.8 - COMMIN .
0.7t 4
CG-DESCEMT with appraximate
0B+ YWalfe line search i
0Aa+ 4

SCG with theta spectral

0.4F and Powell restart -
03 .
SCALCE with theta anticipative
0.2r .
01 cpu time rmetric, 700 problems 7
D 1 1 1 | 1 1 1
0 2 4 G 8 10 12 14 16

Fig. 8. Performance based on cpu time.

The top curve correspond to the algorithm that solved the most problems in a number of
function evaluations (Figure 7) or in a cpu time (Figure 8) that was within a given factor of
the best number function evaluations and cpu time, respectively. Since the top curve in

20

Figures 7 and 8 corresponds to SCALCG, this algorithm is clearly the best among these
algorithms considered in this study.

Relative to the function evaluations and cpu time metrics, from Figures 7 and 8, we
see that for T =1 SCALCG and CONMIN have similar performances, however SCALCG

(6“) is top performer for almost all values of T . Concerning the robustness, we see that

SCALCG (0“) is more robust, followed by SCG (8°), CG DESCENT (aW) and
CONMIN, in this order. Since all these algorithms use the same Wolfe line search, the same
restart criterion (Powell), and the same stopping criteria, mainly these algorithms differ in
their procedures for search direction computation. Therefore, Figures 7 and 8 give a
computational evidence that SCALCG generates a better direction.

The comparison between SCALCG and CONMIN, subject to function evaluations
and cpu time metrics, reveals that SCALCG is more performant than CONMIN. An
explanation of this behaviour seems to be as follows. As we know Oren [17], Oren and
Luenberger [18] and Oren and Spedicato [19] modified the Broyden class of quasi-Newton
methods by introducing a scalar parameter in order to make the sequence of inverse Hessian
invariant under multiplication of function f by a scalar constant. For this scaling parameter

Shanno [25] suggests the value s, y, / ¥, ¥, as that value minimizing the condition number

of H,'H,,, . This scaling factor is used in CONMIN. On the other hand, in SCALCG we
use another value for scaling parameter 0,,,, as a scalar approximation of the inverse
Hessian given by (28) or (33) yealding to a more efficient direction. This factor greatly
increase both the computational stability and efficiency as the problem size increase,
explaining the numerical behaviour of SCALCG in comparison with CONMIN subject to
function evaluations and cpu time metrics.

5.7. Comparisons: SCALCG versus SCG, CG_DESCENT, CONMIN and Polak-Ribiére
Figures 9 and 10 show the performance profiles of SCALCG (8“), SCG (6"),
CG DESCENT (aW), CONMIN and spectral Polak-Ribi¢re, subject to number of function
evaluations and cpu time metrics, respectively. Again we notice that, at least for this set of
700 test unconstrained optimization problems, SCALCG with 8“ is the top performer both
subject to function evaluations and cpu time metrics. We see that, for T =1, the algorithms

clasifies in two groups with similar performances. One group include SCALCG and
CONMIN, and the second one contains SCG, CG DESCENT and Polak-Ribi¢re. This
separation is more evident for cpu time metric. As we have already said, these algorithms
differ in their procedures for search direction computation. Compared to SCG,
CG_DESCENT and Polak-Ribi¢re, the direction in SCALCG and CONMIN is more
claborated. It satisfy the quasi-Newton equation using a double update scheme in a restart
environment given by Powell procedure.

Computationally, the salient point is that the scaled Polak-Ribi¢re algorithm in this
implementation has the best performance profile, compared to SCG and CG_DESCENT.
Concerning the robustness, we see that scaled Polak-Ribiére classifies the second,
immediately after SCALCG. Scaled Polak-Ribiére algorithm possess a built-in restart feature
that addresses the jamming problem. When s, =Xx,,, —Xx, is small, the factor y, in the
numerator of (7) tends to zero. Hence, the new search direction d,,, given by (7) is
essentially the scaled steepest descent direction —8,,,g,,, , where the scaling factor 8, ,, is a

scalar approximation to the inverse Hessian. Generally, the scaled Polak-Ribiére method
automatically adjust the parameter [3, to avoid jamming. On the other hand, SCG does not

have this property. Even that y, in the numerator of (6) tends to zero, the new search
direction given by (6) is different by the scaled steepest descent direction —6,,,g,., -
Therefore, jamming can appear. However, in the numerator of (6) apperas the factor

21

0., v, — s, which is resemblig the quasi-Newton equation. Figures 9 and 10 give

computational evidence that SCG is more robust than CG DESCENT. CG DESCENT was
designed in order to ensure sufficient descent, independent of the accuracy of the line search.
When d, is small, from (52) we see that the new search direction essentially is the Hestens

and Stiefel direction which avoids jamming.

