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Abstract. Another hybrid conjugate gradient algorithm is suggested in this paper. The 
parameter kβ  is computed as a convex combination of HS

kβ  (Hestenes-Stiefel) and DY
kβ  (Dai-

Yuan) algorithms, i.e. (1 )C HS
k k k k

DY
kβ θ β θ β= − + . The parameter kθ  in the convex 

combination is computed in such a way so that the direction corresponding to the conjugate 
gradient algorithm to be the Newton direction and the pair  to satisfy the modified 

secant condition given by Zhang et al. [32] and Zhang and Xu [33], where  and 

 The algorithm uses the standard Wolfe line search conditions. Numerical 
comparisons with conjugate gradient algorithms show that this hybrid computational scheme 
outperforms a variant of the hybrid conjugate gradient algorithm given by Andrei [6], in which 
the pair ( ,  satisfies the secant condition 

( , )k ks y

1k ks x x+= − k

k

1 .k k ky g g+= −

)k ks y 2
1( )k kf x s y+∇ = , as well as the Hestenes-

Stiefel, the Dai-Yuan conjugate gradient algorithms, and the hybrid conjugate gradient 
algorithms of Dai and Yuan. A set of 750 unconstrained optimization problems are used, some 
of them from the CUTE library. 
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1. Introduction 
Let us consider the nonlinear unconstrained optimization problem 
                                                             { }min ( ): ,nf x x R∈                                                   (1) 

where : nf R → R  is a continuously differentiable function, bounded from below. As we 
know, for solving this problem starting from an initial guess 0

nx R∈  a nonlinear conjugate 

gradient method generates a sequence { }kx  as 

                                                               1k k k kx x dα+ = + ,                                                      (2) 
where 0kα >  is obtained by line search and the directions  are generated as kd
                                                    1 1k k kd g ksβ+ += − + 0 0d g= −,   .                                        (3) 
In (3) kβ  is known as the conjugate gradient parameter, 1k ks x x+ k= −  and . 

Consider 

( )k kg f x= ∇

.  the Euclidean norm and define 1k ky g g+ k= − . The line search in the conjugate 
gradient algorithms is often based on the standard Wolfe conditions: 
                                                 ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                       (4) 

                                                 ,                                                                    (5) 1
T
k k k kg d g dσ+ ≥ T
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where  is a descent direction and kd 0 1.ρ σ< ≤ <  Different conjugate gradient algorithms 
correspond to different choices for the scalar parameter .kβ  The methods of Fletcher and 
Reeves (FR) [19], of Dai and Yuan (DY) [13] and the Conjugate Descent (CD) proposed by 
Fletcher [18]: 

1 1
T

FR k k
k T

k k

g g
g g

β + += ,   1 1
T

DY k k
k T

k k

g g
y s

β + += ,   1 1
T

CD k k
k T

k k

g g
g s

β + +=
−

 

have strong convergence properties, but they may have modest practical performance due to 
jamming. On the other hand, the methods of Polak – Ribière [27] and Polyak (PRP) [28], of 
Hestenes and Stiefel (HS) [23] or of Liu and Storey (LS) [25]: 

1 ,
T

PRP k k
k T

k k

g y
g g

β +=    1 ,
T

HS k k
k T

k k

g y
y s

β +=    1
T

LS k k
k T

k k

g y
g s

β +=
−

 

may not always be convergent, but they often have better computational performances. 
In this paper we focus on hybrid conjugate gradient methods. These algorithms have 

been devised to use the attractive features of the above conjugate gradient algorithms. They 
are defined by (2) and (3) where the parameter kβ  is computed as projections or as convex 
combinations of different conjugate gradient algorithms, as in Table 1. 

 
Table 1. Hybrid conjugate gradient algorithms.  

Nr. Formula Author(s) 

 1. { }{ }, ,hDY DY HS DY
k k kmax c minβ β β= kβ , 

(1 ) /(1 )c σ σ= − +  

Hybrid Dai-Yuan [14] 
(hDY) 

2. { }{ }0, ,hDYz HS DY
k kmax minβ β= kβ  Hybrid Dai-Yuan zero 

[14] (hDYz) 

3. { }{ }, ,GN FR PRP FR
k k kmax minβ β β= − kβ  Gilbert and Nocedal 

[20] (GN) 

4. { }{ }0, ,HuS PRP FR
k kmax minβ β= kβ  Hu and Storey [24] 

(HuS) 

5. 
0 ,

otherwise

PRP PRP FR
TaS k k
k FR

k

kβ β β
β

β
⎧ ≤ ≤

= ⎨
⎩

 
Touati-Ahmed and 
Storey [31] (TaS) 

6. { }{ }0, ,LS CD LS CD
k kmax minβ β− = kβ  Hybrid Liu-Storey, 

Conjugate-Descent  
(LS-CD) 

7. (1 )C HS DY
kk k k kβ θ β θ β= − + 0 1kθ< <,  , 

1

1

T
k k

k T
k k

s g
g g

θ +

+

= −  

Andrei [6] 
Newton direction. 
Secant condition. 

8. (1 )AC PRP DY
kk k k kβ θ β θ β= − + 0 1kθ< <,  , 

1 1

1 1 1

( )( ) ( )( .
( )( ) ( )(

T T T T
k k k k k k k k

k T T T T
k k k k k k k k

y g y s y g g g
y g y s g g g g

θ + +

+ + +

−
=

−
)
)

 

Andrei [7] 
Conjugacy condition 

9. (1 )AN PRP DY
k k k k kβ θ β θ β= − + 0 1kθ< <,  , 

2
1 1 1

2 2
1 1

( ) ( )(
.

