

Another Nonlinear Conjugate Gradient Algorithm with
Sufficient Descent Condition for Unconstrained

Optimization

Neculai Andrei
Research Institute for Informatics,

Center for Advanced Modeling and Optimization,
8-10, Averescu Avenue, Bucharest 1, Romania

E-mail: nandrei@ici.ro

Abstract. A nonlinear conjugate gradient algorithm with conjugacy condition and
sufficient descent condition for unconstrained optimization is proposed. Using the exact
line search, the algorithm reduces to a version of the Dai and Yuan conjugate gradient
computational scheme. For inexact line search the algorithm satisfies both the sufficient
descent and the conjugacy conditions. A global convergence result is proved when the
Wolfe line search conditions are used. Computational results, for a set consisting of 750
unconstrained optimization test problems, show that this new conjugate gradient algorithm
substantially outperforms the known conjugate gradient algorithms.

Keywords: Unconstrained optimization, conjugate gradient method, sufficient descent
condition, conjugacy condition, numerical comparisons
AMS 2000 Mathematics Subject Classification: 49M07, 49M10, 90C06, 65K

1. Introduction
Conjugate gradient methods represent an important class of unconstrained optimization
algorithms with strong local and global convergence properties and modest memory
requirements. A history of these algorithms has been given by Golub and O’Leary [16], as
well as by O’Leary [22]. An excellent survey of development of different versions of
nonlinear conjugate gradient methods, with special attention to global convergence properties,
is presented by Hager and Zhang [18].

This family of algorithms includes a lot of variants, well known in the literature, with
important convergence properties and numerical efficiency.

In this paper we propose a new nonlinear conjugate gradient algorithm that produces
a descent direction at every iteration and converges globally to the solution provided that the
line search satisfies the Wolfe conditions. The algorithm is a modification of the Dai and
Yuan [11] conjugate gradient algorithm satisfying both the sufficient descent condition and
the conjugacy condition at every iteration. Under exact line search the algorithm reduces to
the Dai and Yuan computational scheme. At the same time the algorithm can be viewed as an
adaptive version of the Dai and Liao [9] conjugate gradient algorithm. Close to our
computational scheme is the conjugate gradient algorithm recently proposed by Hager and
Zhang [17]. The algorithm has a built-in restart feature that addresses to the jamming
phenomenon.

The structure of the paper is as follows. In section 2 we present the new conjugate
gradient algorithm and prove that it generates descent directions satisfying both the sufficient
descent condition and the conjugacy condition. Section 3 is devoted to the convergence
analysis for both the uniformly convex functions and general nonlinear functions. It is shown
that under very common assumptions the proposed algorithm is globally convergent. Section
4 presents intensive numerical results and comparisons of our algorithm versus 20 nonlinear
conjugate gradient algorithms, subject to the number of iterations, the number of function and

its gradient evaluations, as well as subject to the CPU time on a set consisting of 750
unconstrained optimization problems. We present computational evidence that the
performances of our algorithm are substantially higher than those of the known conjugate
gradient algorithms, at least for this set of 750 problems.

2. A conjugate gradient algorithm with sufficient descent condition
For solving the unconstrained optimization problem
 { }min () : ,nf x x R∈ (1)

where is continuously differentiable, Dai and Yuan [11] suggested the following
nonlinear conjugate gradient algorithm:

f R Rn: →

 x x dk k k+ k= +1 α , (2)
where the stepsize α k is positive and the directions are computed by the rule: dk

 1 1 ,DY
k k k kd g sβ+ += − + d g0 0= − , (3)

 1 1
T

DY k k
k T

k k

g g
y s

β + += , (4)

where g f xk k= ∇ () and y g gk k k= −+1 , s x xk k k= −+1 . Using a standard Wolfe line
search [31, 32], the Dai and Yuan method always generates descent directions and under
Lipschitz assumption it is globally convergent.
 In this paper we present a modification of the Dai and Yuan computational scheme in
order to satisfy both the sufficient descent condition and the conjugacy condition in the frame
of conjugate gradient algorithms. In order to satisfy the sufficient descent condition, in our
algorithm the direction is computed as:
 1 1 ,A

k k k kd g sβ+ += − + d g0 0= − , (5)
where

 1 1 1 1 1
2

()(
()

DY
k

T T T
A k k k k k k

k kT T
k k k k

g g g s g g
y s y s
β

β δ+ + + + += −
��	�

)
. (6)

and kδ is a parameter which follows to be determined.

