
Accelerated conjugate gradient algorithm with
finite difference Hessian / vector product

approximation for unconstrained optimization

Neculai Andrei
Research Institute for Informatics,

Center for Advanced Modeling and Optimization,
 8-10, Averescu Avenue, Bucharest 1, Romania.

E-mail: nandrei@ici.ro

Abstract. In this paper we propose a fundamentally different conjugate gradient method, in
which the well known parameter kβ is computed by an approximation of the Hessian / vector
product through finite differences. For search direction computation, the method uses a forward
difference approximation to the Hessian / vector product in combination with a careful choice of
the finite difference interval. For the steplength computation we suggest an acceleration scheme
able to improve the efficiency of the algorithm. Under common assumptions, the method is
proved to be globally convergent. It is shown that for uniformly convex functions the
convergence of the accelerated algorithm is still linear, but the reduction in function values is
significantly improved. Numerical comparisons with conjugate gradient algorithms including
CONMIN by Shanno and Phua [22], SCALCG by Andrei [3-5], and new conjugacy condition
and related new conjugate gradient by Li, Tang and Wei [16] or truncated Newton TN by Nash
[18] using a set of 750 unconstrained optimization test problems show that the suggested
algorithm outperforms the these conjugate gradient algorithms as well as TN.

MSC: 49M07, 49M10, 90C06, 65K
Keywords: Unconstrained optimization, conjugate gradient method, Newton direction,
forward difference approximation of Hessian/vector product, numerical comparisons

1. Introduction
Conjugate gradient algorithms are very powerful methods for solving large-scale
unconstrained optimization problems characterized by low memory requirements and strong
local and global convergence properties. Let us consider the nonlinear unconstrained
optimization problem
 { }min (): ,nf x x R∈ (1.1)

where : nf R → R is a continuously differentiable function, bounded from below. As we
know, for solving this problem starting from an initial guess 0

nx R∈ a nonlinear conjugate

gradient method generates a sequence { }kx as

 1k k k kx x dα+ = + , (1.2)
where 0kα > is obtained by line search and the directions are generated as kd
 1 1k k kd g ksβ+ += − + 0 0d g= −, . (1.3)
In (1.3) kβ is known as the conjugate gradient parameter, 1k ks x x+ k= − and .
The line search in the conjugate gradient algorithms is often based on the standard Wolfe
conditions [23,24]:

()k kg f x= ∇

 () () T
k k k k k k k ,f x d f x g dα ρα+ − ≤ (1.4)

 , (1.5) ()T
k k k k kg x d d g dα σ+ ≥ T

k

.where is a descent direction and 0 1kd ρ σ< ≤ <

 1

The search direction , assumed to be a descent one, plays the main role in these methods.
Different conjugate gradient algorithms correspond to different choices for the scalar
parameter

kd

.kβ On the other hand the stepsize kα guarantees the global convergence in some
cases and is crucial in efficiency. The line search in the conjugate gradient algorithms is often
based on the standard Wolfe conditions. Plenty of conjugate gradient methods are known and
an excellent survey of these methods with a special attention on their global convergence is
given by Hager and Zhang [14]. A numerical comparison of conjugate gradient algorithms
(1.2) and (1.3) with Wolfe line search (1.4) and (1.5), for different formulae of parameter kβ
computation, including the Dolan and Moré [12] performance profile, is given in [6].

In [19] Jorge Nocedal articulated a number of open problems in conjugate gradient
algorithms. Two of them seem to be really very important. One refers to the direction
computation in order to take into account the problem structure. The second one focuses on
the step length.

In this paper we present a conjugate gradient algorithm which address to these open
problems. The structure of the paper is as follows. In section 2 we present a conjugate
gradient algorithm in which the well known parameter kβ contains the Hessian 2

1()kf x +∇
of the minimizing function. The idea of this algorithm is to use the Newton direction for kβ
computation in (1.3). In section 3 we present the convergence of the algorithm. We prove that
under common assumptions and if the direction is a descent one then the method is globally
convergent. In section 4 we present an acceleration scheme of the algorithm. The idea of this
computational scheme is to take advantage that the step lengths kα in conjugate gradient
algorithms are very different from 1. Therefore, we suggest we modify kα in such a manner
as to improve the reduction of the function values along the iterations. Section 5 is devoted to
present the ACGHES algorithm. We prove that for uniformly convex functions the
convergence of the accelerated algorithm is still linear, but the reduction in function values is
significantly improved. Numerical comparisons of our algorithm with some other conjugate
gradient algorithms including CONMIN by Shanno and Phua [22], SCALCG by Andrei [3-5]
or new conjugacy condition and related new conjugate gradient by Li, Tang and Wei [16] as
well as truncated Newton TN by Nash [18] are presented in section 6. For this we use a set of
750 unconstrained optimization problems presented in [1]. We present numerical
computational evidence that our suggested algorithm outperforms the known conjugate
gradient algorithms as well as TN.