( )( )

T T T T
k k k k k k k k k

k T T
k k k k k k

y g s g g g y y s

g g g y y s
θ + + +

+ +

− −
=

−

)
 

Andrei [8] 
Newton direction 

 
The hybrid computational schemes perform better than the classical conjugate gradient 
algorithms [5]. In [6] we presented another hybrid conjugate gradient algorithm as a convex 
combination of the Hestenes-Stiefel and the Dai-Yuan algorithms, where the parameter in 
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convex combination is computed in such a way so that the direction corresponding to the 
conjugate gradient algorithm to be the Newton direction and the pair  to satisfy the 
secant condition. Numerical experiments with this computational scheme proved to 
outperform the Hestenes-Stiefel and the Dai-Yuan conjugate gradient algorithms, as well as 
some other hybrid conjugate gradient algorithms [6]. In this paper, motivated by a result given 
by Zhang, Deng and Chen [32] and Zhang and Xu [33] concerning a better approximation of 

 using the modified secant condition, we present another variant of the hybrid 
conjugate gradient algorithm for unconstrained optimization which performs much better and 
it is more robust than the variant using the secant condition.  

( , )k ks y

2
1( )T

k ks f x s+∇ k

The structure of the paper is as follows. Section 2 introduces our hybrid conjugate 
gradient algorithm, HYBRIDM as a convex combination of HS and DY algorithms with 
modified secant condition. Section 3 presents the algorithm and in section 4 its convergence 
analysis for uniformly convex functions is shown. In section 5 some numerical experiments 
and performance profiles of Dolan-Moré [17] corresponding to this new hybrid conjugate 
gradient algorithm are given. The performance profiles correspond to a set of 750 
unconstrained optimization problems in the CUTE test problem library [10] as well as some 
other ones presented in [1]. It is shown that this hybrid conjugate gradient algorithm 
outperforms the classical HS and DY conjugate gradient algorithms and also the hybrid 
variants hDY and hDYz.  
 
 
2. A hybrid conjugate gradient algorithm as a convex combination  
     of HS and DY algorithms with modified secant condition 
Our algorithm generates the iterates  computed by means of the recurrence (2), 
where the stepsize 

0 1 2, , ,x x x …
0kα >  is determined according to the Wolfe line search conditions (4) 

and (5), and the directions  are generated by the rule: kd
                                                 , d1 1

C
k k k ksd g β+ += − + 0 0g= −

k k k k

,                                           (6)  
where  

                            (1 )C HS DY
k

1 1(1 )
T T
k k k k

k kT
k k k k

g y g g
y s y s

θ θ 1
T

+ + += − +                      (7) β θ β θ β= − +

and kθ  is a scalar parameter satisfying 0 1kθ≤ ≤  which is to be determined. Observe that if 

0kθ = , then C H
k k

Sβ β= , and if 1kθ = , then  On the other hand, if .C D
k kβ β= Y 0 1kθ< < , 

then C
kβ  is a convex combination of HS

kβ  and .DY
kβ   

The HS method has the property that the conjugacy condition  always 

holds, independent of the line search. With an exact line search, 
1 0T

k ky d + =
HS P
k k

RPβ β= . Therefore, the 
convergence properties of the HS methods are similar to the convergence properties of the 
PRP method. As a consequence, by Powell’s example [29], the HS method with an exact line 
search may not converge for general nonlinear functions. The HS method has a built-in restart 
feature that addresses directly to the jamming phenomenon. Indeed, when the step 1k kx x+ −  

is small, then the factor  in the numerator of 1k ky g g+= − k
HS
kβ  tends to zero. Hence, HS

kβ  
becomes small and the new direction 1kd +  is essentially the steepest descent direction 1.kg +−  
The performance of HS method is better than the performance of DY [5, 22]. 

On the other hand, the DY method always generates descent directions, and in [11] 
Dai established a remarkable property for the DY conjugate gradient algorithm, relating the 
descent directions to the sufficient descent condition. It is shown that if there exist constants 
γ 1  and γ 2  such that γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ ( , )0 1 , there exists a 
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constant such that the sufficient descent condition c > 0 g d c gi
T

i ≤ −
2

i holds for at least 

⎣ ⎦pk  indices i k∈ [ , ],0 where ⎣ ⎦j  denotes the largest integer ≤ j.  
Therefore, we combine these two methods in a convex combination manner in order 

to have a good algorithm for unconstrained optimization. From (6) and (7) it is obvious that  

                                   1 1
1 1 (1 )

T T
k k k k

k k k k kT T
k k k k

y g g gd g s
y s y s

θ θ+ +
+ += − + − + 1

ks+ .                             (8) 

Our motivation is to choose the parameter kθ  in such a way so that the direction  given 
by (8) to be the Newton direction. Therefore, from the equation 

1kd +

2 1 1 1
1 1 1( ) (1 )

T T
k k k k

k k k k k kT T
k k k k

y g g g 1
kf x g g s

y s y s
θ θ− + +

+ + +−∇ = − + − + s+ , 

after some algebra we get: 

                            

2 21
1 1 1 1

21 1 1
1

( ) ( )
.

( )

T
T T Tk k
k k k k k k kT

k k
k T T

Tk k k k
k k kT T

k k k k

y gs f x g s g s f x s
y s

g g y g s f x s
y s y s

θ

+
+ + + +

+ + +
+

∇ − − ∇
=

⎡ ⎤
− ∇⎢ ⎥

⎣ ⎦

k

)k

                       (9) 

 
However, in this formula the salient point is the presence of the Hessian. One of the first 
conjugate gradient algorithm using the Hessian was given by Daniel [16] where 

. For large-scale problems, choices for the update 
parameter that do not require the evaluation of the Hessian matrix are often preferred in 
practice to the methods that require the Hessian.  

