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1. Introduction 
Conjugate gradient methods represent an important class of unconstrained optimization 
algorithms with strong local and global convergence properties and modest memory 
requirements. A history of these algorithms has been given by Golub and O’Leary [16], as 
well as by O’Leary [22]. An excellent survey of development of different versions of 
nonlinear conjugate gradient methods, with special attention to global convergence properties, 
is presented by Hager and Zhang [18]. 

This family of algorithms includes a lot of variants, well known in the literature, with 
important convergence properties and numerical efficiency. 

In this paper we propose a new nonlinear conjugate gradient algorithm that produces 
a descent direction at every iteration and converges globally to the solution provided that the 
line search satisfies the Wolfe conditions. The algorithm is a modification of the Dai and 
Yuan [11] conjugate gradient algorithm satisfying both the sufficient descent condition and 
the conjugacy condition at every iteration. Under exact line search the algorithm reduces to 
the Dai and Yuan computational scheme. At the same time the algorithm can be viewed as an 
adaptive version of the Dai and Liao [9] conjugate gradient algorithm. Close to our 
computational scheme is the conjugate gradient algorithm recently proposed by Hager and 
Zhang [17]. The algorithm has a built-in restart feature that addresses to the jamming 
phenomenon.  

The structure of the paper is as follows. In section 2 we present the new conjugate 
gradient algorithm and prove that it generates descent directions satisfying both the sufficient 
descent condition and the conjugacy condition. Section 3 is devoted to the convergence 
analysis for both the uniformly convex functions and general nonlinear functions. It is shown 
that under very common assumptions the proposed algorithm is globally convergent. Section 
4 presents intensive numerical results and comparisons of our algorithm versus 20 nonlinear 
conjugate gradient algorithms, subject to the number of iterations, the number of function and 



its gradient evaluations, as well as subject to the CPU time on a set consisting of 750 
unconstrained optimization problems. We present computational evidence that the 
performances of our algorithm are substantially higher than those of the known conjugate 
gradient algorithms, at least for this set of 750 problems.  
 
 
2. A conjugate gradient algorithm with sufficient descent condition 
For solving the unconstrained optimization problem 
                                                           { }min ( ) : ,nf x x R∈                                                  (1) 

where  is continuously differentiable, Dai and Yuan [11] suggested the following 
nonlinear conjugate gradient algorithm: 

f R Rn: →

                                                             x x dk k k+ k= +1 α ,                                                     (2) 
where the stepsize α k is positive and the directions are computed by the rule: dk
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where g f xk k= ∇ ( )  and y g gk k k= −+1 , s x xk k k= −+1 . Using a standard Wolfe line 
search [31, 32], the Dai and Yuan method always generates descent directions and under 
Lipschitz assumption it is globally convergent.  
 In this paper we present a modification of the Dai and Yuan computational scheme in 
order to satisfy both the sufficient descent condition and the conjugacy condition in the frame 
of conjugate gradient algorithms. In order to satisfy the sufficient descent condition, in our 
algorithm the direction is computed as: 
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and kδ  is a parameter which follows to be determined.  
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Using (9) in (8) we get (7).  
 
 To conclude the sufficient descent condition from (7), the quantity 1 1/(4 )kδ−  is 
required to be nonnegative. Supposing that 1 1/(4 ) 0kδ− > , then the direction given by (5) 
and (6) is a descent direction. Dai and Yuan [11, 12] present conjugate gradient schemes with 
the property that  when  If g dk

T
k < 0 y sk

T
k > 0. f is strongly convex or the line search 

satisfies the Wolfe conditions, then and the Dai and Yuan scheme yield descent. In 
our algorithm observe that, if for all , 

y sk
T

k > 0
k 1/(4 ) 1,kδ ≤  and the line search satisfies the Wolfe 

conditions, then for all  the search direction (5) and (6) satisfy the sufficient descent 

condition. Note that in (7) we bound by 

k

g dk
T

k+ +1 1
2

1(1 1/ 4 ) ,k kgδ +− − while for scheme of 

Dai and Yuan only the non-negativity of  is established.  g dk
T

k+ +1 1

In [7] Dai established a remarkable property relating the descent directions to the 
sufficient descent condition, showing that if there exist constants γ 1  and γ 2  such that 

γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ ( , )0 1 , there exists a constant such that the 

sufficient descent condition 

c > 0

g d c gi
T

i ≤ −
2

i holds for at least ⎣ ⎦pk  indices 

where i k∈ [ , ],0 ⎣ ⎦j  denotes the largest integer ≤ j. In our algorithm the famous parameter 
β k is selected in  such a manner that the sufficient descent condition is satisfied at every 

iteration. 
Observe that if f is a quadratic function and α k  is selected to achieve the exact 

minimum of f  in the direction , then dk s gk
T

k+ =1 0 and the formula (6) for A
kβ reduces to 

the Dai and Yuan computational scheme [11, 12]. However, in this paper we consider general 
nonlinear functions and inexact line search. 

In order to determine kδ , observe that using (6) in (5) we get the following direction: 
2
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which can be written as 
                                                            1 1k kd Q g+ + += − ,                                                      (10) 
where the matrix 1kQ +  is: 
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we can consider the direction 
                                                            1 1k kd Q g 1k+ + += − .                                                       (13) 

From the conjugacy condition 1 0T
k ky d + = , i.e. 
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after some algebra it follows that 

                                       1 1
2 2

1 1 1 1

( )(
( )

T T T T
k k k k k k k k

k T T
k k k k k

y s g y g y y s
g s g g g

δ + +

+ + + +

= + −
)

ks
.                                      (15) 

Therefore, using (15) in (6) we get 
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Using the same arguments as in Theorem 1, but this time on the Hestenes and Stiefel  
parameter HS

kβ [19] where  
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we get exactly the conjugate gradient algorithm proposed by Hager and Zhang [17], where 

                                            
2

1
1 2

T

kHZ
k k kT T

k k k k

y
y d

d y d y
β kg +

⎛ ⎞
⎜= −
⎜
⎝ ⎠

⎟
⎟

.                                     (18) 

It is worth saying that Hager and Zhang obtained their computational scheme by deleting a 
term from the search direction for the memoryless quasi-Newton scheme of Perry [23] and 
Shanno [28, 29]. We see that formula (16) for A

kβ  is very close to the Hager and Zhang 

computational scheme HZ
kβ  (18), where the factor 

22 / T
k ky y dk  in their scheme is replaced 

by  . The direction of Hager and Zhang satisfies the sufficient descent condition 

and is bounded by 
1 /T T

k k k kg y y s+

g dk
T

k+ +1 1 − +( / )7 8 1

2
gk [17].  

At the same time, observe that (16) is very close to the Dai and Liao [9] computational 
scheme,  

                                                    ( ) 1
1 TDL

k k kT
k k

y ts g
y s

β k+= − ,                                            (19) 

where the parameter  is replaced by . The method (5), (16) can be viewed as 
an adaptive version of the Dai and Liao computational scheme, corresponding to 

. 

t 1 /T T
k k k kg y y s+

1 /T T
k k kt g y y s+= k

Considering the definitions of gk , sk and we present the following Conjugate 
Gradient Algorithm with Conjugacy and Sufficient Descent conditions: 

yk

 
ACGSD Algorithm 
Step 1. Initialization. Select and the parameters x R n

0 ∈ 0 11 2< < <σ σ .  Compute f x( )0  

and g0 .  Consider d g0 0= − and α 0 01= / g .  Set k = 0.  

Step 2. Test for continuation of iterations. If  gk ∞
−≤ 10 6 , then stop, else set k k= +1.  

Step 3. Line search. Compute α k satisfying the Wolfe line search conditions 
                                           f x d f x g dk k k k k k

T
k( ) ( )+ ,− ≤α σ α1                                     (20) 

                                            ∇ + ≥f x d d g dk k k
T

k k
T

k( ) ,α σ2                                               (21) 
and update the variables x x dk k k+ = k+1 α . Compute f xk( ),+1  gk+1 and s x xk k= −+1 k , 
y g gk k k= −+1 .  

Step 4. Direction computation. Compute , where 1
A

k kd g sβ+= − + k
A

kβ  is computed as in 
(16 ). If  
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                                                   g d d gk
T

k+
−

+≤ −1
3

2 1 2
10 ,                                               (22) 

then define dk+ d=1 ,  otherwise set d gk+ k+= −1 .1  Compute the initial guess 

α αk k k kd d= − −1 1 / ,  set k k= +1 and continue with step 2.  
 