2. Conjugate gradient algorithm with Hessian in kβ
Our motivation to get a good algorithm for solving (1.1) is to choose the parameter kβ in
(1.3) in such a way so that for every the direction 1k ≥ 1kd + given by (1.3) be the Newton
direction. This is motivated by the fact that when the initial point 0x is near the solution of
(1.1) and the Hessian is a nonsingular matrix then the Newton direction is the best line search
direction. Therefore, from the equation

2 1
1 1 1()k k k k kf x g g sβ−
+ + +−∇ = − + .

after some algebra we get:

2

1 1
2

1

()
()

T T
k k k k

k T
k k k

s f x g s g
s f x s

β 1k+ +

+

∇ −
=

∇
+ . (2.1)

The salient point with this formula for kβ computation is the presence of the Hessian.
Observe that if the line search is exact we get the Daniel method [11]. Using (2.1) in (1.3) we
get:

 2

2

1 1 1
1 1 2

1

()
()

T T
k k k k k

k k T
k k k

s f x g s gd g
s f x s

+ + +
+ +

+

∇ −
= − +

∇ ks

)

. (2.2)

Theorem 2.1. Suppose that 2

1(kf x +∇ is positive definite. If 2
10 [()] 2k ijf x +≤ ∇ ≤ ,

 then 1 ,i j n≤ ≤ , 1kd + given by (2.2) is a descent direction.

Proof. From (2.2) we can write:

2 2
2 1 1 1 1

1 1 1 2 2
1 1

(())() ()
() ()

T T T
T k k k k k k k
k k k T T

k k k k k

s f x g s g s gg d g
s f x s s f x s

+ + + +
+ + +

+ +

∇
= − + −

∇ ∇ k

2 2 2

1 12 2
1

1 (()
(())

T
k k k kT

k k k

g s f x s
s f x s + +

+

⎡= − ∇⎣∇
)

)

)

)

k

 2 2
1 1 1 1(())()(()T T T

k k k k k k k ks f x g s g s f x s+ + + ++ ∇ ∇

 . 2 2
1 1() (()T T

k k k k ks g s f x s+ + ⎤− ∇ ⎦
But,
 2 2

1 1 1 1(())()(()T T T
k k k k k k k ks f x g s g s f x s+ + + +∇ ∇

 2 2
1 1 1 1(()) () ()

TT T
k k k k k k ks f x s g s g f x s+ + + +⎡ ⎤ ⎡ ⎤= ∇ ∇⎣ ⎦ ⎣ ⎦

222 2 2 2
1 1 1 1

1 (()) () ()
2

T T
k k k k k k k ks f x s g s g f x s+ + + +

⎡ ⎤≤ ∇ + ∇⎢ ⎥⎣ ⎦

Therefore,

2 2 2

1 1 1 12 2
1

1 1 (()
(()) 2

T T
k k k k k kT

k k k

g d g s f x s
s f x s+ + + +

+

⎡≤ − ∇⎢∇ ⎣
)

 ()2 2 2 2
1 1

1 () (()) 2 ()
2

T T
k k k k k ks g s f x f x s+ + +

⎤+ ∇ − ∇ ⎥⎦
1

1)k

.

Since 2 2 2
1(()) 2 (kf x f+∇ − ∇ x + is a convex function and negative on [0 it follows that

i.e.

, 2]

1 1 0,T
k kg d+ + ≤ 1kd + is a descent direction. ■

3. Convergence analysis
In this section we analyse the convergence of the algorithm (1.2) and (2.2), where .
In the following we consider that

0 0d g= −
0kg ≠ for all , otherwise a stationary point is

obtained. Assume that:
1k ≥

(i) The level set { }0: () ()nS x R f x f x= ∈ ≤ is bounded, i.e. there is a constant D such

that x D≤ for all .x S∈
(ii) In a neighborhood of , the function N S f is continuously differentiable and its

gradient is Lipschitz continuous, i.e. there exists a constant such that 0L >
() ()f x f y L x∇ −∇ ≤ − y , for all , .x y N∈

Under these assumptions on f there exists a constant 0Γ ≥ such that ()f x∇ ≤ Γ for all

.x S∈ In order to prove the global convergence, we assume that the step size kα in (1.2) is
obtained by the strong Wolfe line search, that is,
 () () T

k k k k k k k ,f x d f x g dα ρα+ − ≤ (3.1)

 ()T T
k k k k k kg x d d g dα σ+ ≤ . (3.2)

 3

where ρ and σ are positive constants such that 0 1.ρ σ< ≤ <
Dai et al. [10] proved that for any conjugate gradient method with strong Wolfe line search
the following general result holds:

Lemma 3.1. Suppose that the assumptions (i) and (ii) hold and consider any conjugate
gradient method (1.2) and (1.3), where is a descent direction and kd kα is obtained by the
strong Wolfe line search (3.1) and (3.2). If