2 2
1( ( ) ) /( ( )T T

k k k k k kg f x d d f x dβ += ∇ ∇

 As we know, for quasi-Newton methods an approximation matrix kB  to the Hessian 
2 ( )kf x∇  is used and updated so that the new matrix 1kB +  satisfies the secant condition 

1k k kB s y+ = . Therefore, in order to have an algorithm for solving large-scale problems in [6] 
it is assumed that the pair ( ,  satisfies the secant condition. This leads us to another 
hybrid conjugate gradient algorithm (called HYBRID in [6]), where:  

)k ks y

                                                               1

1

T
k k

k T
k k

s g
g g

θ +

+

= − .                                                       (10) 

Zhang, Deng and Chen [32] proved that if ks  is sufficiently small, then 
32

1( ) (T T
k k k k k ks f x s s y O s+∇ − = ) . Therefore, the direction (8) and (10), where 0 1kθ< < , 

is an approximation of the Newton direction. Observe that if 0 1kθ< < , then our direction 
can be expressed as:  
                                                             1 1 ,k k kd Q g 1+ + += −                                                      (11) 
where 

                                                         1

T T
k k k k

k T T
k k k k

s y s sQ I
y s y s+ = − +                                                (12) 

 
is a rank two approximation to the inverse of the Hessian. It is worth saying that the matrix  

 was first proposed by Perry [26]. He arrived to this matrix by adding a correction term 
to the matrix modifying in the direction corresponding to the HS method. A major 
difficulty with this approach is that the matrix 

1kQ +

1kg +

1kQ +  defined by (12) is not symmetric and 
hence not positive definite. Thus the corresponding directions are not necessarily descent and 
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numerical instability can result. This is the price we must pay for using the secant equation in 
(9) to get (10). With exact line searches ( 1 0T

k ks g + = ), 1 1k kd Q g 1k+ + += −  reduces to the 
Hestenes and Stiefel method.  
 On the other hand, Zhang, Deng and Chen [32] and Zhang and Xu [33] expanded the 
secant condition and obtained a class of modified secant condition with a vector parameter 
which uses both the gradients and the function values in two successive points as: 

                                               1 ˆ ,k k kB s y+ =   ˆ k
k k T

k k

y y u
s u k
η

= + ,                                          (13) 

where 1 16( ) 3( )T
k k k k k kf f g gη + += − + + s  and  is any vector such that  

Obviously, from (13) we get 

n
ku R∈ 0.T

k ks u ≠

                                                         1 .T T
k k k k k ks B s s y η+ = +                                                    (14) 

Zhang, Deng and Chen [32] proved that if ks  is sufficiently small, then for any vector  

with 

ku

0,T
k ks u ≠ 42

1 ˆ( ) (T T
k k k k k ks f x s s y O s+∇ − = )

k

 holds. Therefore, the quantity  given 
by the modified secant condition (13) approximates the second-order curvature 

 with a higher precision than the quantity  does. This is a very good 
motivation to use it in (9). For this purpose, in order to unify both approaches, we consider a 
slight modification of the modified secant condition (13) as 

ˆT
k ks y

2
1( )T

k ks f x s+∇ T
k ks y

1 ,k k kB s z+ =  where 

k
k k T

k k

z y u
s u k
δη

= +  

and 0δ ≥  is a scalar parameter. With ku sk=  this leads us to another hybrid conjugate 
gradient algorithm (2), (6) and (7), where 

                                             

1
1

1
1

1
.

T
Tk k k
k k kT T

k k k k
k T

T k k
k k kT

k k

y gs g
s s y s

g gg g
y s

δη δη
θ

δη

+
+

+
+

⎛ ⎞
− −⎜ ⎟

⎝ ⎠=
+

                                   (15) 

Therefore, the direction (8) and (15), where 0 k 1θ< < , is a better approximation of the 
Newton direction than that given by using (10) in (9). As above, observe that if 0 1kθ< < , 
then our direction can be expressed as:  
                                                             1 1 ,k k kd Q g 1+ + += −                                                      (16) 
where 

                                       1 1
T T

k k k k k
k T T T

k k k k k k k k

s y s sQ I
y s s s y s

δη
δη δ+

⎛ ⎞
= − + −⎜ ⎟+ +⎝ ⎠ η

                         (17) 

is again another rank two approximation to the inverse of the Hessian. Since the matrix 1kQ +  
defined by (17) is not symmetric and hence not positive definite, the corresponding directions 
are not necessarily descent and numerical instability can result. Observe that for 0,δ =  

1 .k kQ Q+ = 1+  With exact line searches ( 1 0T
k ks g + = ), the direction 1kd +  reduces to 

1
1 1 1

T
k k k

k k T T
k k k k k

y gd g
y s y s

δη
δη

+
+ +

⎛ ⎞
= − + −⎜ ⎟+⎝ ⎠

ks  

which is a modification of the Hestenes and Stiefel method. Besides, if 0,δ =  then we get 
exactly the Hestenes and Stiefel method. 

The parameter kθ  given by (15) can be outside the interval [0 . However, in order 
to have a real convex combination in (7) the following rule is considered: if 

,1]
0,kθ ≤  then set 
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0kθ =  in (7), i.e.  if ;C HS
k kβ β= 1kθ ≥ , then take 1kθ =  in (7), i.e.  Therefore, 

under this rule for 
.C DY

k kβ β=

kθ  selection, the direction 1kd +  in (8) combines the HS and DY algorithms 
in a convex way. With these the following algorithm can be presented. 
 