 It is well known that if f is bounded along the direction  then there exists a 
stepsize 

dk

α k  satisfying the Wolfe line search conditions (20) and (21). In our algorithm when 
the angle between  and d − +gk 1 is not acute enough, then we restart the algorithm with the 
negative gradient − +gk 1 .  More sophisticated reasons for restarting the algorithms have been 
proposed in the literature, but we are interested in the performance of a conjugate gradient 
algorithm that uses this restart criterion, associated to a direction satisfying both the sufficient 
descent and the conjugacy conditions. Under reasonable assumptions, conditions (20), (21) 
and (22) are sufficient to prove the global convergence of the algorithm. We consider this 
aspect in the next section. 
 The initial selection of the step length crucially affects the practical behaviour of the 
algorithm. At every iteration k ≥ 1 the starting guess for the step α k in the line search is 

computed as α k k kd d− −1 1 2
/

2
.  This selection, was considered for the first time by Shanno 

and Phua in CONMIN [27]. It is also considered in the packages: SCG by Birgin and 
Martínez [5] and in SCALCG by Andrei [2-4]. 
 
 
3. Convergence analysis 
Throughout this section we assume that: 
(i) The level set { }0: ( ) ( )nL x R f x f x= ∈ ≤  is bounded. 

(ii) In a neighborhood  of , the function N L f is continuously differentiable and its 
gradient is Lipschitz continuous, i.e. there exists a constant  such that 0L >

( ) ( )f x f y L x∇ −∇ ≤ − y , for all , .x y N∈  

Under these assumptions on f , there exists a constant 0Γ ≥  such that ( )f x∇ ≤ Γ , for all 
.x L∈   

Dai et al [8] proved that for any conjugate gradient method with the strong Wolfe line 
search,  

1( ) ( ) T
k k k k k k kf x d f x gα σ α+ − ≤ d , 

                                                  2( )T T
k k k k k kf x d d gα σ∇ + ≤ − d

kd

. 

the following general result holds. 
 
Lemma 1. Suppose that the assumptions (i) and (ii) holds and consider any conjugate 
gradient method (2) where 1 1k k kd g β+ += − +  is a descent direction and kα  is selected by 
the strong Wolfe line search. If 

                                                                 2
1

1
k kd≥

= ∞∑ ,                                                       (23) 

then 
                                                                lim inf 0.kk

g
→∞

=                                                     (24) 

 
For uniformly convex functions we can prove that the norm of the direction  generated 
by (5) and (16) is bounded above. Therefore, by Lemma 1 we can prove the following result. 

1kd +
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Theorem 2. Suppose that the assumptions (i) and (ii) holds and consider the method (2) and 
(5), where  is a descent direction with 1kd +

A
kβ  given by (16), and kα  is obtained by the 

strong Wolfe line search. If there exists a constant 0µ >  such that 

                                               
2( ( ) ( )) ( )Tf x f y x y x yµ∇ −∇ − ≥ −                                  (25) 

for all ,x y L∈ , then 
                                                                    lim 0.kk

g
→∞

=                                                         (26) 

 
Proof. From (25) it follows that f  is a uniformly convex function on  and L 2T

k k ky s sµ≥ . 

Since  is a descent direction, it follows that  By Wolfe 
condition (21) we have: 
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                                      1 1
2
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A
k k k k
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i.e. (23) is true. Therefore, by Lemma 1 we have (24), which for uniformly convex functions 
is equivalent to (26).  ■ 
 

For general nonlinear functions the convergence analysis of our algorithm exploits 
insights developed by Gilbert and Nocedal [15], Dai and Liao [9] and that of Hager and 
Zhang [17]. Global convergence proof of ACGSD algorithm is based on the Zoutendijk 
condition combined with the analysis showing that the sufficient descent condition holds and 

kd  is bounded. Suppose that the level set  is bounded and the function L f  is bounded 
from below. 
 