Theorem 1. If and (dy sk

T
k ≠ 0 1 1 ,A

k k k kd g sβ+ += − + g0 0= −), where A
kβ is given by

(6), then

 2
1 1 1

11
4

T
k k k

k

g d g
δ+ + +

⎛ ⎞
≤ − −⎜ ⎟

⎝ ⎠
. (7)

Proof. Since d g0 = 0− , we have g d gT

0 0 0

2
= − , which satisfy (6). Multiplying (5) by

, we have gk
T
+1

2 2

2 1 11 1 1
1 1 1 2

()()() .
()

TT T
k k kT k k k k

k k k kT T
k k k k

g s gg g g sg d g
y s y s

δ + ++ + +
+ + += − + − (8)

But

[] []()() () / ()
()

g g g s
y s

y s g g s g
y s

k
T

k k
T

k

k
T

k

k
T

k k k

T

k k
T

k k

k
T

k

+ + + + +
=1 1 1 1 1

2

2 2δ δ +1

 2

 ≤
+

⎡

⎣⎢
⎤

⎦⎥+ +

1
2

1
2

22
1

2

1
2

1

2

2

δ
δ

k
k
T

k k k k
T

k k

k
T

k

y s g g s g

y s

() ()

()

+

 = ++
+ +1

4 1

2 1
2

1

2

2δ
δ

k
k k

k
T

k k

k
T

k
g

g s g
y s

()
()

. (9)

Using (9) in (8) we get (7).

 To conclude the sufficient descent condition from (7), the quantity 1 1/(4)kδ− is
required to be nonnegative. Supposing that 1 1/(4) 0kδ− > , then the direction given by (5)
and (6) is a descent direction. Dai and Yuan [11, 12] present conjugate gradient schemes with
the property that when If g dk

T
k < 0 y sk

T
k > 0. f is strongly convex or the line search

satisfies the Wolfe conditions, then and the Dai and Yuan scheme yield descent. In
our algorithm observe that, if for all ,

y sk
T

k > 0
k 1/(4) 1,kδ ≤ and the line search satisfies the Wolfe

conditions, then for all the search direction (5) and (6) satisfy the sufficient descent

condition. Note that in (7) we bound by

k

g dk
T

k+ +1 1
2

1(1 1/ 4) ,k kgδ +− − while for scheme of

Dai and Yuan only the non-negativity of is established. g dk
T

k+ +1 1

In [7] Dai established a remarkable property relating the descent directions to the
sufficient descent condition, showing that if there exist constants γ 1 and γ 2 such that

γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ (,)0 1 , there exists a constant such that the

sufficient descent condition

c > 0

g d c gi
T

i ≤ −
2

i holds for at least ⎣ ⎦pk indices

where i k∈ [,],0 ⎣ ⎦j denotes the largest integer ≤ j. In our algorithm the famous parameter
β k is selected in such a manner that the sufficient descent condition is satisfied at every

iteration.
Observe that if f is a quadratic function and α k is selected to achieve the exact

minimum of f in the direction , then dk s gk
T

k+ =1 0 and the formula (6) for A
kβ reduces to

the Dai and Yuan computational scheme [11, 12]. However, in this paper we consider general
nonlinear functions and inexact line search.

In order to determine kδ , observe that using (6) in (5) we get the following direction:
2

11 1
1 1 12 ()

()

T
k Tk k

k k k k k kT T
k k k k

gg gd g s g s
y s y s

δ ++ +
+ + += − + − ks

1k

which can be written as
 1 1k kd Q g+ + += − , (10)
where the matrix 1kQ + is:

2

11
1 2 (

()

T
k Tk k

k kT T
k k k k

gs gQ I s s
y s y s

δ ++
+ = − +)k k . (11)

Now, by symmetrization of as: 1kQ +

2

11 1
1 2 (

()

T T
k Tk k k k

k kT T
k k k k

gs g g sQ I s s
y s y s

δ ++ +
+

+
= − +)k k , (12)

we can consider the direction
 1 1k kd Q g 1k+ + += − . (13)

From the conjugacy condition 1 0T
k ky d + = , i.e.

 3

 1 1 0T
k k ky Q g+ + = , (14)

after some algebra it follows that

 1 1
2 2

1 1 1 1

()(
()

T T T T
k k k k k k k k

k T T
k k k k k

y s g y g y y s
g s g g g

δ + +

+ + + +

= + −
)

ks
. (15)

Therefore, using (15) in (6) we get

 1
1

1
TT

A k k
k k kT T

k k k k

g yy s
y s y s

β +
kg +

⎛ ⎞
= −⎜

⎝ ⎠
⎟ . (16)

Using the same arguments as in Theorem 1, but this time on the Hestenes and Stiefel
parameter HS

kβ [19] where

 1
T

HS k k
k T

k k

g y
d y

β += , (17)

we get exactly the conjugate gradient algorithm proposed by Hager and Zhang [17], where

2

1
1 2

T

kHZ
k k kT T

k k k k

y
y d

d y d y
β kg +

⎛ ⎞
⎜= −
⎜
⎝ ⎠

⎟
⎟

. (18)

It is worth saying that Hager and Zhang obtained their computational scheme by deleting a
term from the search direction for the memoryless quasi-Newton scheme of Perry [23] and
Shanno [28, 29]. We see that formula (16) for A

kβ is very close to the Hager and Zhang

computational scheme HZ
kβ (18), where the factor

22 / T
k ky y dk in their scheme is replaced

by . The direction of Hager and Zhang satisfies the sufficient descent condition

and is bounded by
1 /T T

k k k kg y y s+

g dk
T

k+ +1 1 − +(/)7 8 1

2
gk [17].