 
3. The HYBRIDM algorithm 
Step 1. Initialization. Select 0

nx R∈ , 0δ ≥  and the parameters 0 1.ρ σ< ≤ <  Compute 

0( )f x  and  Consider  and set 0.g 0d g= − 0 0 01/ .gα =  

Step 2. Test for continuation of iterations. If 610kg −
∞
≤ , then stop. 

Step 3. Line search. Compute 0kα >  satisfying the Wolfe line search conditions (4) and (5) 
and update the variables 1k k k kx x dα+ = + . Compute 1( )kf x + , 1kg +  and , 

 
1k ks x x+= − k

1 .k k ky g g+= −

Step 4. kθ  parameter computation. If 1
1 0

T
T k k
k k kT

k k

g gg g
y s

δη+
+ + = , then set 0kθ = , otherwise 

compute kθ  as in (15). 

Step 5. C
kβ  conjugate gradient parameter computation. If 0 k 1,θ< <  then compute C

kβ  as in 

(7). If 1kθ ≥ , then set  If .C DY
k kβ β= 0,kθ ≤  then set .C H

k k
Sβ β=  

Step 6. Direction computation. Compute . If the restart criterion of Powell 1
C

k kd g sβ+= − + k

                                                         
2

1 0.2T
k k kg g g+ ≥ 1+

1k

                                                    (18) 

is satisfied, then restart, i.e. set 1kd g+ += −  otherwise define 1kd + d= . Compute the initial 

guess α αk k k kd d= − −1 1 / ,  set k k= +1 and continue with step 2.  
 
 Observe that for 0δ =  we get the HYBRID algorithm [6]. It is well known that if 
f is bounded along the direction  then there exists a stepsize dk α k  satisfying the Wolfe 

line search conditions (4) and (5). In our algorithm, when the Powell restart condition is 
satisfied, then we restart the algorithm with the negative gradient − +gk 1 .  Under reasonable 
assumptions, conditions (4), (5) and (18) are sufficient to prove the global convergence of the 
algorithm.  

The first trial of the steplength crucially affects the practical behavior of the 
algorithm. At every iteration k ≥ 1 the starting guess for the steplength α k in the line search 

is computed as α k k kd d− −1 1 2
/

2
.  This selection was used for the first time by Shanno and 

Phua in CONMIN [30]. It was also considered in the packages: SCG by Birgin and Martínez 
[9] and in SCALCG by Andrei [2,3,4]. 
 
 
4. Convergence analysis 
The global convergence properties of the nonlinear conjugate gradient methods with modified 
secant condition have been given by Yabe and Takano [34]. In the following we consider that 

 for all . Assume that: 0kg ≠ 1k ≥
(i) The level set { }0: ( ) ( )nS x R f x f x= ∈ ≤  is bounded, i.e. there is a constant D such 

that x D≤  for all .x S∈  
(ii) In a neighborhood  of , the function N S f is continuously differentiable and its 
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gradient is Lipschitz continuous, i.e. there exists a constant  such that 0L >
( ) ( )f x f y L x∇ −∇ ≤ − y , for all , .x y N∈  

Under these assumptions on f  there exists a constant 0Γ ≥  such that ( )f x∇ ≤ Γ  for all 

.x S∈  In order to prove the global convergence, we assume that the step size kα  in (2) is 
obtained by the strong Wolfe line search, that is, 
                                             ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                         (19) 

                                              1 .T
k k k kg d g dσ+ ≤ T                                                                    (20) 

where ρ  and σ  are positive constants such that 0 1.ρ σ< ≤ <  
Dai et al. [15] proved that for any conjugate gradient method with strong Wolfe line search 
the following general result holds: 
 
Lemma 1. Suppose that the assumptions (i) and (ii) hold and consider any conjugate gradient 
method (2) and (3), where  is a descent direction and kd kα  is obtained by the strong Wolfe 
line search (19) and (20). If 

                                                               2
1

1
k kd≥

= ∞∑ ,                                                         (21) 

then 
                                                             liminf 0.k

k
g

→∞
=  ■                                                    (22) 

 
To prove the global convergence of the algorithm we need the following estimates. By the 
mean value theorem we have: 
                    1 16( ) 3( )T

k k k k k kf f g gη + += − + + s

k

 

                         1 16 ( ) ( ) 3( ( ) ( ))T T
k k k k kf x x f x f x sξ + += ∇ − + ∇ +∇  

13 ( ) 3 ( ) 3 ( ) 3 ( )T T T
k k k k k k k

T
kf s f s f x s f xξ ξ += − ∇ − ∇ + ∇ + ∇ s

,k

 

                         ( )13 ( ) ( ) ( ) ( ) T
k k k kf x f f x f sξ ξ+= ∇ −∇ +∇ −∇  

where 1(1 )k k kx xξ τ τ += + −  and (0,1).τ ∈  From the Lipschitz continuity we have: 

( )13 ( ) ( ) ( ) ( )k k k k k kf x f f x f sη ξ +≤ ∇ −∇ + ∇ −∇ ξ  

                                    ( )13 k k k k kL x L x sξ ξ+≤ − + −  

                                    ( )1 13 (1 ) k k k k kL x x L x xτ τ+ += − − + − s  

                                    
2 23 (1 ) 3 3 .k kL s L s L sτ τ= − + = 2

k                                           (23) 
On the other hand 
       T T

k k k k k ky s y sδη δ+ ≤ + η  

                           
2 23k k k k ky s L s L sδ η δ≤ + ≤ + 2(1 3 ) .kL sδ= +                       (24) 

 
Global convergence for uniformly convex functions. Suppose that 0 1kθ< < . For uniformly 
convex functions which satisfy the above assumptions (i) and (ii) we can prove that the norm 
of  generated by (8) and (15) is bounded above. Thus, by Lemma 1 we can prove the 
global convergence of the algorithm. 

