
An accelerated conjugate gradient algorithm 
with guaranteed descent and conjugacy 

conditions for unconstrained optimization 
 
 

Neculai  Andrei 
Research Institute for Informatics,  

Center for Advanced Modeling and Optimization, 
8-10, Averescu Avenue, Bucharest 1, Romania,  

E-mail: nandrei@ici.ro 
 

Abstract. In this paper we suggest a new conjugate gradient algorithm that for all  
both the descent and the conjugacy conditions are guaranteed. The search direction is 
selected as a linear combination of 

0k ≥

1kg +−  and  where ,ks 1 1( )k kg f x+ += ∇ , 
 and   the coefficients in this linear combination are selected in such a way 

that both the descent and the conjugacy condition are satisfied at every iteration. It is 
shown that for general nonlinear functions with bounded Hessian the algorithm with 
strong Wolfe line search generates directions bounded away from infinity. The algorithm 
uses an acceleration scheme that modify the steplength 

1k ks x x+= − k

kα  in such a manner as to improve 
the reduction of the function values along the iterations. Numerical comparisons with 
some conjugate gradient algorithms using a set of 750 unconstrained optimization 
problems, some of them from the CUTE library, show that the computational scheme 
outperform the known conjugate gradient algorithms like Hestenes and Stiefel, Polak,  
Ribière and Polyak, Dai and Yuan or hybrid Dai and Yuan as well as CG_DESCENT by 
Hager and Zhang with Wolfe line search. 
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1. Introduction 
For solving the unconstrained optimization problems 
                                                                  min ( )

nx R
f x

∈
,                                                           (1.1) 

where : nf R → R is a continuously differentiable function, bounded from below, one of the 
most elegant and probably the simplest methods are the conjugate gradient methods. For 
solving this problem, starting from an initial guess 0

nx R∈ , a nonlinear conjugate gradient 

method, generates a sequence { }kx  as: 

                                                               1k k k kx x dα+ = + ,                                                   (1.2) 
where 0kα >  is obtained by line search, and the directions  are generated as: kd
                                                    1 1k k k kdd g β+ += − + 0 0g,  d = − .                                     (1.3) 
In (1.3) kβ  is known as the conjugate gradient parameter, 1k ks x x+ k= −  and .  
The search direction , assumed to be a descent one, plays the main role in these methods. 
On the other hand, the stepsize 

( )k kg f x= ∇

kd

kα  guarantees the global convergence in some cases and is 
crucial in efficiency. Plenty of conjugate gradient methods are known, and an excellent 
survey of these methods, with a special attention on their global convergence, is given by 
Hager and Zhang [18]. Different conjugate gradient algorithms correspond to different 
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choices for the scalar parameter .kβ  Line search in the conjugate gradient algorithms often is 
based on the standard Wolfe conditions [32, 33] 
                                                 ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                    (1.4) 

                                                 ,                                                (1.5) ( )T
k k k k kg x d d g dα σ+ ≥ T

k

.where  is supposed to be a descent direction and 0 1kd ρ σ< ≤ <   
A numerical comparison of conjugate gradient algorithms (1.2) and (1.3) with Wolfe line 
search, for different formulae of parameter kβ  computation, including the Dolan and Moré 
performance profile, is given in [6].  
If the initial direction  is selected as 0d 0d g0= − , and the objective function to be minimized 
is a convex quadratic function 

                                                      
1( )
2

T Tf x x Ax b x c= + +                                               (1.6) 

and the exact line searches are used, that is 
                                                     

0
arg min ( ),k k kf x d

α
α α

>
= +                                             (1.7) 

then the conjugacy condition 
                                                                  0T

i jd Ad =                                                          (1.8) 
holds for all  This relation (1.8) is the original condition used by Hestenes and Stiefel 
[19] to derive the conjugate gradient algorithms, mainly for solving symmetric positive-
definite systems of linear equations. Using (1.3) and (1.6)-(1.8) it can be shown that 