 2
1

1
k kd≥

= ∞∑ , (3.3)

then
 liminf 0.k

k
g

→∞
= ■ (3.4)

Therefore, the following theorem can be proved.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold and consider the conjugate
gradient algorithm (1.2), where the direction 1kd + is given by (2.2) and the step length kα is

obtained by the strong Wolfe line search (3.1) and (3.2). Assume that

where and

2
1()kmI f x MI+≤ ∇ ≤ ,

m M are positive constants, then liminf 0.kk
g

→∞
=

Proof. Since it follows that 2

1()kmI f x MI+≤ ∇ ≤ ,

2

1 1 1

2 2
1 1

()

() ()

T T
k k k k k

k T T
k k k k k

s f x g s g

s f x s s f x s
β + + +

+ +

∇
≤ +

∇ ∇ k

 1 1
2 2

T T
k k k k

k k

M s g s g

m s m s
+ +≤ + 1

21
T
k k

k

s gM
m s

+⎛ ⎞= +⎜ ⎟
⎝ ⎠

11 k

k

gM
m s

+⎛ ⎞≤ +⎜ ⎟
⎝ ⎠

.

Therefore,

1 1 1 1 2k k k k k k
k

M Md g s g s
m s m

β+ + +
Γ⎛ ⎞ ⎛ ⎞≤ + ≤ + + ≤ Γ +⎜ ⎟ ⎜

⎝ ⎠ ⎝
⎟
⎠

Hence,
2

2
1 1

1 1 .
(2)k kk

m
M md≥ ≥

⎛ ⎞
≥ =⎜ ⎟Γ +⎝ ⎠

∑ ∑ ∞

By Lemma 1 we have liminf 0.kk
g

→∞
= ■

4. Acceleration of the algorithm
It is common to see that in conjugate gradient algorithms the search directions tend to be
poorly scaled and as a consequence the line search must perform more function evaluations in
order to obtain a suitable steplength .kα Therefore, the research efforts was directed to design
procedures for direction computation which takes the second order information. The
algorithms implemented in CONMIN by Shanno and Phua [22] or SCALCG by Andrei [3-5]
use the BFGS preconditioning with remarkable results. In this section we focus on the step
length modification. In the context of gradient descent algorithm with backtracking this idea
of step length modification has been considered for the first time in [2].
Jorge Nocedal [19] pointed out that in conjugate gradient methods the step lengths may differ
from 1 in a very unpredictable manner. They can be larger or smaller than 1 depending on
how the problem is scaled. This is in very sharp contrast to the Newton and quasi-Newton

 4

methods, including the limited memory quasi-Newton methods, which accept the unit
steplength most of the time along the iterations, and therefore usually they require only few
function evaluations per search direction. Numerical comparisons between conjugate gradient
methods and the limited memory quasi Newton method, by Liu and Nocedal [17], show that
the latter is more successful [6]. One explanation of efficiency of this limited memory quasi-
Newton method is given by its ability to accept unity step lengths along the iterations. In this
section we take advantage of this behavior of conjugate gradient algorithms and present an
acceleration scheme. Basically it modifies the step length in a multiplicative manner to
improve the reduction of the function values along the iterations. First we prove that the step
length kα given by the Goldstein [13] or the Wolfe line search conditions [23,24] is bounded
away from zero. Secondly, we present the acceleration scheme.

Line search. For implementing the algorithm (1.2) one of the crucial elements is the stepsize
computation. In the following we consider the line searches that satisfy either the Goldstein’s
conditions
 (4.1) 1 2() ()T T

k k k k k k k k k kg d f x d f x g dρ α α ρ α≤ + − ≤ ,
where 1

2 120 1ρ ρ< < < < 0,k and α > or the Wolfe conditions (1.4) and (1.5).

Proposition 4.1. Assume that is a descent direction and kd f∇ satisfies the Lipschitz

condition () ()k kf x f x L x x∇ −∇ ≤ − for all x on the line segment connecting kx and

1,kx + where is a positive constant. If the line search satisfies the Goldstein conditions (4.1),
then

L

 1
2

(1) .
T
k k

k
k

g d
L d
ρα −

≥ (4.2)

If the line search satisfies the Wolfe conditions (1.4) and (1.5), then

 2
(1) .

T
k k

k
k

g d
L d
σα −

≥ (4.3)

Proof. If the Goldstein conditions are satisfied, then using the mean value theorem from (4.1)
we get:
 1 () (T

k k k k k k kg d f x d f xρ α α≤ + −)

 ()T
k k k kf x dα ξ= ∇ + d 22 ,T

k k k k kg d L dα α≤ +

where [0,].kξ α∈ From this inequality we immediately get (4.2).