1kd +

As we know, if f  is a uniformly convex function, then there exists a constant 0µ >  such 
that 
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2( ( ) ( )) ( )T ,f x f y x y x yµ∇ −∇ − ≥ −  for any , .x y S∈                       (25) 

Equivalently, this can be expressed as 

                         
2( ) ( ) ( ) ( ) ,

2
Tf x f y f y x y x yµ

≥ +∇ − + −  for any , .x y S∈                 (26) 

From (25) and (26) it follows that 
                                                  

2 ,T
k k ky s sµ≥                                                                    (27) 

                                                  
2

1 1 .
2

T
k k k k kf f g s sµ

+ +− ≥ − +                                             (28) 

Obviously, from (27) and (28) we get: 
                                                       

2 T
k k k ks y s L sµ ≤ ≤ 2

,                                                (29) 
i.e. .Lµ ≤  
 
Theorem 1. Suppose that the assumptions (i) and (ii) hold and f  is a uniformly convex 
function. Consider the algorithm (2), (8) and (15), where 0 1kθ< < 1kd +,  is a descent 
direction and kα  is obtained by the strong Wolfe line search (19) and (20). If ,L µ=  then for 
any 0δ ≥  the algorithm satisfies lim 0.kk

g
→∞

=  If ,L µ>  then for 0 /(3(L L ))δ µ≤ ≤ −  the 

algorithm satisfies  lim 0.kk
g

→∞
=

Proof. Using the above relations (28) and (29) we have 
              1 16 ( ) 3 ( )T T

k k k k k k k k k ky s y s f f g g sδη δ δ+ ++ = + − + + T

2
1 16 ( ) 3 ( )

2
T T
k k k k k k k ky s g s s g g sTµδ δ+ +≥ + − + + +  

                                
2

1 16 3 3 3T T T T
k k k k k k k k ky s g s s g s g sδ δµ δ δ+ += − + + +  

                                2(1 3 ) 3T
k k ky s sδ δµ= − +

3(1 3 ) T T
k k k ky s y s

L
δµδ≥ − +  

                                 
3(1 3 ) .T

k ky s
L
δµδ= − +                                                                        (30) 

Now, if ,L µ=  then for all 0δ ≥ , 
2 ,T

k k k ky s sδη µ+ ≥ i.e. 
2 ,T

k k k ky s m sδη+ ≥  where 
.m µ=  

On the other hand, if ,L µ≥  then for 0
3( )

L
L

δ
µ

≤ <
−

, the coefficient of the right hand side 

of (30) is positive, that is 
23(1 3 ) ,T

k k k ky s s
L
δµδη δ µ+ ≥ − + i.e. 

2 ,T
k k k ky s m sδη+ ≥  

where 
3(1 3 ) .m

L
δµδ µ= − +  

Now, since 0 1kθ< < , using (15) in (8) after some algebra we have: 

1 1
1 1 21

T T
k k k k k

k k kT T
k k k k k kk

y g s gd g s
y s y ss

δη
δη δη
+ +

+ +

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟+ +⎝ ⎠

ks  

                                   1 1
1 21k k k kk

k kT T
k k k k k kk

y g s g
g s

y s y ss
δη

δη δη
+ +

+≤ + + −
+ + ks .               (31) 

But, from (23) it follows that 
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2

2 2 2

3
1 1 1 1 3k kk

k k k

L s
L

s s s

δ η δδη .δ− ≤ + ≤ + = +                             (32) 

From (31), having in view the Lipschitz continuity, (32) and the above estimation on 
T
k k ky s δη+  we get: 

2 21 1
1 1 2 21k kk

k k k
k k k

L g g
d g s s

m s s m s
δη+ +

+ +≤ + + − 2 k  

                                         1 1
1 3

k k
L Lg g g
m m 1k

δ
+ + +

+
≤ + +  

                                         
1 3(1 ) .L L

m m
δ+

≤ + + Γ                                                                   (33) 

This relation shows that 
2

2
1 1

1 1 .
( 1 3 )k kk

m
m L Ld δ≥ ≥

⎛ ⎞
≥ =⎜ ⎟+ + + Γ⎝ ⎠

∑ ∑ ∞  

Therefore, from Lemma 1 we have liminf 0,k
k

g
→∞

=  which for uniformly convex function is 

equivalent to  ■ lim 0.kk
g

→∞
=

Observe that for L µ> , 
1

3( ) 3
L

L µ
>

−
. Theorem 1 says that there is a constant 

1/ 3δ >  such that for any 0 ,δ δ≤ ≤  we have lim 0.kk
g

→∞
=   

 
Global convergence for general nonlinear functions. Suppose that 0 k 1θ< < . Using (15) in 
(7) from (6) we get the direction 1kd +  as: 

                           1
1 1 21 .