.i j≠

1kx +  is 

the minimum of the quadratic function (1.6) in the subspace { }1 2, , ,k kx span g g g+ …  and 

the gradients  are mutually orthogonal unless that 1 2, , , kg g g… 0kg =  [15]. It follows that 
for convex quadratic functions the solution will be found after at most  iterations. Powell 
[27] shown that if the initial search direction is not  then even for quadratic functions (1.6) 
the conjugate gradient algorithms does not terminate within a finitely number of iterations. It 
is well known that the conjugate gradient algorithm converges at least linearly [23], and an 
upper bound for the rate of convergence is obtained by Yuan [30].  

n
0g

Conjugate gradient algorithm (1.2) and (1.3) with exact line search always satisfy the 
condition 

2
1 1 1

T
k k kg d g+ + += −  which is in a direct connection with the sufficient descent 

condition 
                                                           

2
1 1 1

T
k k kg d t g+ + +≤ −                                                   (1.9) 

for some positive constant  The sufficient descent condition has been used often in the 
literature to analyze the global convergence of the conjugate gradient algorithms with inexact 
line search based on the strong Wolfe conditions. The sufficient descent condition is not 
needed in the convergence analyses of the Newton or quasi-Newton algorithms. However, it 
is necessary for the global convergence of conjugate gradient algorithms [12]. 

0.t >

Let us denote  For a general nonlinear twice differential function 1 .k ky g g+= − k ,f  
by the mean value theorem, there exists some (0,1)ξ ∈  such that  
                                                                                (1.10) 2

1 1 (T T
k k k k k k k kd y d f x d dα ξα+ += ∇ + ) .

Therefore, it seems reasonable to replace (1.8) with the following conjugacy condition 
                                                                 1 0.T

k kd y+ =                                                          (1.11) 
In order to accelerate the conjugate gradient algorithm Perry [22] (see also Shanno [28]) 
extended the conjugacy condition by incorporating the second order information. He used the 
secant condition  where  is a symmetric approximation to the inverse 1 ,k k kH y s+ = kH

 2



Hessian. Since for quasi-Newton method the search direction 1kd +  is computed as 
 it follows that  1 1 ,k kd H g+ += − 1k+

1 ,T
+

1
T
+

1 1 1 1 1( ) ( )T T T
k k k k k k k k k kd y H g y g H y g s+ + + + += − = − = −  

thus obtaining a new conjugacy condition. Recently, Dai and Liao [11] extended this 
condition and suggested the following new conjugacy condition 
                                                           ,                                                  (1.12) 1

T
k k k kd y ug s+ = −

where  is a scalar. Conjugate gradient algorithms are based on the conjugacy condition. 
To minimize a convex quadratic function in a subspace spanned by a set of mutually 
conjugate directions is equivalent to minimize this function along each conjugate direction in 
turn. This is a very good idea, but the performance of these algorithms is dependent on the 
accuracy of the line search. However, in conjugate gradient algorithms we always use inexact 
line search. Hence, when the line search is not exact, the “pure” conjugacy condition (1.11) 
may have disadvantages. Therefore, it seems more reasonable to consider in conjugate 
gradient algorithms the conjugacy condition (1.12). When the algorithm is convergent 
observe that  tends to zero along the iterations, and therefore conjugacy condition 
(1.12) tends to the pure conjugacy condition (1.11). 