Lemma 2. Assume that  is a descent direction and kd f∇  satisfies the Lipschitz condition 

( ) ( )k kf x f x L x x∇ −∇ ≤ −  for all x  on the line segment connecting kx  and 1kx + , where 
 is a constant. If the line search satisfies the second Wolfe condition (21), then L

                                                            2
2

1 .
T
k k

k
k

g d
L d
σα −

≥                                                   (32) 

Proof. Subtracting  from both sides of (21) and using the Lipschitz condition we have T
k kg d

                                         
2

2 1( 1) ( )T T
k k k k k k kg d g g d L dσ α+− ≤ − ≤ .                              (33) 

Since  is a descent direction and kd 2 1σ < , (32) follows immediately from (33). ■ 
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Theorem 3. Suppose that for all k ≥ 0  there exists a positive constant ω , such that 
1 1/(4 ) 0kδ ω− ≥ >  and there exists the constants γ  and Γ , such that kgγ ≤ ≤ Γ

}
. If  the 

level set  is bounded and the Lipschitz condition {L x R f x f xn= ∈ ≤: ( ) ( )0

∇ −∇ ≤ −f x f y L x y( ) ( )  holds for all ,x y L∈ , then for the computational scheme (2), 
(5) and (16) with a line search satisfying the Wolfe conditions (20) and (21) , either gk = 0  
for some k  or  

                                                               liminf .
k

gk
→∞

= 0                                                     (34) 

 
Proof. Suppose that gk ≠ 0  for all k . Since gk ≠ 0 it follows that 0.γ >  By the Wolfe 
condition (21) we have: 
                           y s g g s g s g sk

T
k k k
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By Theorem 1, and the assumption 1 1/(4 )kδ ω− ≥ , 
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Combining this lower bound for  with the upper bound (39) yields 1
T
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On the other hand y g g L sk k k= − ≤+1 .k  Hence  
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With these, using (38) and (42) in (16) we get: 
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2
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and {D y z y z= − ∈max : , }L  is the diameter of the level set L . Therefore, 
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                                             2
1 1

A
k k k kd g s EDβ+ +≤ + ≤ Γ + .                                      (44) 

Since the level set L  is bounded and the function f  is bounded from below, using Lemma 2, 
from (20) and (23) it follows that 

                                                             
2

2
0

( )0
T
k k

k k

g d
d

∞

=

< < ∞∑ ,                                               (45) 

i.e. the Zoutendijk condition holds. Therefore, from Theorem 1 using (23), the descent 
property yields: 

4 24
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γ

ω

∞ ∞ ∞
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which contradicts (44). Hence, liminf 0.kg

k
γ = =

→∞
  

 
Therefore, our conjugate gradient algorithm is globally convergent, meaning that either 

 for some k  or (34) holds. Observe that we assume both the sufficient descent 
condition and the Wolfe line search conditions. But these two requirements are essentially 
independent of each other. On the other hand, the conjugacy condition gives a value for 
parameter 

0kg =

kδ  and we assume it is bounded below. 
 
4. Numerical results and comparisons 
In this section we present the computational performance of a Fortran implementation of the 
ACGSD algorithm on a set of 750 unconstrained optimization test problems. The test 
problems are the unconstrained problems in the CUTE [6] library, along with other large-
scale optimization problems. We selected 75 large-scale unconstrained optimization problems 
in extended or generalized form. For each function we have considered ten numerical 
experiments with the number of variables n = 1000 2000 10000, , ,… .   
 All algorithms implement the Wolfe line search conditions with σ1 0 0001= .  

and 2 0.9σ = , and the same stopping criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum 

absolute component of a vector. 
 The comparisons of algorithms are given in the following context. Let and 

be the optimal value found by ALG1 and ALG2, for problem  
respectively. We say that, in the particular problem  the performance of ALG1 was better 
than the performance of ALG2 if:  

f i
ALG1

f i
ALG2 i = 1 750, ,… ,

i,

                                                       f fi
ALG

i
ALG1 2 10− < −3                                                 (46) 

and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. 

All codes are written in double precision Fortran and compiled with f77 (default 
compiler settings) on an Intel Pentium 4, 1.8GHz workstation. All these codes are authored by 
Andrei. 