Now, to prove (4.3) subtract from both sides of (1.5) and using the Lipschitz condition
we get:

T
k kg d

2

1(1) ()T T
k k k k k k kg d g g d L dσ +− ≤ − ≤ .α (4.4)

But, is a descent direction and since kd 1σ < , we immediately get (4.3). ■

Therefore, satisfying the Goldstein or the Wolfe line search conditions α is bounded away
from zero, i.e. there exists a positive constant ω , such that .α ω≥

Acceleration scheme. Given the initial point 0x we can compute 0 0(),f f x=
and by Wolfe line search conditions (1.4) and (1.5) the steplength

0 0()g f x= ∇

0α is determined. With
these, the next iteration is computed as: 1 0 0 0x x dα= + , (0d g0= −) where 1f and are 1g

 5

immediately determined, and the direction can be computed as: 1d 1 1 0d g d0β= − + , where

0β is determined like in (2.1) as it is specified later. Therefore, at the iteration we
know

1,2,...k =
,kx ,kf and kg 1 1.k k k kd g sβ − −= − + Suppose that is a descent direction. By the

Wolfe line search (1.4) and (1.5) we can compute
kd

kα with which the following point

k kz x dkα= + is determined. The first Wolfe condition (1.4) shows that the steplength
0,kα > satisfies:

() () () .T
k k k k k k kf z f x d f x g dα ρα= + ≤ +

With these, let us introduce the accelerated conjugate gradient algorithm by means of the
following iterative scheme:
 1k k k k kx x dγ α+ = + , (4.5)
where 0kγ > is a parameter which follows to be determined in such a manner as to improve
the behavior of the algorithm. Now, we have:

 ()22 21() () () .
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dα α α α+ = + + ∇ + (4.6)

On the other hand, for 0γ > we have:

 ()22 2 21() () ()
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dγα γα γ α γα+ = + + ∇ + .

(),

 (4.7)

With these we can write:
 () ()k k k k k k kf x d f x dγα α+ = + +Ψ γ (4.8)
where

2 2 21() (1) () (1)
2

T T
k k k k kd f x d g dγ γ α γ αΨ = − ∇ + − k k k

 () ()22 .k k k k k ko d o dγ α α α α+ − 2 (4.9)

Let us denote:
 0,T

k k k ka g dα= ≤
2 2 () ,T

k k k k kb d f x dα= ∇

 ()2 .k k ko dε α=

Observe that , since is a descent direction, and for convex functions
Besides,

0ka ≤ kd 0.kb ≥

kε is independent of .γ Therefore,

 2 21() (1) (1) .
2k k k k kb a k kγ γ γ γ α ε αΨ = − + − + − ε

k

 (4.10)

Now, we see that () (2)k k k kb aγ α ε γ′Ψ = + + and () 0k mγ′Ψ = where

 .
2

k
m

k k

a
b

γ
kα ε

= −
+

 (4.11)

Observe that Therefore, assuming that (0) 0.k ka′Ψ = < 2k k kb 0,α ε+ > then ()k γΨ is a
convex quadratic function with minimum value in point mγ and

2((2))() 0
2(2)

k k k k
k m

k k k

a b
b

α εγ
α ε

+ +
Ψ = − ≤

+
.

Considering mγ γ= in (4.8) and since , we see that for every k 0kb ≥

 6

2((2))() () ()
2(2)

k k k k
k m k k k k k k k k

k k k

a b ,f x d f x d f x d
b

α εγ α α α
α ε

+ +
+ = + − ≤ +

+

which is a possible improvement of the values of function f (when (2)k k k ka b 0α ε+ + ≠).
Therefore, using this simple multiplicative modification of the stepsize kα as k kγ α where

/(2)k m k k k ka bγ γ α= = − + ε we get:
2

1
((2))() () ()

2(2)
T k k k k

k k k k k k k k k
k k k

a bf x f x d f x g d
b

α εγ α ρα
α ε+

+ +
= + ≤ + −

+

2((2))() (),

2(2)
k k k k

k
k k k

a b
k kf x

b
α ε ρ
α ε

⎡ ⎤+ +
= − − ≤⎢ +⎣ ⎦

a f x⎥ (4.12)

since (is a descent direction). 0,ka ≤ kd
Observe that if is a descent direction, then kd

2 2((2)) ()
2(2) 2

k k k k k k

k k k k

a b a b
b b

α ε
α ε

+ + +
>

+

and from (4.12) we get:
2

1
((2))() ()

2(2)
k k k k

k k
k k k

a b
kf x f x a

b
α ε ρ
α ε+

⎡ ⎤+ +
≤ − −⎢ ⎥+⎣ ⎦

2()() ().