T T
k k k k k

k k T T
k k k k k kk

y g s gd g
y s y ss

δη
δη δη
+

+ +

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − + − −

⎜ ⎟+ +⎢ ⎥⎝ ⎠⎣ ⎦

1
ks+                       (34) 

From (34) we see that if 0 1kθ< < , than 

                                       1
21

T T
C k k k k k
k T

k k k k k kk

y g s g
y s y ss

δηβ 1 .Tδη δ
+

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟+ +⎝ ⎠ η

+                                 (35) 

For general nonlinear functions, following the methods of Dai and Liao [12] or that of Yabe 
and Takano [34] we replace (35) by: 

                              1 1
2max ,0 1

T T
C k k k k k
k T

k k k k k kk

y g s g
y s y ss

δηβ Tδη δ
+ + +

⎛ ⎞⎧ ⎫
⎜ ⎟= − −⎨ ⎬ ⎜ ⎟+ +⎩ ⎭ ⎝ ⎠ η

                        (36) 

and prove that the corresponding algorithm with strong Wolfe line search is globally 
convergent. Assume that the direction 1kd +  satisfies the descent condition 

                                                                1 1 0.T
k kg d+ + ≤                                                           (37) 

To prove the global convergence by contradiction we assume that there is a positive constant 
γ  such that 
                                                         kg γ≥  for all                                                   (38) 0.k ≥
Our analysis of (2), (6) and (36) for general nonlinear functions follows the insights 
developed by Gilbert and Nocedal in their analysis of the PRP+ conjugate gradient scheme 
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[20] or that given by Hager and Zhang of their CG_DESCENT algorithm [21]. Similar to the 
approach considered by Yabe and Takano [34] we establish a bound for the change 

in the normalized direction 1kw w+ − k /k k kw d d= .

1

 This is used to conclude that the 
gradients cannot be bounded away from zero.   
 
Lemma 2. Suppose that the assumptions (i) and (ii) hold and consider the conjugate gradient 
algorithm (2), where 0 kθ< < , the direction 1kd +  given by (6) and (36) satisfies the descent 
condition (37) and kα  is obtained by the strong Wolfe line search conditions (19) and (20). If 
(38) holds and δ  is chosen so that 

10
3(1 2 )

σδ
σ ρ
−

≤ <
+ −

 

then  and 1 0kd + ≠

                                                          
2

1
1

,k k
k

w w+
≥

− < ∞∑                                                   (39) 

where / .k k kw d d=  
 
Proof. The proof is similar to that of Lemma 4 given in Yabe and Takano [34]. Obviously, by 
(37) we have that  Therefore,  is well defined. Now, from (38) and Lemma 1 it 
follows that 

0.kd ≠ kw

2
0

1 ,
k kd≥

< ∞∑  

for otherwise (22) holds, contradicting (38). In the following we write: 
                                                1 ,C C C

k k k
2β β β+ = +                                                                  (40) 

where 

                                                1 1max ,0 ,
T

C k k
k T

k k k

y g
y s

β
δη
+⎧ ⎫

= ⎨ ⎬+⎩ ⎭
                                              (41) 

                                                2 1
21

T
C k k k
k T

k k kk

s g
y ss

δηβ .
δη
+

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟ +⎝ ⎠

                                         (42) 

Define: 
                                                                                                           (43) 2

1 1 ,C
k k kv g β+ += − + ks

                                                          1
1

1

,k
k

k

vr
d

+
+

+

=                                                                (44) 

                                                          1
1

1

0.kC
k k

k

d
d

τ β+
+

= ≥                                                   (45) 

Therefore, we have 
1 2

1 1
1

1 1

C C
k k k k k

k
k k

d g sw
d d

β β+ +
+

+ +

− + +
= = ks

 

                                                   
2

11

1 1

C
kCk k k k

k
k k

dg s
d d

β β+

+ +

− +
= +

k

s
d

k

 

                                                    1 1 .k k kr wτ α+ += +  

Now, since 1 1,k kw w += =  it follows that 
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2 2
1 1 1k k k k kwr w τ α+ + += − 2 22 2

1 1 1 12 T
k k k k k k kw w wτ α τ α+ + + += − + kw  

                              2 22 2
1 1 1 12 T

k k k k k k k kw w w w +τ α τ α+ + += − + 2
1 1 .k k k kw wτ α+ += −  

Therefore, 

1 1 1 1 1 .k k k k k k k kr w w w wτ α τ α+ + + + += − = − k  

Since 1 0kτ + ≥  we get 

                1 1 1(1 )( )k k k k k kw w w wτ α+ + +− ≤ + −  

                                   1 1 1 1k k k k k k kw w wτ α τ α+ + + += + − − kw  

                                   1 1 1 1 12k k k k k k k k kw w w w rτ α τ α+ + + + +≤ − + − = .                             (46) 

Now, we evaluate the quantity .T
k k ky s δη+  Using the strong Wolfe conditions we have: 

1 16 ( ) 3 ( )T T
k k k k k k k k k ky s y s f f g g sδη δ δ+ ++ = + − + + T

)T

T
ks

 

                                                   16 3 (T T
k k k k k k ky s g s g g sδρ δ +≥ − + +

                                                   1 1( ) 6 3 ( )T T
k k k k k k kg g s g s g gδρ δ+ += − − + +

                                                   1(1 3 ) (3 6 1)T T
k k k kg s g sδ δ δρ+= + + − −

                                                   (1 3 ) (3 6 1)T T
k k k kg s g sδ σ δ δρ≥ + + − −

                                                  [ ]3(1 2 ) (1 ) .T
k kg sσ ρ δ σ= + − − −                                      (47) 

We know that  Therefore, if 0.T T
k k k k kg s g dα= <

10 ,
3(1 2 )

σδ
σ ρ
−

≤ <
+ −

 then there is a 

constant  such that  0M >
                                                     0.T T

k k k k ky s Mg sδη+ ≥ − >                                               (48) 
From definition of  it follows that 1kv +

2
1 1

C
k k k ksv g β+ += − + 2

1
C

k kg sβ+≤ + k  

                                                1
1 21

T
k kk

k kT
k k kk

s g
g s

y ss
δη

δη
+

+= + −
+

 