At the same time, observe that (16) is very close to the Dai and Liao [9] computational
scheme,

 () 1
1 TDL

k k kT
k k

y ts g
y s

β k+= − , (19)

where the parameter is replaced by . The method (5), (16) can be viewed as
an adaptive version of the Dai and Liao computational scheme, corresponding to

.

t 1 /T T
k k k kg y y s+

1 /T T
k k kt g y y s+= k

Considering the definitions of gk , sk and we present the following Conjugate
Gradient Algorithm with Conjugacy and Sufficient Descent conditions:

yk

ACGSD Algorithm
Step 1. Initialization. Select and the parameters x R n

0 ∈ 0 11 2< < <σ σ . Compute f x()0

and g0 . Consider d g0 0= − and α 0 01= / g . Set k = 0.

Step 2. Test for continuation of iterations. If gk ∞
−≤ 10 6 , then stop, else set k k= +1.

Step 3. Line search. Compute α k satisfying the Wolfe line search conditions
 f x d f x g dk k k k k k

T
k() ()+ ,− ≤α σ α1 (20)

 ∇ + ≥f x d d g dk k k
T

k k
T

k() ,α σ2 (21)
and update the variables x x dk k k+ = k+1 α . Compute f xk(),+1 gk+1 and s x xk k= −+1 k ,
y g gk k k= −+1 .

Step 4. Direction computation. Compute , where 1
A

k kd g sβ+= − + k
A

kβ is computed as in
(16). If

 4

 g d d gk
T

k+
−

+≤ −1
3

2 1 2
10 , (22)

then define dk+ d=1 , otherwise set d gk+ k+= −1 .1 Compute the initial guess

α αk k k kd d= − −1 1 / , set k k= +1 and continue with step 2.

 It is well known that if f is bounded along the direction then there exists a
stepsize

dk

α k satisfying the Wolfe line search conditions (20) and (21). In our algorithm when
the angle between and d − +gk 1 is not acute enough, then we restart the algorithm with the
negative gradient − +gk 1 . More sophisticated reasons for restarting the algorithms have been
proposed in the literature, but we are interested in the performance of a conjugate gradient
algorithm that uses this restart criterion, associated to a direction satisfying both the sufficient
descent and the conjugacy conditions. Under reasonable assumptions, conditions (20), (21)
and (22) are sufficient to prove the global convergence of the algorithm. We consider this
aspect in the next section.
 The initial selection of the step length crucially affects the practical behaviour of the
algorithm. At every iteration k ≥ 1 the starting guess for the step α k in the line search is

computed as α k k kd d− −1 1 2
/

2
. This selection, was considered for the first time by Shanno

and Phua in CONMIN [27]. It is also considered in the packages: SCG by Birgin and
Martínez [5] and in SCALCG by Andrei [2-4].

3. Convergence analysis
Throughout this section we assume that:
(i) The level set { }0: () ()nL x R f x f x= ∈ ≤ is bounded.

(ii) In a neighborhood of , the function N L f is continuously differentiable and its
gradient is Lipschitz continuous, i.e. there exists a constant such that 0L >

() ()f x f y L x∇ −∇ ≤ − y , for all , .x y N∈

Under these assumptions on f , there exists a constant 0Γ ≥ such that ()f x∇ ≤ Γ , for all
.x L∈

Dai et al [8] proved that for any conjugate gradient method with the strong Wolfe line
search,

1() () T
k k k k k k kf x d f x gα σ α+ − ≤ d ,

 2()T T
k k k k k kf x d d gα σ∇ + ≤ − d

kd

.

the following general result holds.

Lemma 1. Suppose that the assumptions (i) and (ii) holds and consider any conjugate
gradient method (2) where 1 1k k kd g β+ += − + is a descent direction and kα is selected by
the strong Wolfe line search. If

 2
1

1
k kd≥

= ∞∑ , (23)

then
 lim inf 0.kk

g
→∞

= (24)

For uniformly convex functions we can prove that the norm of the direction generated
by (5) and (16) is bounded above. Therefore, by Lemma 1 we can prove the following result.

1kd +

 5

Theorem 2. Suppose that the assumptions (i) and (ii) holds and consider the method (2) and
(5), where is a descent direction with 1kd +

A
kβ given by (16), and kα is obtained by the

strong Wolfe line search. If there exists a constant 0µ > such that

2(() ()) ()Tf x f y x y x yµ∇ −∇ − ≥ − (25)

for all ,x y L∈ , then
 lim 0.kk

g
→∞

= (26)

Proof. From (25) it follows that f is a uniformly convex function on and L 2T

k k ky s sµ≥ .