2
k k

k k
k

a b
kf x a

b
ρ

⎡ ⎤+
< − − ≤⎢ ⎥

⎣ ⎦
f x

Therefore, neglecting the contribution of kε , and considering / ,k ka bkγ = − we still get an
improvement on the function values.
Now, in order to get the algorithm we have to determine a way for computation. For this,
at point

kb

k kz x dkα= + we have:

2 21() () () () ,
2

T T
k k k k k k k k k k kf z f x d f x g d d f x dα α α= + = + + ∇

where kx is a point on the line segment connecting kx and On the other hand, at point .z

k k kx z dα= − we have:

2 21() () () () ,
2

T T
k k k k z k k k k kf x f z d f z g d d f x dα α α= − = − + ∇

where and ()zg f= ∇ z kx is a point on the line segment connecting kx and Having in
view the local character of searching and that the distance between

.z

kx and z is small enough,
we can consider .k k kx x x= = So, adding the above equalities we get:

 (4.13) ,T
k k kb yα= − kd

zwhere Observe that for strictly convex functions However, if ,
then the acceleration scheme doesn’t have any effect by considering

.k ky g g= − 0.kb > 0kb =
1kγ = in (4.5).

Observe that if ka b> k , then 1.kγ > In this case k k kγ α α> and it is also possible

that 1k kγ α ≤ or 1.k kγ α > Hence, the steplength k kγ α can be greater than 1. On the other

hand, if ,k ka b≤ then 1.kγ ≤ In this case ,k k kγ α α≤ so the steplength k kγ α is reduced.

Therefore, if ka b≠ k , then 1kγ ≠ and the steplength kα computed by Wolfe conditions will

be modified by its increasing or its reducing through factor .kγ

 7

 Neglecting kε in (4.10), we see that (1) 0kΨ = and if / 2,k ka b≤ then

 and (0) / 2 0k k ka bΨ = − − ≤ 1.kγ < Therefore, for any [0,1]γ ∈ , () 0.k γΨ ≤ As a
consequence for any (0,1),γ ∈ it follows that ()k k k k().f x d f xγα+ < In this case, for any

[0,1]γ ∈ , .k k kγ α α≤ However, in our algorithm we selected k mγ γ= as the point achieving
the minimum value of ().k γΨ

5. ACGHES algorithm
For large-scale problems, choices for the update parameter that do not require the evaluation
of the Hessian matrix are often preferred in practice to the methods that require the Hessian.
However, the presence of the Hessian in kβ recalls the open problem articulated by Nocedal
[19]: whether one can take advantage of the problem structure to design a more efficient
nonlinear conjugate gradient iteration. Indeed, our numerical experiments proved that even
though the Hessian is partially separable (block diagonal) or it is a multi-diagonal matrix, the
Hessian / vector product 2

1()k kf x s+∇ is time consuming, especially for large-scale problems.
Therefore, in an effort to use the Hessian in kβ we suggest a nonlinear conjugate gradient

algorithm in which the Hessian / vector product 2
1()k kf x s+∇ is approximated by finite

differences:

 2 1
1

() (() k k k
k k

f x s f xf x s 1) ,δ
δ

+
+

+∇ + −∇
∇ = (5.1)

where

 12 (1m k

k

x
s

ε
δ ++
=

)
, (5.2)

and mε is epsilon machine. The above forward difference approximation to 2
1()k k ,f x s+∇

with a careful choice of the finite difference interval, is generally satisfactory. Observe that
the forward difference formula require one additional gradient evaluation. The choice of δ
must balance the truncation errors. Besides, a number of precautions against division by small
values of ks as well as some restrictions on upper / lower values on δ are also used, like in
the truncated Newton TN package by Nash [18].
The ACGHES algorithm is as follows:

Step 1. Select the initial starting point 0x dom f∈ and compute: 0 ()0f f x= and

 Set and 0 0().g f x= ∇ 0 0d g= − 0.k = Select a value for the parameter ε .

Step 2. Test a criterion for stopping the iterations. For example, if kg ε
∞
≤ , then stop;

otherwise continue with step 3.
Step 3. Using the Wolfe line search conditions (1.4) and (1.5) determine the steplength

.kα

Step 4. Compute: k k kz x dα= + ()zg f z= ∇ z, and .k ky g g= −

Step 5. Compute: , and . T
k k ka gα= kd kd

k

T
k k kb yα= −

Step 6. If then compute 0,kb ≠ /k ka bγ = − and update the variables as

1k k k k kx x dγ α+ = + , otherwise update the variables as 1k k k kx x dα+ = + . Compute

1kf + and Compute 1.kg + 1 .k ks x x+ k= −

Step 7. Determine δ as in (5.2) and compute 1 1(() ()) /k k k ky f x s f x .δ δ+ += ∇ + −∇

 8

Step 8. Compute 1 1()T T T
k k k k k ky g s g s yβ + += − / .k

k ksStep 9. Compute the search direction as 1 1k kd g β+ += − + .

Step 10. Restart criterion. If the restart criterion of Powell
2

1 0.2T
k k kg g g+ > 1+ is satisfied,

then set . 1 1k kd g+ += −

Step 11. Compute the initial guess α αk k k kd d= − −1 1 / , set k k= +1 and continue
with step 2.