0.9 .
COMMIN
08¢ SCG with theta spectral 7
and Powell restart
0.7} .
DB Folak-Fibiere-Folyak with .
theta spectral and Powell restart
05F .
04k CG-DESCENT with approximate |
' Walfe line search
0.ar SCALCG with theta anticipative 1
02F) _ _ i
Function evaluations metnc, 700 problems
D1 1 1 1 1 1 1 1
2 4 4 o 10 12 14 16

Fig. 9. Performance based on number of function evaluations.

1 T I
= E %
09 \ .
COMMIN
08} .
0.7 CG-DESCENT with approximate 7
Walfe line search
06 .
FPolak-Fibiere-Palyak with
05p theta spectral and Powell restar 7
U4r SCG with theta spectral]
and Powell restart
03F .
02r SCALCG with theta anticipative .
0.1)) i
cpu time metric, 700 problems
D 1 1 1 1 1 1 1
0 2 4 4 o 10 12 14 16

Fig. 10. Performance based on cpu time.

22

5.8. Comparisons: SCALCG versus SCG, scaled Polak-Ribiére-Polyak, scaled Fletcher-
Reeves and CONMIN on MINPACK-2 applications

In Tables 12-17 we present the performance of SCALCG, SCG, scaled Polak-Ribiére-Polyak
(sPRP) and scaled Fletcher-Reeves (sFR) for 6 unconstrained optimization applications from
MINPACK-2 collection [2]. For comparison, in Table 18 we present the performances of
CONMIN on same problems. In all these numerical experiments we have considered the
standard initial point, as it is recommended in MINPACK-2 and the iterations was stopped
according to (35a) criteria.

Table 12. Performance of SCALCG, SCG, sPRP and sFR:
Elastic-Plastic Torsion Problem.

nx =100,ny =100, c¢=5., n=10000.

iter # fg cpu (s)

Algorithm 9° g¢ 9° g¢ 9° Q¢ f(x*)

SCALCG 217 255 284 338 12.20 14.45 -0.439163196
SCG 282 261 438 396 25.27 23.01 -0.439163173
sPRP 265 235 420 375 24.06 21.42 -0.439162989
sFR 289 245 452 385 25.92 22.03 -0.439163155

nx =200,ny =200, c¢=5., n=40000.

SCALCG 398 473 511 614 87.39 104.80 -0.439267742
SCG 472 425 746 668 170.92 153.18 -0.439265832
sPRP 516 391 828 621 188.83 141.76 -0.439264713
sFR 442 445 697 698 159.12 159.56 -0.439267086

Table 13. Performance of SCALCG, SCG, sPRP and sFR:
Pressure Distribution in a Journal Bearing.

nx =100,ny =100, ecc =0.1, b=10, n=10000.

iter # fg cpu (s)

Algorithm 9° g¢ 9° g¢ 9° Q¢ f(x*)

SCALCG 433 461 567 620 23.51 25.71 -0.282840004
SCG 617 483 956 752 53.11 41.69 -0.282839980
sPRP 523 454 838 705 45.86 38.94 -0.282840004
sFR 495 569 777 889 42.73 49.05 -0.282839956

nx =200,ny =200, ecc=0.1, b=10, n=40000.

SCALCG 876 900 1143 1157 189.11 191.14 | -0.282892918
SCG 1117 1133 1746 1779 384.21 390.96 | -0.282892622
sPRP 980 961 1556 1530 339.82 333.56 | -0.282892453
sFR 874 1069 1399 1687 303.30 368.44 | -0.282892680

Table 14. Performance of SCALCG, SCG, sPRP and sFR:
Optimal Design with Composite Materials.

nx =100,ny =100,A=0.008,, n=10000.

iter # fg cpu (s)
Algorithm 6 s 6 a 6 s 6 a 6 s 6 a f(x*)
SCALCG 628 644 801 815 49.49 50.31 -0.011377244
SCG 1519 1249 2309 1907 168.62 139.19 | -0.011377230
sPRP 1319 1439 2064 2245 149.62 162.80 | -0.011377226
sFR 1184 1420 1854 2221 134.02 160.50 | -0.011377160

23

nx =200,ny =200, A = 0.008, n=40000.