Since is a descent direction, it follows that By Wolfe
condition (21) we have:

kd 1 .T T T T
k k k k k k k kg s y s g s y s+ = + <

 (27) 1 2 2() (1) (1)T T T
k k k k k k k k ky s g g s g s g sσ σ+= − ≥ − = − − .T

From (16) we can write

 1 1
T T

A k k k k
k T T

k k k k

g y g s
y s y s

β + +⎛ ⎞
= −⎜

⎝ ⎠
1 ⎟ . (28)

But, from (27) we get

 1

2

11
1

T T
k k k k
T T
k k k k

g s g s
y s y s

.
σ

+− = − ≤
−

 (29)

Therefore,

 1
2

2 2

1 .
1 (1)

k kA
k

kk

g L s L
ss

β
σ µ σµ

+ Γ
≤ ≤

− −
1

 (30)

Hence

 1 1
2

1
(1)

A
k k k k

Ld g sβ
µ σ+ +

⎛ ⎞
≤ + ≤ +⎜ −⎝ ⎠

Γ⎟ , (31)

i.e. (23) is true. Therefore, by Lemma 1 we have (24), which for uniformly convex functions
is equivalent to (26). ■

For general nonlinear functions the convergence analysis of our algorithm exploits
insights developed by Gilbert and Nocedal [15], Dai and Liao [9] and that of Hager and
Zhang [17]. Global convergence proof of ACGSD algorithm is based on the Zoutendijk
condition combined with the analysis showing that the sufficient descent condition holds and

kd is bounded. Suppose that the level set is bounded and the function L f is bounded
from below.

Lemma 2. Assume that is a descent direction and kd f∇ satisfies the Lipschitz condition

() ()k kf x f x L x x∇ −∇ ≤ − for all x on the line segment connecting kx and 1kx + , where
 is a constant. If the line search satisfies the second Wolfe condition (21), then L

 2
2

1 .
T
k k

k
k

g d
L d
σα −

≥ (32)

Proof. Subtracting from both sides of (21) and using the Lipschitz condition we have T
k kg d

2

2 1(1) ()T T
k k k k k k kg d g g d L dσ α+− ≤ − ≤ . (33)

Since is a descent direction and kd 2 1σ < , (32) follows immediately from (33). ■

 6

Theorem 3. Suppose that for all k ≥ 0 there exists a positive constant ω , such that
1 1/(4) 0kδ ω− ≥ > and there exists the constants γ and Γ , such that kgγ ≤ ≤ Γ

}
. If the

level set is bounded and the Lipschitz condition {L x R f x f xn= ∈ ≤: () ()0

∇ −∇ ≤ −f x f y L x y() () holds for all ,x y L∈ , then for the computational scheme (2),
(5) and (16) with a line search satisfying the Wolfe conditions (20) and (21) , either gk = 0
for some k or

 liminf .
k

gk
→∞

= 0 (34)

Proof. Suppose that gk ≠ 0 for all k . Since gk ≠ 0 it follows that 0.γ > By the Wolfe
condition (21) we have:
 y s g g s g s g sk

T
k k k

T
k k

T
k

T
k= − ≥ k− = − −+() () ()1 2 21 1 .σ σ (35)

By Theorem 1, and the assumption 1 1/(4)kδ ω− ≥ ,

 2

1

11 .
4

T
k k k k

k

g d g gω
δ −

⎛ ⎞
≤ − − ≤ −⎜ ⎟

⎝ ⎠

2 (36)

Therefore,
 2 .T

k k kg d gω− ≥ (37)
Combining (35) with (37) we get
 2

2(1) .T
k k ky s σ ωα γ≥ − (38)

Observe that
 g s y s g s y sk

T
k k

T
k k

T
k k

T
k+ = + <1 . (39)

From (21) we have
g s g s y s g sk

T
k k

T
k k

T
k k

T
k+ +≥ = − +1 2 2 2 1σ σ σ .

Since σ2 1< , we obtain

 g s y sk
T

k
T

k+ ≥ k

−
−1

2

21
σ
σ

. (40)

Combining this lower bound for with the upper bound (39) yields 1
T
k kg s+

g s
y s
k
T

k

k
T

k

+ ≤
−

⎧
⎨
⎩

⎫
⎬
⎭

1

2
1

1
max , .

σ
σ
2 (41)

On the other hand y g g L sk k k= − ≤+1 .k Hence

 1 1
T
k k k k kg y g y L s+ +≤ ≤ Γ . (42)

With these, using (38) and (42) in (16) we get:

 1 1
1

1
T T
k k k kA T

k k kT T
k k k k

g y g s
g y

y s y s
β + +

+

⎡ ⎤
⎢ ⎥≤ +
⎢ ⎥⎣ ⎦

1 11
T T
k k k k

TT
k kk k

g y g s
y sy s

+ +
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

 2
2

2 2

1 max 1, ,
(1) 1

k
k

k

L s
E s EDσ

σ ωα γ σ
⎡ ⎤Γ ⎧ ⎫

≤ + =⎨ ⎬⎢ ⎥− −⎩ ⎭⎣ ⎦
≤ (43)

where

2
2

2 2

1 max 1,
(1) 1k

LE σ
σ ωα γ σ

⎡ ⎤⎧ ⎫Γ
= + ⎨ ⎬⎢ ⎥− −⎩ ⎭⎣ ⎦

and {D y z y z= − ∈max : , }L is the diameter of the level set L . Therefore,

 7

 2
1 1

A
k k k kd g s EDβ+ +≤ + ≤ Γ + . (44)