It is well known that if f is bounded along the direction then there exists a stepsize kd kα
satisfying the Wolfe line search conditions (1.4) and (1.5). In our algorithm when the Powell
restart condition is satisfied, then we restart the algorithm with the negative gradient 1.kg +−
Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion are
sufficient to prove the global convergence of the algorithm. The first trial of the step length
crucially affects the practical behavior of the algorithm. At every iteration the starting
guess for the step

1k ≥
kα in the line search is computed as 1 1 /k k kd dα − − . This selection was

used for the first time by Shanno and Phua in CONMIN [22] and in SCALCG by Andrei [3-
5].

Proposition 5.1. Suppose that f is a uniformly convex function on the level set

{ }0: () ()S x f x f x= ≤ , and satisfies the sufficient descent condition kd 2
1 ,T

k k kg d c g< −

where , and 1 0c > 2 2
3 2k kc g d c g≤ ≤ 2

k 0., where Then the sequence

generated by ACGHES converges linearly to
2 3,c c >

*,x solution to the problem (1.1).

Proof. From (4.12) we have that 1() (k)kf x f x+ ≤ for all Since .k f is bounded below, it
follows that

1lim(() ()) 0.k kk
f x f x +→∞

− =

Now, since f is uniformly convex there exist positive constants and m ,M such that
 on Suppose that 2 ()mI f x MI≤ ∇ ≤ .S k kx d Sα+ ∈ and k m kx d Sγ α+ ∈ for all 0.α >

We have:

2()() ()

2
k k

k m k k k
k

a bf x d f x d
b

γ α α +
+ ≤ + − . (5.3)

But, from uniform convexity we have the following quadratic upper bound on ()k kf x dα+ :
221() ()

2
T

k k k k k kf x d f x g d M dα α α+ ≤ + + .

Therefore,
2 22

1 2
1() ()
2k k k k kf x d f x c g Mc gα α α+ ≤ − +

22

1 2
1() .
2k kf x c Mc gα α⎡ ⎤= + − +⎢ ⎥⎣ ⎦

Observe that for 1 20 /(),c Mcα≤ ≤ 2 1
1 2

1
2 2

cc Mcα α α− + ≤ −

.

 which follows from the

convexity of 2
1 2(/ 2)c Mcα α− + Using this result we get:

2 2

1
1() () ()
2k k k k k k1f x d f x c g f x c gα α ρ+ ≤ − ≤ − α , (5.4)

 9

since 1/ 2.ρ <
From proposition 4.1 the Wolfe line search terminates with a value 0.α ω≥ >

Therefore, for 1 20 /(c Mc),α≤ ≤ this provides a lower bound on the decrease in the function
,f i.e.

 2
1() ()k k k kf x d f x c gα ρ ω+ ≤ − . (5.5)

On the other hand,

()22 2

2 21 3 23 1
2

22

() () .
2 22

k kk k
k

k k

c g mc ga b mc c g
b MMc g

ω ω
ω

− ++ −
≥ =

c
 (5.6)

Considering (5.5) and (5.6) from (5.3) we get:

2

2 23 1
1

2

()() ()
2k m k k k k
mc cf x d f x c g g

Mc
ωγ α ρ ω

ω
−

+ ≤ − − . (5.7)

Therefore
2

23 1
1

2

()() ()
2k k m k k
mc cf x f x d c g

Mc
ωγ α ρ ω

ω
⎡ ⎤−

− + ≥ +⎢ ⎥
⎣ ⎦

.

→

But, and as a consequence goes to zero, i.e. 1() () 0k kf x f x +− kg kx converges to *.x

Having in view that ()kf x is a nonincreasing sequence, it follows that ()kf x converges to
*().f x From (5.7) we see that

2

23 1
1 1

2

()() ()
2k k
mc cf x f x c g

Mc
ωρ ω

ω+

⎡ ⎤−
≤ − +⎢

⎣ ⎦
.k⎥ (5.8)

Combining this with 2 *2 (())k kg m f x f≥ − and subtracting *f from both sides of (5.8)
we conclude:

* *
1() (())k k ,f x f c f x f+ − ≤ −

where
2

3 1
1

2

()1 2 1.
2
mc cc m c

Mc
ωρ ω

ω
⎡ ⎤−

= − + <⎢ ⎥
⎣ ⎦

Therefore, ()kf x converges to *f at least as fast as a geometric series with a factor that
depends on the parameter ρ in the first Wolfe condition and the bounds m and .M Hence,
the convergence of the acceleration scheme is at least linear. ■

6. Numerical results and comparisons
In this section we report some numerical results obtained with a Fortran implementation of
the ACGHES algorithm. The code is written in Fortran and compiled with f77 (default
compiler settings) on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of
75 large-scale unconstrained optimization test functions in generalized or extended form [1]
(some from CUTE library [7]). For each test function we have taken ten numerical
experiments with the number of variables 1000,2000,...,10000.n = The algorithm
implements the Wolfe line search conditions with 0.0001ρ = and 0.9σ = , and also the

same stopping criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute component of a

vector. In step 7 the computation of δ is implemented as:

 10

{ }
max , ,

100max 10 , ks
ϕ ϕδ
ϕ

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 12 (1m k)x nϕ ε += + .