SCALCG 1413 939 1753 1157 431.82 285.06 | -0.011381240
SCG 3952 3184 6003 4828 1749.27 1407.30 | -0.011380973
sPRP 3628 4372 5680 6847 1644.47 1979.79 | -0.011381028
sFR 4398 3945 6788 6111 1964.08 1765.58 | -0.011381183
Table 15. Performance of SCALCG, SCG, sPRP and sFR:
Inhomogeneous Superconductors.
1-dimensional Ginzburg-Landau problem.
t=7, n=1000.
iter # fg cpu (s)
Algorithm 9° g¢ 9° g¢ 9° g¢ f(x*)
SCALCG 7422 5560 9499 7107 141.32 108.04 | 0.797584¢-05
SCG 10001 10001 15724 15664 230.02 229.92 | 0.218839¢-04
sPRP 10001 10001 15948 15922 234.81 237.72 | 0.646897¢-04
sFR 10001 10001 15881 15869 235.19 231.07 | 0.103695¢-04
Table 16. Performance of SCALCG, SCG, sPRP and sFR:
Leonard-Jones Cluster Problem.
ndim=3, natoms =1000, n = 3000 .
iter # fg cpu (s)
Algorithm 6 s 6 a 6 s 6 a 6 s 6 a f(x*)
SCALCG 1252 1583 2002 2007 383.16 384.37 | -6622.567428
SCG 4552 4656 7103 7229 1117.24 1137.89 | -6634.532271
sPRP 2553 2917 4058 4591 637.91 721.99 | -6621.582203
sFR 2327 3142 3669 5802 576.50 907.58 -6612.839493
Table 17. Performance of SCALCG, SCG, sPRP and sFR:
Steady State Combustion. Solid fuel ignition.
nx =100,ny =100,A=0.07, n=10000.
iter # fg cpu (s)
Algorithm 6 s 6 a 6 s 6 a 6 s 6 a f(x*)
SCALCG 312 266 408 348 33.28 28.40 -0.070086367
SCG 340 288 527 445 50.75 42.85 -0.070086356
sPRP 388 360 611 570 58.60 54.60 -0.070086368
sFR 240 278 380 439 36.25 41.96 -0.070086368
nx =200,ny =200, A=0.07, n=40000.
SCALCG 546 460 720 586 233.65 190.05 -0.070086331
SCG 589 503 927 787 354.21 300.88 -0.070085961
sPRP 664 555 1061 875 404.47 334.17 | -0.070085849
sFR 517 538 821 843 312.53 321.70 | -0.070085770

24

Table 18. Performance of CONMIN on MINPACK-2 applications.

Problem n # iter # fg cpu (s) f(x*)
Elastic-Plastic Torsion 10000 217 439 17.90 -0.43916320
40000 242 486 78.76 -0.43926781
Pressure Distribution in a
Journal Bearing 10000 396 801 32.74 -0.2828400078
40000 819 1657 270.23 -0.282892943
Optimal Design with
Composite Materials 10000 359 729 40.76 -0.011377240
40000 675 1370 305.28 -0.011381291
Inhomogeneous
Superconductors 1000 9881 20001 270.12 0.11079927e-03
Leonard-Jones Cluster 3000 880 1819 507.07 -6605.45868939
Steady State Combustion
Solid fuel ignition 10000 171 346 28.40 -0.0700863684
40000 467 948 310.60 -0.0700863743

From Tables 12-18 we see that for solving these 10 MINPACK-2 applications, the top
performer is SCALCG (8) followed immediatelly by CONMIN. Even that SCALCG and
CONMIN have a lot of algebra in common, we see that SCALCG is more performant than
CONMIN. The total number of function evaluations of SCALCG (8) is 14749 compared

to 28596 required by CONMIN for solving these 10 applications. At the same time we see
that SCALCG is with 479.53 seconds faster than CONMIN. This is in accordance with
performance profiles from Figures 9 and 10, for T =1.

5.9. Accuracy comparisons

In the next series of experiments we explore the ability of the algorithms to accurately solve
the problems. Since CG_DESCENT implements a new line search procedure based on
approximate Wolfe conditions, we compare SCALCG and CG DESCENT, and consider the

following two problems:
n—4

Si(x) = Y (~4x, =3)" +(x] +2x}, +3x], +4x]; +5x7)’, (BDQRTIC - CUTE)
i=1

n—1) 5 1 . 5
fHh= ZSln(x1 +x; —1) +5 sin(x;), (EG2-CUTE)
i=1

with the initial point x, =[1,...,1]. Tables 19a,b and 20a,b contain the number of iterations,
cpu time (seconds) and the value of function in optimal point for all these problems, subject

to five values of tolerance £, on ” g ” .
S [ee]

Table 19a, Iteration and solution time versus tolerance € J

SCALCG, f,(x), n=10000.