Since the level set L is bounded and the function f is bounded from below, using Lemma 2,
from (20) and (23) it follows that

2

2
0

()0
T
k k

k k

g d
d

∞

=

< < ∞∑ , (45)

i.e. the Zoutendijk condition holds. Therefore, from Theorem 1 using (23), the descent
property yields:

4 24

2 2 22
0 0 0

()1 ,
T

k k k

k k kk k k

g g d
d d d
γ

ω

∞ ∞ ∞

= = =

≤ ≤ <∑ ∑ ∑ ∞

which contradicts (44). Hence, liminf 0.kg

k
γ = =

→∞

Therefore, our conjugate gradient algorithm is globally convergent, meaning that either

 for some k or (34) holds. Observe that we assume both the sufficient descent
condition and the Wolfe line search conditions. But these two requirements are essentially
independent of each other. On the other hand, the conjugacy condition gives a value for
parameter

0kg =

kδ and we assume it is bounded below.

4. Numerical results and comparisons
In this section we present the computational performance of a Fortran implementation of the
ACGSD algorithm on a set of 750 unconstrained optimization test problems. The test
problems are the unconstrained problems in the CUTE [6] library, along with other large-
scale optimization problems. We selected 75 large-scale unconstrained optimization problems
in extended or generalized form. For each function we have considered ten numerical
experiments with the number of variables n = 1000 2000 10000, , ,… .
 All algorithms implement the Wolfe line search conditions with σ1 0 0001= .

and 2 0.9σ = , and the same stopping criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum

absolute component of a vector.
 The comparisons of algorithms are given in the following context. Let and

be the optimal value found by ALG1 and ALG2, for problem
respectively. We say that, in the particular problem the performance of ALG1 was better
than the performance of ALG2 if:

f i
ALG1

f i
ALG2 i = 1 750, ,… ,

i,

 f fi
ALG

i
ALG1 2 10− < −3 (46)

and the number of iterations, or the number of function-gradient evaluations, or the CPU time
of ALG1 was less than the number of iterations, or the number of function-gradient
evaluations, or the CPU time corresponding to ALG2, respectively.

All codes are written in double precision Fortran and compiled with f77 (default
compiler settings) on an Intel Pentium 4, 1.8GHz workstation. All these codes are authored by
Andrei.

In the first set of numerical experiments we compare the performance of ACGSD
algorithm to the Dai and Yuan conjugate gradient algorithms. Dai and Yuan [12] studied the
hybrid conjugate gradient algorithms and proposed the following two hybrid methods:

 {2

2

1max , min , ,
1

hDY DY HS DY
k k k

σβ β β
σ }kβ

⎧ ⎫−
= −⎨ ⎬+⎩ ⎭

 (47)

and

 8

 { }{ }max 0,min ,hDYz HS DY
k kβ β= kβ , (48)

showing their global convergence when the Lipschitz assumption holds and the standard
Wolfe line search is considered. The numerical experiments of Dai and Ni [10] show that the
second hybrid method (hDYz) gave the best results, performing better that the Polak-Ribière
[24] and Polyak [25] plus method. Tables 1-3 present the performances of these algorithms
subject to the minimum number of iterations (#iter), the minimum number of function and its
gradient evaluations (#fg) and the minimum cpu time (CPU), respectively.

Table 1. Performance of ACGSD versus Dai-Yuan. 721 problems.
 ACGSD DY =

iter 382 111 228
fg 417 201 103
CPU 477 162 82

Table 2. Performance of ACGSD versus hDY (hybrid Dai-Yuan). 695 problems.
 ACGSD hDY =

iter 334 171 190
fg 363 215 117
CPU 382 189 124

Table 3. Performance of ACGSD versus hDYz (hybrid Dai-Yuan zero). 689 problems.
 ACGSD hDYz =

iter 248 236 205
fg 310 263 116
CPU 325 255 109

When comparing ACGSD and DY algorithms (Table 1), subject to the number of iterations,
ACGSD was better in 382 problems (i.e. it achieved the minimum number of iterations in 382
problems), DY was better in 111 problems, and they had the same number of iterations in 228
problems, etc. Out of 750 problems, only for 721 problems the criterion (46) holds. From
these Tables we see that, at least for this set of 750 problems, comparing with Dai and Yuan
conjugate gradient algorithms, the top performer is ACGSD. Observe that the hybrid variants
hDY and hDYz are better that the original conjugate gradient scheme of Dai and Yuan. The
results of Table 3 seem to be consistent with the numerical experiments reported by Dai and
Ni.
 The second set of numerical experiments refers to the comparison of ACGSD with 15
conjugate gradient algorithms, where in these algorithms the search direction is
computed as

1kd +

1 1k k kd g kdβ+ += − + where the parameter kβ is selected as:

k
T
k

k
T
kHS

k yd
yg 1+=β

The original linear conjugate gradient algorithm
by Hestenes and Stiefel [19].

k
T
k

k
T
kFR

k gg
gg 11 ++=β

The first nonlinear conjugate gradient
algorithm, proposed by Fletcher and Reeves
[14].

k
T
k

k
T
kPRP

k gg
yg 1+=β

Proposed by Polak and Ribière [24] and Polyak
[25].