The comparisons of algorithms are given in the following context. Let and be
the optimal value found by ALG1 and ALG2, for problem

f i
ALG1 f i

ALG2

i = 1 750, ,… , respectively. We
say that, in the particular problem the performance of ALG1 was better than the
performance of ALG2 if:

i,

 f fi
ALG

i
ALG1 2 10− < −3 (6.1)

and the number of iterations, or the number of function-gradient evaluations, or the CPU time
of ALG1 was less than the number of iterations, or the number of function-gradient
evaluations, or the CPU time corresponding to ALG2, respectively.
In the first set of numerical experiments we compare ACGHES versus some conjugate
gradient algorithms. Figures 1-6 present the Dolan and Moré [12] CPU performance profile of

ACGHES versus Hestenes-Stiefel (1
T

HS k k
k T

k k

y g
y s

β +=) [15], Polak-Ribière-Polyak

(1
T

PRP k k
k T

k k

y g
g g

β +=) [20,21], Dai-Yuan (1 1
T

DY k k
k T

k k

g g
y s

β + +=) [9], Dai-Liao

(

(1t =)

1()T
DL k k k
k T

k k

g y ts
y s

β + −
=) [8], hybrid Dai-Yuan ({ }{ }, ,hDY DY HS DY

k max c minβ β β= β ,

(1) /(1)c σ σ= − − +) [9], and new conjugacy condition and related new conjugate gradient

by Li, Tang and Wei [16] (
*

1 1
* *

ˆ
max ,0 ,

ˆ ˆ

T T
k k k k

k T T
k k k k

g y g st
s y s y

β + +⎧ ⎫
= −⎨ ⎬

⎩ ⎭

{ }*
2

max ,0
ˆ ,k

k k k
k

y y s
s

θ
= +

1 12() ()T
k k k k k kf f g gθ + += − + + 1k ky g g+s , k= − 0.1t, =), respectively.

Fig. 1. ACGHES versus Hestenes-Stiefel.

 11

Fig. 2. ACGHES versus Polak-Ribière-Polyak.

Fig. 3. ACGHES versus Dai-Yuan.

 12

Fig. 4. ACGHES versus Dai-Liao (t=1).

Fig. 5. ACGHES versus hybrid Dai-Yuan (hDY).

 13

Fig. 6. ACGHES versus new conjugacy condition and related new conjugate gradient (NEWCC).

The percentage of the test problems for which a method is the fastest is given on the left axis
of the plot. The right side of the plot gives the percentage of the test problems that were
successfully solved by these algorithms, respectively. Mainly, the right side is a measure of
the robustness of an algorithm.
When comparing ACGHES with all these conjugate gradient algorithms subject to CPU time
metric we see that ACGHES is top performer, i.e. the accelerated conjugate gradient
algorithm with forward-difference approximation to Hessian / vector product is more
successful and more robust than the considered conjugate gradient algorithms. For example,
when comparing ACGHES with Hestene-Stiefel (HS) (see Figure 1), subject to the number of
iterations, we see that ACGHES was better in 545 problems (i.e. it achieved the minimum
number of iterations in 545 problems). HS was better in 74 problems and they achieved the
same number of iterations in 77 problems, etc. Out of 750 problems, only for 696 problems
does the criterion (6.1) hold. Observe that in contrast with NEWCC which uses not only the
gradient value information but also the function value information in two successive points,
the ACGHES algorithm besides the gradient value information uses also the Hessian of
function f in an indirect manner through a finite difference approximation of Hessian /
vector product. This is the reason why ACGHES outperform NEWCC, even that NEWCC
uses a new highly elaborated quasi-Newton equation.
Numerical experiments proved that for the vast majority of iterations /k k ka b 1γ = − < , i.e. the
acceleration scheme has the propensity to reduce the values of the step lengths.

In the second set of numerical experiments, Figures 7 and 8 we compare ACGHES to the
conjugate gradient algorithms SCALCG by Andrei [3-5], and CONMIN by Shanno and Phua
[22].

 14

Fig. 7 ACGHES versus SCALCG spectral (Andrei).

Fig. 8 ACGHES versus CONMIN (Shanno-Phua).

In Figures 7 and 8 we have computational evidence that the ACGHES algorithm is more
robust than the BFGS preconditioned conjugate gradient algorithms SCALCG and CONMIN.
Even though SCALCG and CONMIN take a lot from the quasi-Newton methods we see that

 15

this conjugate gradient algorithm with forward difference approximation of Hessian / vector
product and acceleration scheme is far more efficient.
Finally, in the third set of numerical experiments, in Figure 9, we compare ACGHES to TN
by Nash [18] where again a finite difference approximation of Hessian / vector is used.

Fig. 9 ACGHES versus Truncated Newton TN (Nash).