In the first set of numerical experiments we compare the performance of ACGSD 
algorithm to the Dai and Yuan conjugate gradient algorithms. Dai and Yuan [12] studied the 
hybrid conjugate gradient algorithms and proposed the following two hybrid methods: 

                                    {2

2

1max , min , ,
1

hDY DY HS DY
k k k

σβ β β
σ }kβ

⎧ ⎫−
= −⎨ ⎬+⎩ ⎭

                             (47) 

and 
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                                               { }{ }max 0,min ,hDYz HS DY
k kβ β= kβ ,                                       (48) 

showing their global convergence when the Lipschitz assumption holds and the standard 
Wolfe line search is considered. The numerical experiments of Dai and Ni [10] show that the 
second hybrid method (hDYz) gave the best results, performing better that the Polak-Ribière 
[24] and Polyak [25] plus method. Tables 1-3 present the performances of these algorithms 
subject to the minimum number of iterations (#iter), the minimum number of function and its 
gradient evaluations (#fg) and the minimum cpu time (CPU), respectively. 
 

Table 1. Performance of ACGSD versus Dai-Yuan. 721 problems. 
 ACGSD DY = 

# iter 382 111 228 
# fg 417 201 103 
CPU 477 162 82 

 
 

Table 2. Performance of ACGSD versus hDY (hybrid Dai-Yuan). 695 problems. 
 ACGSD hDY = 

# iter 334 171 190 
# fg 363 215 117 
CPU 382 189 124 

 
 

Table 3. Performance of ACGSD versus hDYz (hybrid Dai-Yuan zero). 689 problems. 
 ACGSD hDYz = 

# iter 248 236 205 
# fg 310 263 116 
CPU 325 255 109 

 
When comparing ACGSD and DY algorithms (Table 1), subject to the number of iterations, 
ACGSD was better in 382 problems (i.e. it achieved the minimum number of iterations in 382 
problems), DY was better in 111 problems, and they had the same number of iterations in 228 
problems, etc. Out of 750 problems, only for 721 problems the criterion (46) holds. From 
these Tables we see that, at least for this set of 750 problems, comparing with Dai and Yuan 
conjugate gradient algorithms, the top performer is ACGSD. Observe that the hybrid variants 
hDY and hDYz are better that the original conjugate gradient scheme of Dai and Yuan. The 
results of Table 3 seem to be consistent with the numerical experiments reported by Dai and 
Ni.  
 The second set of numerical experiments refers to the comparison of ACGSD with 15 
conjugate gradient algorithms, where in these algorithms the search direction  is 
computed as 

1kd +

1 1k k kd g kdβ+ += − +  where the parameter kβ  is selected as: 
 

k
T
k

k
T
kHS

k yd
yg 1+=β  

The original linear conjugate gradient algorithm 
by Hestenes and Stiefel [19].  

k
T
k

k
T
kFR

k gg
gg 11 ++=β  

The first nonlinear conjugate gradient 
algorithm, proposed by Fletcher and Reeves 
[14]. 

k
T
k

k
T
kPRP

k gg
yg 1+=β  

Proposed by Polak and Ribière [24] and Polyak 
[25]. 
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10,
T

PRP k k
k T

k k

g ymax
g g

β + +⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 

Proposed by Powell [26], and analyzed by 
Gilbert and Nocedal [15]. 

{ }{ }max ,min ,GN FR PRP FR
k k kβ β β= − kβ  Proposed by Gilbert and Nocedal [15] 

k
T
k

k
T
kCD

k gd
gg

−
= ++ 11β  

Proposed by Fletcher [13] as a Conjugate 
descent method 

k
T
k

k
T
kLS

k gd
yg

−
= +1β  

Proposed by Liu and Storey [21]. 

{ }{ }max 0,min ,LS CD LS CD
k kβ β− = kβ  Hybrid Liu and Storey – Conjugate Descent 

{ }{ }max 0,min ,Hu Storey PRP FR
k kβ β− = kβ  Proposed by Hu and Storey [20] 

PRP
kif 0 ,

otherwise

PRP FR
TA S k k
k FR

k

β β β
β

β
− ⎧ ≤ ≤
= ⎨
⎩

 
Proposed by Touati-Ahmed and Storey [30] 

0,)(1 >
−

= + t
yd

tsyg
k

T
k

kk
T
kDL

kβ  
Proposed by Dai and Liao [9], 

 
or as 1 1 1k k k kd g ksθ β+ + += − + , where the parameter 1kθ +  is a scalar approximation of the 
inverse Hessian (the inverse of the Rayleigh quotient) of the function f :  

                                                                 1

T
k k

k T
k k

s s
y s

θ + =                                                           (49) 

and kβ  is selected as: 
 

1( )T
BM k k k k
k T

k k

g y s
y s
θβ + −

=  
Scaled Perry. Suggested by Birgin and Martínez 
[5] and Andrei [1-4]. 