 9

10,
T

PRP k k
k T

k k

g ymax
g g

β + +⎧ ⎫
= ⎨ ⎬

⎩ ⎭

Proposed by Powell [26], and analyzed by
Gilbert and Nocedal [15].

{ }{ }max ,min ,GN FR PRP FR
k k kβ β β= − kβ Proposed by Gilbert and Nocedal [15]

k
T
k

k
T
kCD

k gd
gg

−
= ++ 11β

Proposed by Fletcher [13] as a Conjugate
descent method

k
T
k

k
T
kLS

k gd
yg

−
= +1β

Proposed by Liu and Storey [21].

{ }{ }max 0,min ,LS CD LS CD
k kβ β− = kβ Hybrid Liu and Storey – Conjugate Descent

{ }{ }max 0,min ,Hu Storey PRP FR
k kβ β− = kβ Proposed by Hu and Storey [20]

PRP
kif 0 ,

otherwise

PRP FR
TA S k k
k FR

k

β β β
β

β
− ⎧ ≤ ≤
= ⎨
⎩

Proposed by Touati-Ahmed and Storey [30]

0,)(1 >
−

= + t
yd

tsyg
k

T
k

kk
T
kDL

kβ
Proposed by Dai and Liao [9],

or as 1 1 1k k k kd g ksθ β+ + += − + , where the parameter 1kθ + is a scalar approximation of the
inverse Hessian (the inverse of the Rayleigh quotient) of the function f :

 1

T
k k

k T
k k

s s
y s

θ + = (49)

and kβ is selected as:

1()T
BM k k k k
k T

k k

g y s
y s
θβ + −

=
Scaled Perry. Suggested by Birgin and Martínez
[5] and Andrei [1-4].

10,
T T

BM k k k k k
k T

k k k k

g y g smax
y s y s

θβ + + +⎧ ⎫
= ⎨ ⎬

⎩ ⎭
1

T−
Scaled Perry+. Suggested by Birgin and
Martínez [5].

1

1

T
sPRP k k k
k T

k k k k

g y
g g

θβ
α θ

+

−

=
Scaled Polak-Ribière-Polyak. Suggested by
Birgin and Martínez [5] and Andrei [1-4].

1 1

1

T
sFR k k k
k T

k k k k

g g
g g

θβ
α θ

+ +

−

=
Scaled Fletcher-Reeves. Suggested by Birgin
and Martínez [5] and Andrei [1-4].

Tables 4-18 show the number of problems, out of 750, for which ACGSD versus these
conjugate gradient algorithms achieved the minimum number of iterations (#iter), the
minimum number of function evaluations (#fg) and the minimum cpu time in seconds (CPU),
subject of (46), respectively.

Table 4. Performance of ACGSD versus Hestenes-Stiefel. 702 problems.
 ACGSD HS =

iter 285 194 223
fg 310 233 159
CPU 346 225 131

 10

Table 5. Performance of ACGSD versus Fletcher-Reeves. 707 problems.

 ACGSD FR =
iter 429 85 193
fg 457 149 101
CPU 488 145 74

Table 6. Performance of ACGSD versus Polak-Ribière-Poliak. 713 problems.

 ACGSD PRP =
iter 314 161 238
fg 378 189 146
CPU 388 193 132

Table 7. Performance of ACGSD versus Polak-Ribière-Poliak(+). 704 problems.

 ACGSD PRP+ =
iter 277 213 214
fg 335 232 137
CPU 359 228 117

Table 8. Performance of ACGSD versus Gilbert-Nocedal. 707 problems.

 ACGSD GN =
iter 351 172 184
fg 386 212 109
CPU 413 199 95

Table 9. Performance of ACGSD versus Conjugate Descent (Fletcher). 712 problems.

 ACGSD CD =
iter 400 97 215
fg 437 170 105
CPU 450 178 84

Table 10. Performance of ACGSD versus Liu-Storey. 692 problems.

 ACGSD LS =
iter 305 164 223
fg 350 202 140
CPU 379 206 107

Table 11. Performance of ACGSD versus hybrid Liu-Storey & Conjugate-Descent. 705 problems.

 ACGSD hLS-CD =
iter 303 215 187
fg 337 248 120
CPU 372 234 99

Table 12. Performance of ACGSD versus Hu-Storey. 709 problems.

 ACGSD Hu-Storey =
iter 329 199 181
fg 373 229 107
CPU 394 220 95

 11

Table 13. Performance of ACGSD versus Touati-Ahmed and Storey. 701 problems.
 ACGSD TA-S =

iter 378 147 176
fg 414 187 100
CPU 428 185 88

Table 14. Performance of ACGSD versus Dai-Liao(t=1). 697 problems.