From Figure 9 we see that the truncated Newton algorithm in TN implementation given by
Nash [18] is clearly outperformed by ACGHES. The Hessian / vector product in TN is
approximated by the forward finite difference in which δ is computed as

1(1).m kxδ ε += +

7. Conclusion
We have presented a new conjugate gradient algorithm for solving large-scale unconstrained
optimization problems. The algorithm exploits the presence of the Hessian in the formula for

kβ computation as well as the fact that the step lengths in conjugate gradient algorithms
differ from 1 in the vast majority of iterations. The algorithm approximates the Hessian /
vector product by means of the forward finite difference in combination with a careful choice
of the finite difference interval. It modifies the step length by an acceleration scheme which
proved to be very efficient in reducing the values of the minimizing function along the
iterations. We proved that the direction is a descent one, and the algorithm is globally
convergent. For uniformly convex functions the convergence of the accelerated scheme is still
linear, but the reduction in function values is significantly improved. For a test set consisting
of 750 problems with dimensions ranging between 1000 and 10,000, the CPU time
performance profiles of ACGHES was higher than those of HS, PRP, DY, DL (t=1), hDY,
NEWCC, SCALCG, CONMIN and TN. The acceleration scheme is an important ingredient
for the efficiency of the algorithm.

 16

References
[1] N. Andrei, An unconstrained optimization test functions collection. Advanced Modeling

and Optimization. An Electronic International Journal, 10 (2008) 147-161.
[2] N. Andrei, An acceleration of gradient descent algorithm with backtracking for

unconstrained optimization. Numerical Algorithms, 42 (2006) 63-73.
[3] N. Andrei, Scaled conjugate gradient algorithms for unconstrained optimization.

Computational Optimization and Applications, 38 (2007) 401-416.
[4] N. Andrei, Scaled memoryless BFGS preconditioned conjugate gradient algorithm for

unconstrained optimization. Optimization Methods and Software, 22 (2007) 561-571.
[5] N. Andrei, A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained

optimization. Applied Mathematics Letters, 20 (2007) 645-650.
[6] N. Andrei, Numerical comparison of conjugate gradient algorithms for unconstrained

optimization. Studies in Informatics and Control, 16 (2007) 333-352.
[7] I. Bongartz, A.R. Conn, N.I.M. Gould, Ph.L. Toint, CUTE: constrained and unconstrained

testing environments, ACM Trans. Math. Software 21 (1995) 123-160.
[8] Y.H. Dai, L.Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient

methods. Appl. Math. Optim., 43 (2001) 87-101.
[9] Y.H. Dai, Y. Yuan, An efficient hybrid conjugate gradient method for unconstrained

optimization, Ann. Oper. Res., 103 (2001) 33-47.
[10] Y.H. Dai, J.Y. Han, G.H. Liu, D.F. Sun, X. Yin, Y. Yuan, Convergence properties of

nonlinear conjugate gradient methods. SIAM Journal on Optimization 10 (1999) 348-
358.

[11] J.W. Daniel, The conjugate gradient method for linear and nonlinear operator equations.
SIAM J. Numer. Anal., 4 (1967) 10-26.

[12] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles,
Math. Programming, 91 (2002) 201-213.

[13] A.A. Goldstein, On steepest descent, SIAM J. Control, 3 (1965) 147-151.
[14] W.W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods. Pacific

journal of Optimization, 2 (2006) 35-58.
[15] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems, J.

Research Nat. Bur. Standards, 49 (1952) 409-436.
[16] G. Li, C. Tang, Z. Wei, New conjugacy condition and related new conjugate gradient

methods for unconstrained optimization. Journal of Computational and Applied
Mathematics, 202 (2007) 523-539.

[17] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization
methods. Mathematical Programming, 45 (1989), pp. 503-528.

[18] S.G. Nash, Preconditioning of truncated-Newton methods. SIAM J. on Scientific and
Statistical Computing, 6 (1985) 599-616.

[19] J. Nocedal, Conjugate gradient methods and nonlinear optimization. In Linear and
nonlinear Conjugate Gradient related methods, L. Adams and J.L. Nazareth (eds.),
SIAM, 1996, pp.9-23.

[20] E. Polak, G. Ribière, Note sur la convergence de directions conjuguée, Rev. Francaise
Informat Recherche Operationelle, 3e Année 16 (1969) 35-43.

[21] B.T. Polyak, The conjugate gradient method in extreme problems. USSR Comp. Math.
Math. Phys., 9 (1969) 94-112.

[22] D.F. Shanno, K.H. Phua, Algorithm 500, Minimization of unconstrained multivariate
functions, ACM Trans. on Math. Soft., 2 (1976) 87-94.

[23] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev. 11 (1969) 226-235.
[24] P. Wolfe, Convergence conditions for ascent methods II: some corrections, SIAM Rev.

13 (1971) 185-188.

March 4, 2008

 17