6 S 6 a
gg #iter time f(x *) #iter time f(x *)
1073 335 32.07 40034.30553831 545 86.73 40034.30553838
107 361 50.26 40034.30553829 545 86.67 40034.30553838
1077 361 50.26 40034.30553829 545 86.67 40034.30553838
107° 361 50.26 40034.30553829 545 86.67 40034.30553838
107" 361 50.25 40034.30553829 545 86.62 40034.30553838

25

Table 19b. Iteration and solution time versus tolerance Sg ,
CG_DESCENT, f1 (x), n=10000.

W aw
£, fiter | time f(x7) Hiter time f(x7)
1073 815* | 159.01 | 40034.30554037 2005 412.22 40034.30553834
107 815* | 159.01 | 40034.30554037 5259 1097.08 40034.30553825
1077 815* | 159.01 | 40034.30554037 8932 1897.67 40034.30553825
107° 815* | 159.01 | 40034.30554037 | 10020 | 2140.18 40034.30553825
107" 815* | 158.46 | 40034.30554037 | 10048 | 2136.65 40034.30553825
* Line search fails, too many secant steps. - your tolerance istoo strict.
Table 20a. Iteration and solution time versus tolerance €,
SCALCG, f,(x), n=10000.
6" e
£, Hiter time f(x") Hiter time f(x")
1073 111 4.95 -9998.947391877 107 4.88 -9998.947382045
1073 123 8.57 -9998.947392267 111 7.36 -9998.947382099
1077 204 81.01 | -9998.947392269 111 7.42 -9998.947382099
10~° 204 81.07 | -9998.947392269 111 7.42 -9998.947382099
107" 204 81.18 | -9998.947392269 111 7.42 -9998.947382099
Table 20b. Iteration and solution time versustolerance €, ,
CG_DESCENT, f,(x), n=10000.
W aw
£, Hiter time f(x") Hiter time f(x")
1073 114 6.92 -9998.999975574 114 6.92 -9998.999975574
1073 125 8.90 | -9998.999985862 161 10.43 -99099.
1077 125 8.84 | -9998.999985862 179 11.59 -99099.
10~° 125 8.90 | -9998.999985862 199 12.96 -99099.
107" 125* 8.73 -9998.999985862 267 16.86 -99099.

* Line search fails, too many secant steps. - your tolerance istoo strict.

Some comments are in order.

- These two problems was selected since they illustrate the typical behaviour that we noticed
in the test problems. Observe that both of them have a nonzero optimal function value. When
the optimal function value is zero, while the minimizer is not zero, then the estimate

£ f| f(x)| for the error in function value used in the second stopping criterion in (35a) can

be very poor as the iterates approach the minimizer (where f vanishes).

- Both SCALCG and CG _DESCENT are able to solve these problems subject to different
values of tolerance €,. However, the results obtained by CG_DESCENT are more accurate.
This is due to the line search procedure implementing the Wolfe conditions. The approximate
Wolfe conditions are way more accurate. In fact, a line search implementing the Wolfe
conditions can compute a solution with accuracy on the order of the square root of the

26

machine epsilon. On the other hand, a line search based on the approximate Wolfe conditions
can compute a solution with accuracy on the order of the machine epsilon [12].
- Observe that in terms of number of iterations or cpu time, SCALCG is more robust than

CG_DESCENT with approximate Wolfe line search. Tolerances lower than 107> do not

change significantly the number of iterations or cpu time of SCALCG. On the other hand,
CG_DESCENT is more sensitive to £, modification. Reducing &, we see that

CG _DESCENT requires more iterations, and of course more cpu time, to get the
corresponding accuracy.

- Generally, we see that the number of iterations and cpu time corresponding to SCALCG are
lower than the same elements required by CG_ DESCENT. This once again illustrates that the
crucial element of any unconstrained optimization algorithm is given by the search direction
procedure.