0u ≥

1
T
k kg s+

In this paper we suggest a new conjugate gradient algorithm that for all  both 
the descent and the conjugacy conditions are guaranteed. In section 2 we present the main 
ingredients of the search direction computation. The search direction is selected as a linear 
combination of 

0k ≥

1kg +−  and  where the coefficients in this linear combination are selected 
in such a way that both the descent and the conjugacy condition to be satisfied at every 
iteration. In section 3 we prove the convergence of the algorithm. It is shown that for general 
nonlinear functions with bounded Hessian the algorithm with strong Wolfe line search 
generates directions bounded away from infinity. Section 4 is devoted to present an 
acceleration scheme of the algorithm. The idea of this computational scheme is to take 
advantage that the step lengths 

,ks

kα  in conjugate gradient algorithms are very different from 1. 
Therefore, we suggest we modify kα  in such a manner as to improve the reduction of the 
function values along the iterations. Section 5 is devoted to present the ACGSYS algorithm. 
We prove that for uniformly convex functions the convergence of the accelerated algorithm is 
still linear, but the reduction in function values is significantly improved. In section 6 some 
numerical experiments and performance profiles of Dolan-Moré [14] corresponding to this 
new conjugate gradient algorithm are given. The performance profiles correspond to a set of 
750 unconstrained optimization problems presented in [1]. It is shown that this new conjugate 
gradient algorithm outperforms the classical Hestenes and Stiefel [19], Dai and Yuan [13], 
Polak, Ribière and Polyak [24, 25] or hybrid Dai and Yuan [13] conjugate gradient algorithms 
and also the CG_DESCENT conjugate gradient algorithm with Wolfe line search by Hager 
and Zhang [17]. 
 
2. Conjugate gradient algorithm with guaranteed descent and  
    conjugacy conditions 
For solving the minimization problem (1.1) consider the following conjugate gradient 
algorithm  
                                                               1k k k kx x dα+ = + ,                                                   (2.1) 
where 0kα >  is obtained by Wolfe line search, and the directions  are generated as: kd
                                                          1 1k k kd g k ksθ β+ += − + ,                                               (2.2) 

0d g= − 0 , where kθ  and kβ  are scalar parameters which follows to be determined. 
Algorithms of this form, or variations of it, have been studied by many authors. For example, 
Birgin and Martínez [7] suggested a spectral conjugate gradient method, where 
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/T T
k k k ks s s yθ = k . On the other hand Andrei [3,4,5] considers a preconditioned conjugate 

gradient algorithm where the preconditioner is a scaled memoryless BFGS matrix and the 
parameter scaling the gradient is selected as the spectral gradient. Yuan and Stoer [31] studied 
the conjugate gradient algorithm on a subspace, where the search direction  at the th 

iteration ( ) is taken from the subspace 
1kd + k −

1k ≥ { }1,k kspan g d+ . 

In our algorithm for all  the 0k ≥ kθ  and kβ  scalar parameters in (2.2) are 
determined from the descent condition 
                                      

2
1 1 1 1 1 1

T T T
k k k k k k k k kg d g g g s t gθ β+ + + + + += − + = −                             (2.3) 

and the conjugacy condition (1.12) 
                                                                    (2.4) 1 1 (T T T T

k k k k k k k k k ky d y g y s u s gθ β+ += − + = − 1),+

where  and  are scalar parameters. Observe that in (2.3) we modified the classical 
sufficient descent condition (1.9) with equality. It is worth saying that the main condition in 
any conjugate gradient algorithm is the descent condition 

0t > 0u >

0T
k kg d <  or the sufficient descent 

condition (1.9). The conjugacy condition (1.11) or its modification (1.12) is not so stringent. 
In fact very few conjugate gradient algorithms satisfy this condition. For example, the 
Hestenes – Stiefel algorithm has this property that the pure conjugacy condition always holds, 
independent of the line search.  

If , then (2.4) is the “pure” conjugacy condition. However, in our algorithm in 
order to accelerate the algorithm and incorporate the second order information we take . 