10,
T T

BM k k k k k
k T

k k k k

g y g smax
y s y s

θβ + + +⎧ ⎫
= ⎨ ⎬

⎩ ⎭
1

T−  
Scaled Perry+. Suggested by Birgin and 
Martínez [5]. 

1

1

T
sPRP k k k
k T

k k k k

g y
g g

θβ
α θ

+

−

=  
Scaled Polak-Ribière-Polyak. Suggested by 
Birgin and Martínez [5] and Andrei [1-4]. 

1 1

1

T
sFR k k k
k T

k k k k

g g
g g

θβ
α θ

+ +

−

=  
Scaled Fletcher-Reeves. Suggested by Birgin 
and Martínez [5] and Andrei [1-4]. 

 
Tables 4-18 show the number of problems, out of 750, for which ACGSD versus these 
conjugate gradient algorithms achieved the minimum number of iterations (#iter), the 
minimum number of function evaluations (#fg) and the minimum cpu time in seconds (CPU), 
subject of (46), respectively. 
 

Table 4. Performance of ACGSD versus Hestenes-Stiefel. 702 problems. 
 ACGSD HS = 

# iter 285 194 223 
# fg 310 233 159 
CPU 346 225 131 
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Table 5. Performance of ACGSD versus Fletcher-Reeves. 707 problems. 

 ACGSD FR = 
# iter 429 85 193 
# fg 457 149 101 
CPU 488 145 74 

 
Table 6. Performance of ACGSD versus Polak-Ribière-Poliak. 713 problems. 

 ACGSD PRP = 
# iter 314 161 238 
# fg 378 189 146 
CPU 388 193 132 

 
Table 7. Performance of ACGSD versus Polak-Ribière-Poliak(+). 704 problems. 

 ACGSD PRP+ = 
# iter 277 213 214 
# fg 335 232 137 
CPU 359 228 117 

 
Table 8. Performance of ACGSD versus Gilbert-Nocedal. 707 problems. 

 ACGSD GN = 
# iter 351 172 184 
# fg 386 212 109 
CPU 413 199 95 

 
Table 9. Performance of ACGSD versus Conjugate Descent (Fletcher). 712 problems. 

 ACGSD CD = 
# iter 400 97 215 
# fg 437 170 105 
CPU 450 178 84 

 
Table 10. Performance of ACGSD versus Liu-Storey. 692 problems. 

 ACGSD LS = 
# iter 305 164 223 
# fg 350 202 140 
CPU 379 206 107 

 
Table 11. Performance of ACGSD versus hybrid Liu-Storey & Conjugate-Descent. 705 problems. 

 ACGSD hLS-CD = 
# iter 303 215 187 
# fg 337 248 120 
CPU 372 234 99 

 
Table 12. Performance of ACGSD versus Hu-Storey. 709 problems. 

 ACGSD Hu-Storey = 
# iter 329 199 181 
# fg 373 229 107 
CPU 394 220 95 
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Table 13. Performance of ACGSD versus Touati-Ahmed and Storey. 701 problems. 
 ACGSD TA-S = 

# iter 378 147 176 
# fg 414 187 100 
CPU 428 185 88 

 
Table 14. Performance of ACGSD versus Dai-Liao(t=1). 697 problems. 

 ACGSD DL(t=1) = 
# iter 270 194 233 
# fg 323 231 143 
CPU 336 227 134 

 
Table 15. Performance of ACGSD versus scaled Perry (Birgin-Martínez). 707 problems. 

 ACGSD BM = 
# iter 249 248 210 
# fg 295 285 127 
CPU 325 263 119 

 
Table 16. Performance of ACGSD versus scaled Perry plus (Birgin-Martínez plus). 697 problems. 

 ACGSD BM+ = 
# iter 263 248 186 
# fg 310 271 116 
CPU 341 255 101 

 
Table 17. Performance of ACGSD versus scaled Polak-Ribière-Poliak. 694 problems. 

 ACGSD sPRP = 
# iter 335 149 210 
# fg 375 179 140 
CPU 402 188 104 

 
Table 18. Performance of ACGSD versus scaled Fletcher-Reeves. 699 problems. 