                                                1 21 .
T
k kk

k kT
k kk

s g
g s

M s gs

σδη
+≤ + −  

Therefore, using (32) we have 

                              1 1 (1 3 ) (1 3 ) .k k kv g L s L
M M

Dσ σδ+ +≤ + + ≤ Γ + + δ                       (49) 

With the above estimates we get 

                                
2

2 2
1 2

1 1
4 4 k

k k k
k k k k

v
w w r

d
+

≥ ≥

− = =∑ ∑ ∑
1≥

 

                                                           
2

2
1

14 (1 3 )
k k

L D
M d
σδ

≥

⎛ ⎞ ,≤ Γ + + < ∞⎜ ⎟
⎝ ⎠

∑  

i.e. (39) holds, which completes the proof. ■ 
 
This Lemma shows that asymptotically the search directions generated by the algorithm 
change slowly. Using Lemma 2 and assuming that  satisfies the sufficient descent 
condition  

kd
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2T

k k kg d c g≤ − ,                                                     (50) 

where  is a constant, we can establish the following lemma showing that 0c > C
kβ
+  satisfies a 

slightly different form of Property (*). The Property (*), first derived by Gilbert and Nocedal 
[20], shows that kβ  in conjugate gradient algorithms will be small when the step  is small. 

For example, 
ks

PRP
kβ  has this property, this explaining the efficiency of the PRP conjugate 

gradient algorithm. Suppose that the step length kα  obtained by the strong Wolfe conditions 
(19) and (20) is bounded away from zero, i.e. there is a positive constant 0ω >  such that 

.kα ω≥  
 
Lemma 3. Suppose that the assumptions (i) and (ii) hold and consider the conjugate gradient 
algorithm (2), where 0 k 1θ< < , the direction 1kd +  given by (6) and (36) satisfies the 
sufficient descent condition (50) and kα  is obtained by the strong Wolfe line search 

conditions (19) and (20) and .kα ω≥  If 
10

3(1 2 )
σδ

σ ρ
−

≤ <
+ −

 then there exists the 

constants  and 1b > 0ξ >  such that  

                                                                   C
k bβ + ≤                                                              (51) 

and  

                                                         
1C

k ks
b

ξ β +≤ ⇒ ≤                                                    (52) 

for all  .k
 
Proof. From (48) and (38) we get: 
                                   

2 2.T T
k k k k k ky s Mg s Mc g Mcδη ω+ ≥ − ≥ ≥ ωγ                                (53) 

Now, from (36), using (32) we have: 

1 1
21

T T
C k k k k k
k T T

k k k k k kk

y g s g
y s y ss

δηβ
δη δ

+ + +≤ + −
+ + η

 

                                               1 1
2

(1 3 )T T
k k k ky g L s g

Mc
δ

ωγ
+ ++ +

≤  

                                               1 1
2

(1 3 )k k k ky g L s g
Mc

δ
ωγ

+ ++ +
≤  

                                               12

1 3
k k

L L s g
Mc

δ
ωγ +

+ +
≤ 2

1 3L L D
Mc

δ γ
ωγ

+ +
≤  

                                               
1 3 .L L D b

Mc
δ

ωγ
+ +

= ≡                                                              (54) 

Without loss of generality we can define b  such  Let us define: 1.b >

                                                        
2 1 .

1 3
Mc

L L
ωγξ
δ

⎛ ⎞≡ ⎜ ⎟+ +⎝ ⎠ D
                                                (55) 

Obviously, if ks ξ≤ , from the fourth inequality in (54) we have 

1 3 1 .C
k

L L
Mc b

δβ ξ
ωγ

+ + +
≤ =  

Therefore, for b  and ξ  defined in (54) and (55) respectively, (51) and (52) hold. ■ 
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The Property (*) presented in Lemma 3 can be used to show that if the gradients are bounded 
away from zero and (51) and (52) hold, then a finite number of steps  cannot be too small. 
Therefore, the algorithm makes a rapid progress to the optimum. Indeed, for 

ks
0λ >  and a 

positive integer  let us define the set of index: ∆
{ }*

, 1: 1,k iK i N k i k sλ ,λ∆ −= ∈ ≤ ≤ + ∆ − >  

where is the set of positive integers. The following Lemma is similar to Lemma 3.5 in 
[12] and Lemma 4.2 in [20]. 

*N

 
Lemma 4. Suppose that all the assumptions of Lemma 3 are satisfied. Then there is a 0λ >  
such that for any  and any index , there is a greater index  such that *N∆∈ 0k 0k k≥

, / 2.kK λ
∆ > ∆  

 
Using Lemma 2 and Lemma 4 we can prove the global convergence theorem for method (2), 
(6) and (36). The theorem is similar to Theorem 3.6 in Dai and Liao [12] or Theorem 3.2 in 
Hager and Zhang [21] and the proof is omitted here. 
 
Theorem 2. Suppose that the assumptions (i) and (ii) hold and consider the conjugate 
gradient algorithm (2), where 0 1kθ< < , the direction 1kd + given by (6) and (36) satisfies the 
sufficient descent condition (50) and kα  is obtained by the strong Wolfe line search 

conditions (19) and (20). If 
10

3(1 2 )
σδ

σ ρ
−

≤ <
+ −

 then liminf 0.kk
g

→∞
=  ■ 

 
Observe that since ρ  and σ  are given in the Wolfe line search, it follows that the upper 
bound of δ  is less than 1/3. Although we was able to prove the global convergence of the 
hybrid computational scheme (2), (6) and (36), however, its computational performances are 
very close to that of the HYBRIDM variant. Therefore, in the next section we present only the 
results obtained with the HYBRIDM algorithm. 
 