 ACGSD DL(t=1) =
iter 270 194 233
fg 323 231 143
CPU 336 227 134

Table 15. Performance of ACGSD versus scaled Perry (Birgin-Martínez). 707 problems.

 ACGSD BM =
iter 249 248 210
fg 295 285 127
CPU 325 263 119

Table 16. Performance of ACGSD versus scaled Perry plus (Birgin-Martínez plus). 697 problems.

 ACGSD BM+ =
iter 263 248 186
fg 310 271 116
CPU 341 255 101

Table 17. Performance of ACGSD versus scaled Polak-Ribière-Poliak. 694 problems.

 ACGSD sPRP =
iter 335 149 210
fg 375 179 140
CPU 402 188 104

Table 18. Performance of ACGSD versus scaled Fletcher-Reeves. 699 problems.

 ACGSD sFR =
iter 428 84 187
fg 447 156 96
CPU 474 146 79

From Tables above we see that ACGSD is top performer. Since these codes use the
same Wolfe line search and the same stopping criterion they differ in their choice of the
search direction. Hence, among these conjugate gradient algorithms, ACGSD appears to
generate the best search direction, on average.

Concerning the cpu time, from Table 14, we see that the closest to ACGSD is Dai-
Liao () algorithm. Both ACGSD and DL(1t = 1t =) achieved the minimum cpu time for 134
problems. Dai and Liao algorithm is a modification of the Hestenes and Stiefel’s. For an exact
line search, is orthogonal to . Hence, for exact line search the DL method reduces to
the HS method. From Table 4 we see that HS is also close to ACGSD algorithm. Both
ACGSD and HS achieved the same CPU time for 131 problems. The HS method has the
property that the conjugacy condition

1kg + ks

1 0T
k kd y+ = always is satisfied, independent of the line

search. However, ACGSD satisfies both the conjugacy condition and the sufficient descent
condition. From Table 6 close to ACGSD is also PRP. For an exact line search, PRP HS

k kβ β= .

 12

Therefore, these methods have similar convergence properties. Both HS, PRP and ACGSD
methods have a built-in restart feature that addresses the jamming phenomenon. When the
step is small, then 1k ks x x+= − k k1k ky g g+= − tends to zero. Hence, kβ from HS, PRP and
ACGSD becomes small and the new search direction 1kd + is essentially the steepest descent
direction Therefore, HS, PRP and ACGSD methods automatically adjust the
parameter

1.kg +−

kβ to avoid jamming, the performance of these methods are better than the
performance of some other conjugate gradient methods.

In the third set of numerical experiments we compare ACGSD to CG_DESCENT by
Hager and Zhang [17]. The CG_DESCENT code, authored by Hager and Zhang, contains the
variant CG_DESCENT(w) implementing the Wolfe line search and the variant
CG_DESCENT(aw) implementing an approximate Wolfe line search. The computational
scheme implemented in CG_DESCENT is a modification of the Hestenes and Stiefel method
which satisfies the sufficient descent condition. However, in this method the conjugacy
condition holds approximately. There are two main points associated to CG_DESCENT.
Firstly, the scalar products are implemented using the loop unrolling of depth 5. This is
efficient for large-scale problems (over variables). Secondly, the Wolfe line search is
implemented using a very fine numerical interpretation of the first Wolfe condition (20). The
Wolfe conditions implemented in ACGSD and CG_DESCENT(w) can compute a solution
with an accuracy on the order of the square root of the machine epsilon. In contrast, the
approximate Wolfe line search implemented in CG_DESCENT(aw) can compute a solution
with an accuracy of the order of machine epsilon.

610

Tables 19 and 20 show the number of problems solved by these algorithms in the
minimum number of iterations, the minimum number of function evaluations and the
minimum cpu time, respectively.

Table 19. Performance of ACGSD versus CG_DESCENT(w). 700 problems.
 ACGSD CG_DESCENT(w) =

iter 308 309 83
fg 440 223 37
CPU 354 275 71

Table 20. Performance of ACGSD versus CG_DESCENT(aw). 700 problems.

 ACGSD CG_DESCENT(aw) =
iter 316 301 83
fg 424 233 43
CPU 351 286 63

5. Conclusion
We have presented a new conjugate gradient algorithm for solving unconstrained
optimization problems. The parameter A

kβ is a modification of the Dai and Yuan
computational scheme in such a manner that the direction generated by the algorithm to
satisfy both the sufficient descent condition and the conjugacy condition, independent of the
line search. Under standard Wolfe line search conditions we proved the global convergence of
the algorithm. We present computational evidence that the performance of our algorithm
ACGSD was higher than those of the Dai and Yuan conjugate gradient algorithm and its
hybrid variants, as well as of some other conjugate gradient algorithms including the recent
CG_DESCENT by Hager and Zhang, for a set consisting of 750 problems.

dk

 13

References
[1] N. Andrei, Conjugate gradient algorithms for large scale unconstrained optimization. ICI

Technical Report, January 12, 2005.
[2] N. Andrei, Scaled conjugate gradient algorithms for unconstrained optimization.