 ACGSD sFR = 
# iter 428 84 187 
# fg 447 156 96 
CPU 474 146 79 

 
 

From Tables above we see that ACGSD is top performer. Since these codes use the 
same Wolfe line search and the same stopping criterion they differ in their choice of the 
search direction. Hence, among these conjugate gradient algorithms, ACGSD appears to 
generate the best search direction, on average.  

Concerning the cpu time, from Table 14, we see that the closest to ACGSD is Dai-
Liao ( ) algorithm. Both ACGSD and DL(1t = 1t = ) achieved the minimum cpu time for 134 
problems. Dai and Liao algorithm is a modification of the Hestenes and Stiefel’s. For an exact 
line search,  is orthogonal to . Hence, for exact line search the DL method reduces to 
the HS method. From Table 4 we see that HS is also close to ACGSD algorithm. Both 
ACGSD and HS achieved the same CPU time for 131 problems. The HS method has the 
property that the conjugacy condition 

1kg + ks

1 0T
k kd y+ =  always is satisfied, independent of the line 

search. However, ACGSD satisfies both the conjugacy condition and the sufficient descent 
condition. From Table 6 close to ACGSD is also PRP. For an exact line search, PRP HS

k kβ β= . 

 12



Therefore, these methods have similar convergence properties. Both HS, PRP and ACGSD 
methods have a built-in restart feature that addresses the jamming phenomenon. When the 
step  is small, then 1k ks x x+= − k k1k ky g g+= −  tends to zero. Hence, kβ  from HS, PRP and 
ACGSD becomes small and the new search direction 1kd +  is essentially the steepest descent 
direction  Therefore, HS, PRP and ACGSD methods automatically adjust the 
parameter 

1.kg +−

kβ  to avoid jamming, the performance of these methods are better than the 
performance of some other conjugate gradient methods. 
 

In the third set of numerical experiments we compare ACGSD to CG_DESCENT by 
Hager and Zhang [17]. The CG_DESCENT code, authored by Hager and Zhang, contains the 
variant CG_DESCENT(w) implementing the Wolfe line search and the variant 
CG_DESCENT(aw) implementing an approximate Wolfe line search. The computational 
scheme implemented in CG_DESCENT is a modification of the Hestenes and Stiefel method 
which satisfies the sufficient descent condition. However, in this method the conjugacy 
condition holds approximately. There are two main points associated to CG_DESCENT. 
Firstly, the scalar products are implemented using the loop unrolling of depth 5. This is 
efficient for large-scale problems (over  variables). Secondly, the Wolfe line search is 
implemented using a very fine numerical interpretation of the first Wolfe condition (20). The 
Wolfe conditions implemented in ACGSD and CG_DESCENT(w) can compute a solution 
with an accuracy on the order of the square root of the machine epsilon. In contrast, the 
approximate Wolfe line search implemented in CG_DESCENT(aw) can compute a solution 
with an accuracy of the order of machine epsilon.  

610

Tables 19 and 20 show the number of problems solved by these algorithms in the 
minimum number of iterations, the minimum number of function evaluations and the 
minimum cpu time, respectively. 
 

Table 19. Performance of ACGSD versus CG_DESCENT(w). 700 problems. 
 ACGSD CG_DESCENT(w) = 

# iter 308 309 83 
# fg 440 223 37 
CPU 354 275 71 

 
Table 20. Performance of ACGSD versus CG_DESCENT(aw). 700 problems. 

 ACGSD CG_DESCENT(aw) = 
# iter 316 301 83 
# fg 424 233 43 
CPU 351 286 63 

 
5. Conclusion 
We have presented a new conjugate gradient algorithm for solving unconstrained 
optimization problems. The parameter A

kβ  is a modification of the Dai and Yuan 
computational scheme in such a manner that the direction generated by the algorithm to 
satisfy both the sufficient descent condition and the conjugacy condition, independent of the 
line search. Under standard Wolfe line search conditions we proved the global convergence of 
the algorithm. We present computational evidence that the performance of our algorithm 
ACGSD was higher than those of the Dai and Yuan conjugate gradient algorithm and its 
hybrid variants, as well as of some other conjugate gradient algorithms including the recent  
CG_DESCENT by Hager and Zhang, for a set consisting of 750 problems. 

dk
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