6. CONCLUSION
We have presented a new conjugate gradient algorithm, SCALCG - scaled conjugate gradient
algorithm, for solving large-scale unconstrained optimization problems. In a way SCALCG
can be considered as a modification of the best algorithm by Birgin and Martinez [5], which
mainly is a scaled variant of Perry’s [20], in order to overcome the lack of positive
definiteness of the matrix defining the search direction. This modification takes the
advantage of the quasi-Newton BFGS updating formula. Using the restart technology of
Beale-Powell, we get a scaled conjugate gradient algorithm in which the parameter scaling
the gradient is selected as spectral gradient or in an anticipative manner by means of a
formula using the function values in two successive points. Although the update formulas
(15) and (25)-(27) are more complicated the scheme proved to be efficient and robust in
numerical experiments. The algorithm implements the Wolfe conditions, and we prove that
the steps are along the descent directions.

The performance profiles for our scaled conjugate gradient algorithm was higher
than those of SCG - spectral conjugate gradient method by Birgin and Martinez [5],
CG_DESCENT - conjugate gradient with guaranteed descent by Hager and Zhang [12],
scaled Polak-Ribiere and Fletcher-Reeves, and CONMIN by Shanno and Phua [27], for a test
set consisting of 700 unconstrained optimization problems (some of them form CUTE) with
dimensions ranging between 10> and 10*. Relative to the function evaluations and cpu time
metrics, SCALCG is the top performer. In the function evaluations metric, the number of
problems for which SCALCG achieved the best number is about twice greater than that
corresponding to CG_DESCENT. Similarly, the fraction of problems for which SCALCG
achieved the best time is about 5 times greater than that corresponding to CG_DESCENT.
The better performance of SCALCG, relative to SCG, CG_DESCENT and scaled Polak-
Ribi¢re-Polyak, in the time and function evaluation metrics, is connected with the search
direction procedure of selection. The direction d,,, used in SCALCG is highly elaborate, it
satisfy the quasi-Newton equation in a restart environment. However, CG DESCENT with
approximate Wolfe line search is more accurate than SCALCG. Using a line search based on
the approximate Wolfe conditions, CG DESCENT computes a solution with accuracy of the
order of the machine epsilon. On the other hand, SCALCG, implementing the Wolfe line
search, computes a solution with accuracy on the order of the square root of the machine
epsilon.

SCALCG and CONMIN belong to the same class of conjugate gradient algorithms.
Both of them consider a BFGS modification of the Perry updating scheme which satisfy the
quasy-Newton equation in a Beale-Powell restart environment. Mainly, the difference is in
the scaling of gradient parameter. For this parameter SCALCG considers a scalar
approximation of inverse Hessian, wich prove to be efficient and robust in numerical

27

calculations. On the other hand, CONMIN uses a value minimizing the condition number of
H I; l H k+1*

It is important to notice that different stopping criteria have a dramatic influence on
the performances of the algorithms, as well as on the accuracy of the solution. To get relevant
conclusions, in this numerical experiment we tried to unify the stopping criteria in these
codes. The criteria (35a) used in this numerical study seems to be the best in case of solving
large-scale problems. The second criterion in (35a), which considers the change in function
value, is important. In these experiments SCALCG terminates the iterations due to it for
about 10-12% of problems.

Finally, since each of these codes, we have considered here in this numerical study,
are different in many respects, mainly in the amount of linear algebra required in each
iteration, in stopping criteria, and in the relative number of function and its gradient
evaluations, it is quite clear that different codes will be superior in different problem set.
However, we have a strong computational evidence that our SCALCG algorithm is one of the
top performers among conjugate gradient algorithms.

REFERENCES

1. ANDREIL N. “4 new gradient descent method for unconstrained optimization”, 1CI
Technical Report, March 2004.

2. AVERICK, B.M., CARTER, R.G., MORE, 1.J. and XUE, G.L. “The MINPACK-2 test
problem collection”, Argonne National Laboratory, Preprint MCS-P153-0692, June
1992.

3. BARZILAI, J. and BORWEIN, .M. “Two point step size gradient method”, IMA J.
Numer. Anal., 8, pp.141-148, 1988.

4. BEALE, EM.L. “4 derivation of conjugate gradients” in: F.A. Lootsma, ed.,
Numerical Methods for Nonlinear Optimization, Academic Press, London, pp.39-43,
1972.

5. BIRGIN, E. and MARTINEZ, J.M. “4 spectral conjugate gradient method for
unconstrained optimization”, Applied Math. and Optimization, 43, pp.117-128, 2001

6. BONGARTZ, 1., CONN, A.R., GOULD, N.LM., and TOINT, P.L. “CUTE:
constrained and unconstrained testing environments”, ACM Trans. Math. Software,
21, pp.123-160, 1995.