Accepted: Computational Optimization and Applications, 2006.
[3] N. Andrei, Scaled memoryless BFGS preconditioned conjugate gradient algorithm for

unconstrained optimization. Accepted: Optimization Methods and Software, 2006.
[4] N. Andrei, A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained

optimization. Accepted: Applied Mathematics Letters, 2006
[5] E. Birgin and J.M. Martínez, A spectral conjugate gradient method for unconstrained

optimization, Applied Math. and Optimization, 43, pp.117-128, 2001.
[6] I. Bongartz, A.R. Conn, N.I.M. Gould and P.L. Toint, CUTE: constrained and

unconstrained testing environments, ACM Trans. Math. Software, 21, pp.123-160,
1995.

[7] Y.H. Dai, New properties of a nonlinear conjugate gradient method. Numer. Math., 89
(2001), pp.83-98.

[8] Y.H. Dai, Han, J.Y., Liu, G.H., Sun, D.F., Yin, .X. and Yuan, Y., Convergence properties
of nonlinear conjugate gradient methods. SIAM Journal on Optimization 10 (1999),
348-358.

[9] Y.H. Dai and L.Z. Liao, New conjugacy conditions and related nonlinear conjugate
gradient methods. Appl. Math. Optim., 43 (2001), pp. 87-101.

[10] Y.H. Dai and Q. Ni, Testing different conjugate gradient methods for large-scale
unconstrained optimization, J. Comput. Math., 21 (2003), pp.311-320.

[11] Y.H. Dai and Y, Yuan, A nonlinear conjugate gradient method with a strong global
convergence property, SIAM J. Optim., 10 (1999), pp.177-182.

[12] Y.H. Dai and Y. Yuan, An efficient hybrid conjugate gradient method for unconstrained
optimization. Annals of Operations Research, 103 (2001), pp.33-47.

[13] R. Fletcher, Practical Methods of Optimization vol.1: Unconstrained Optimization. Jhon
Wiley & Sons, New York, 1987.

[14] R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients. Computer
Journal, 7 (1964), pp.149-154.

[15] J.C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient
methods for optimization. SIAM J. Optim., 2 (1992), pp.21-42.

[16] G.H. Golub and D.P. O’Leary, Some history of the conjugate gradient and Lanczos
algorithms: 1948-1976. SIAM Review, 31 (1976), pp.50-100.

[17] W.W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent
and an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192.

[18] W.W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods. Pacific
journal of Optimization, 2 (2006), pp.35-58.

[19] M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Research Nat. Bur. Standards Sec. B. 48, pp. 409-436, 1952.

[20] Y.F. Hu, and C. Storey, Global convergence result for conjugate gradient methods.
JOTA, 71, (1991), pp.399-405.

[21] Y. Liu, and C. Storey, Efficient generalized conjugate gradient algorithms, Part 1:
Theory. JOTA, 69 (1991), pp.129-137.

[22] D.P. O’Leary, Conjugate gradients and related KMP algorithms: The beginnings. In L.
Adams and J.L. Nazareth (Eds.) Linear and Nonlinear Conjugate Gradient – Related
Methods. SIAM, Philadelphia, 1996, pp.1-8.

[23] J.M. Perry, A class of conjugate gradient algorithms with a two-step variable-metric
memory, Discussion Paper 269, Center for Mathematical Studies in Economic and
Management Sciences, Northwestern University, Evanston, Illinois, 1977.

[24] E. Polak and G. Ribière, Note sur la convergence de méthodes de directions conjuguée,
Revue Francaise Informat. Recherche Opérationnelle, 3e Année 16 (1969), pp.35-43.

[25] B.T. Polyak, The conjugate gradient method in extreme problems,USSR Comp. Math.
Math. Phys., 9 (1969), pp.94-112.

 14

[26] M.J.D. Powell, Nonconvex minimization calculations and the conjugate gradient method,
Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, vol.1066, Springer
Verlag, Berlin, 1984, pp.122-141.

[27] D.F. Shanno and K.H. Phua, Algorithm 500, Minimization of unconstrained multivariate
functions, ACM Trans. on Math. Soft., 2, pp.87-94, 1976.

[28] D.F. Shanno, On the convergence of a new conjugate gradient algorithm,SIAM J.
Numer. Anal., 15 (1978), pp.1247-1257.

[29] D.F. Shanno, Conjugate gradient methods with inexact searches. Math. Oper. Res., 3
(1978), pp.244-256.

[30] D. Touati-Ahmed and C. Storey, Efficient hybrid conjugate gradient techniques, Journal
Of Optimization Theory and Applications, 64 (1990), pp. 379-397.

[31] P. Wolfe, Convergence conditions for ascent methods. SIAM Review 11 (1969) 226-235.
[32] P. Wolfe, Convergence conditions for ascent methods, (II): some corrections. SIAM

Review 13 (1971) 185-188.

November 22, 2006

 15