5. Numerical experiments 
In this section we present the computational performance of a Fortran implementation of the 
HYBRIDM algorithm on a set of 750 unconstrained optimization test problems. They are the 
unconstrained problems in the CUTE [10] library, along with other large-scale optimization 
problems presented in [1]. We selected 75 large-scale unconstrained optimization problems in 
extended or generalized form. Each problem is tested 10 times for a gradually increasing 
number of variables:  At the same time we present comparisons 
with other conjugate gradient algorithms, including the performance profiles of Dolan and 
Moré [17]. All algorithms implement the Wolfe line search conditions with 

n = 1000 2000 10000, , ,… .

0.0001ρ =  
and 0.9σ = . The same stopping criterion 610kg −

∞
≤  is used, where .

∞
is the maximum 

absolute component of a vector, and 1.δ =  The comparisons of algorithms are given in the 
following context. Let and  be the optimal value found by ALG1 and ALG2, 
for problem  respectively. We say that in the particular problem  the 
performance of ALG1 was better than the performance of ALG2 if:  

f i
ALG1 f i

ALG2

i = 1 750, ,… , i

                                                          f fi
ALG

i
ALG1 2 10− < −3                                               (56) 

and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. In this numerical study 
we declare that a method solved a particular problem if the final point obtained had the lowest 
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functional value among the tested methods (up to 310− tolerance as it was specified in (56)). 
Clearly, this criterion is acceptable for users who are interested in minimizing functions and 
not in finding critical points.  

All codes are written in double precision Fortran and compiled with f77 (default 
compiler settings) on an Intel Pentium 4, 1.8GHz workstation. All these codes are authored by 
Andrei. 
 In the first set of numerical experiments we compare the performance of HYBRIDM 
with the HYBRID conjugate gradient algorithm presented in [6]. Figure 1 presents the Dolan 
and Moré CPU performance profiles of HYBRIDM versus HYBRID. When comparing 
HYBRIDM with HYBRID (Figure 1) subject to the CPU time metric we see that HYBRIDM 
is top performer, i.e. the convex combination of HS and DY as expressed in (7) and (15) is 
more successful and more robust than the same convex combination using (10).  Observe that 
out of 750 problems used in this numerical experiment only 727 satisfy (56). The percentage 
of the test problems for which a method is the fastest is given on the left axis of the plot. The 
right side of the plot gives the percentage of the test problems that were successfully solved 
by the HYBRID and HYBRIDM algorithms, respectively. Mainly, the right side is a measure 
of the robustness of an algorithm. Observe that the modified secant condition (13) is effective 
and gives a better approximation of  by  than the one given by  2

1( )T
k ks f x s+∇ k ˆT

k ks y .T
k ks y

 
Fig. 1. Performance based on CPU time. HYBRIDM versus HYBRID.  

 
 

Table 2 presents the total number of iterations (#iter), the total number of function and 
gradient evaluations (#fg) and the total CPU time (seconds) for solving this set of 727 
problems. 

Table 2. Global performances 
 HYBRID HYBRIDM 

#iter 242948 236020 
#fg 1688489 1374097 

CPU 767.41 726.02 
 
Beside, we noticed that in contrast to the HYBRID algorithm which prefers to use the convex 
combination of HS and DY, HYBRIDM for the most of the iterations uses HS. 
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The second set of numerical experiments refers to the comparisons of HYBRIDM 
with the HS and the DY algorithms, respectively. Figures 2 and 3 present the Dolan and Moré 
CPU performance profiles of these algorithms. 

 
Fig. 2. Performance based on CPU time. HYBRIDM versus Hestenes-Stiefel (HS).  

  

 
Fig. 3. Performance based on CPU time. HYBRIDM versus Dai-Yuan (DY).  

 
From the Figures above we see that HYBRIDM is again top performer. Since these codes use 
the same Wolfe line search and the same stopping criterion, they differ in their choice of the 
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search direction. Hence, among the hybrid conjugate gradient algorithms HYBRIDM appears 
to generate the best search direction. 
 In the third set of numerical experiments we compare HYBRIDM with the hybrid 
variants of Dai and Yuan conjugate gradient algorithm hDY and hDYz, as in Figures 4 and 5 
respectively. 

 
Fig. 4. Performance based on CPU time. HYBRIDM versus hybrid Dai-Yuan (hDY).  

 

 
Fig. 5. Performance based on CPU time. HYBRIDM versus hybrid Dai-Yuan zero (hDYz).  

 
Observe that HYBRIDM is top performer among the conjugate gradient algorithms. In all our 
numerical experiments we have considered 1.δ =  However, the upper bound obtained in 
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Theorem 1 for uniformly convex functions or that obtained in Theorem 2 for general 
nonlinear functions does not necessarily contain this value for .δ  Therefore, further 
theoretical investigations must be done in order to get the optimal value for .δ  
 
 
5. Conclusion 
A large variety of conjugate gradient algorithms is well known. In this paper we have 
presented a new hybrid conjugate gradient algorithm in which the parameter kβ  is computed 

as a convex combination of HS
kβ  and .DY

kβ  The parameter in convex combination is 
computed in such a way so that the direction corresponding to this algorithm to be the Newton 
direction. Using the modified secant condition we get an algorithm which proved to be more 
efficient than the algorithm based on secant condition. For uniformly convex function our 
algorithm is globally convergent. For general nonlinear functions we proved the global 
convergence of a variant of the algorithm using the strong Wolfe line search. 
The performance profile of our algorithm was higher than those of the well established 
conjugate gradient algorithms HS and DY and also of the hybrid variants hDY and hDYz, for 
a set of 750 unconstrained optimization problems. Additionally the proposed hybrid conjugate 
gradient algorithm is more robust than the HS and DY conjugate gradient algorithms.  
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