7. DAI, Y.H., and LIAO, L.Z. “New conjugate conditions and related nonlinear
conjugate gradient methods”, Appl. Math. Optim., vol. 43 pp.87-101, 2001.

8. DOLAN, E.D., and MORE, l.J. “Benchmarking optimization software with
performance profiles”, Math. Programming, 91, pp. 201-213, 2002.

9. FLETCHER, R., and REEVES, C.M. “Function minimization by conjugate
gradients”, Comput. J. 7, pp. 149-154, 1964.

10. GILBERT, J.C., and NOCEDAL, J. “Global convergence properties of conjugate
gradient methods for optimization”, SIAM J. Optim., 2, pp.21-42, 1992.

11. HAGER, W.W., and ZHANG, H. “4 new conjugate gradient method with
guaranteed descent and an efficient line search”, University of Florida, Department
of Mathematics, November 17, 2003 (theory and comparisons), revised July 3, 2004.

12. HAGER, W.W,, and ZHANG, H. “CG-DESCENT, A conjugate gradient method with
guaranteed descent (algorithm details and comparisons)”, University of Florida,
Department of Mathematics, January 15, 2004.

13. HAN, l.Y., LIU, G.H., SUN D.F., and YIN, H.X. “On the global convergence of
nonlinear conjugate gradient methods”, Technical Report 94-011, Inst. of Applied
Math., Chinese Academy of Science, Beijing, 1994.

14. HESTENS, M.R., and STIEFEL, E. “Methods of conjugate gradients for solving
linear systems”, J. Research Nat. Bur. Standards Sec. B. 48, pp. 409-436, 1952.

15. LIU, D.C., and NOCEDAL, J. “On the limited memory BFGS method for large scale

28

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

optimization”, Math. Programming, 45, pp.503-528, 1989.

NOCEDAL, J. “Updating quasi-Newton matrices with limited storage”, Math.
Comp., 35, pp.773-782, 1980.

OREN, S.S. “Self-scaling variable metric algorithm. Part II”, Management Sci., 20,
pp-863-874, 1974.

OREN S.S., and LUENBERGER, D.G. “Self-scaling variable metric algorithm. Part
I, Management Sci., 20, pp.845-862, 1976.

OREN, S.S., and SPEDICATO, E. “Optimal conditioning of self-scaling variable
metric algorithms”, Math. Programming, 10, pp.70-90, 1976.

PERRY, J.M. “4 class of conjugate gradient algorithms with a two step variable
metric memory”, Discussion paper 269, Center for Mathematical Studies in
Economics and Management Science, Northwestern University, 1977.

POLAK, E., and RIBIERE, G. “Note sur la convergence de methods de directions
conjugres”, Revue Francaise Informat. Reserche Opérationnelle 16, pp. 35-43, 1969.
POLYAK, B.T. “The conjugate gradient method in extreme problems”, USSR
Comp. Math. Math. Phys., 9, pp.94-112, 1969.

POWELL, M.J.D. “Restart procedures for the conjugate gradient method’, Math.
Programming, 12, pp.241-254, 1977.

RAYDAN, M. “The Barzilai and Borwein gradient method for the large scale
unconstrained minimization problem”, SIAM J. Optim., 7, 26-33, 1997.

SHANNO, D.F. “Conjugate gradient methods with inexact searches”, Mathematics
of Operations Research, vol. 3, pp.244-256, 1978.

SHANNO, D.F. “On the convergence of a new conjugate gradient algorithm”, SIAM
J. Numer. Anal. vol. 15, pp.1247-1257, 1978.

SHANNO, D.F., and PHUA, K.H. “4lgorithm 500, Minimization of unconstrained
multivariate functions [E4]”, ACM Trans. on Math. Soft., 2, pp.87-94, 1976.
WANG, C., HAN, J., and WANG, L. “Global convergence of the Polak-Ribiere and
Hestens-Stiefel conjugate gradient methods for the unconstrained nonlinear
optimization”, OR Transactions, 4, pp.1-7, 2000.

WOLFE, P. “Convergence conditions for ascent methods”, SIAM Rev., 11, pp.226-
235, 1969.

WOLFE, P. “Convergence conditions for ascent methods II: some corrections”,
SIAM Rev. 13, pp.185-188, 1971.

June 28, 2005

29