0u =
0u >

Now, let us define 
                                          

2
1 1 1( )( ) (T T T

k k k k k k k ky g s g g y s+ + +∆ = − ).                                    (2.5) 

Supposing that  then from the linear algebraic system given by (2.3) and (2.4) we get 0k∆ ≠

                                              
2 2

1( ) ( )T T
k k k k k

k
k

y s g t s g u
θ + +− +

=
∆

1 ,                                     (2.6) 

                                             
2 2

1 1 1 1( ) ( )T T
k k k k k k

k
k

y g g t s g g u
β + + + +− +

=
∆

.                       (2.7) 

If the line search is exact, that is 1 0,T
k ks g + =  then 

2
1 ( )T

k k k kg y s+ 0∆ = − < , if the line 

search satisfies the Wolfe condition (1.5) and if 1 0.kg + ≠  Therefore from (2.6) and (2.7) we 

get k tθ =  and  i.e. 1( ) /(T T
k k k k ky g t y sβ += ),

                                             1
1 1

T

1
HSk k

k k kT
k k

y gd t g s td
y s

+
+ +

⎛ ⎞
= − + =⎜

⎝ ⎠
k+⎟ ,                                     (2.8) 

where 1
HS
kd +  is the Hestenes-Stiefel direction.  

 
Proposition 2.1. If  

                                                         
2

1
2

1 1

,k
T
k k k

g

y g g
σ +

+ +

≤
+

                                               (2.9) 

then for all . 1,k ≥ 0k∆ <
 
Proof. Observe that  
                                                                                            (2.10) 1 .T T T T

k k k k k k k ks g s y s g s y+ = + <
The Wolfe condition (1.5) gives 
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                                                                              (2.11) 1 .T T T T
k k k k k k k kg s g s y s g sσ σ σ+ ≥ = − + 1+

Since 1,σ <  we can rearrange (2.11) to obtain 

                                                           1 .
1

T
k k k kg s y sTσ

σ+
−

≥
−

                                                (2.12) 

Now, combining this lower bound for  with the upper bound (2.10) we get 1
T
k kg s+

                                                 1 max 1, .
1

T T
k k k kg s y s σ

σ+
⎧ ⎫≤ ⎨ ⎬−⎩ ⎭

                                       (2.13) 

Again, observe that the Wolfe condition gives  (if 0T
k ky s > 0kg ≠ ). Therefore, if σ  is 

bounded as in (2.9), then 
2

1 1 1 max 1,
1

T T T T T
k k k k k k k k k k kg s g y y s g y y s gσ

σ+ + + +
⎧ ⎫≤ ≤⎨ ⎬−⎩ ⎭

1 . 

i.e.  for all   ■ 0k∆ < 1.k ≥
 
From (2.9) observe that 1σ < . Since 

2 0T
k k kg s t g= − < , i.e.  is a descent direction, it 

follows that 

kd
2

1 .T
k k kg y g+ → 1+  Therefore 1/ 2,σ → i.e. 0 1ρ σ< < < , since usually ρ  is 

selected enough small to ensure the reduction of function values along the iterations. 
 
3. Convergence analysis 
In this section we analyze the convergence of the algorithm (2.1) and (2.2), where kθ  and kβ  
are given by (2.6) and (2.7) respectively, and 0d g0= − . In the following we consider that 

 for all , otherwise a stationary point is obtained. Assume that: 0kg ≠ 1k ≥
(i) The level set { }0: ( ) ( )nS x R f x f x= ∈ ≤  is bounded.  

(ii) In a neighborhood  of , the function N S f is continuously differentiable and its 
gradient is Lipschitz continuous, i.e. there exists a constant  such that 0L >

( ) ( )f x f y L x∇ −∇ ≤ − y , for all , .x y N∈  

Under these assumptions on f  there exists a constant 0Γ ≥  such that ( )f x∇ ≤ Γ  for all 

.x S∈  In order to prove the global convergence, we assume that the step size kα  in (2.1) is 
obtained by the strong Wolfe line search, that is, 
                                             ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                        (3.1) 

                                              ( )T T
k k k k k kg x d d g dα σ+ ≤ .                                                  (3.2) 

where ρ  and σ  are positive constants such that 0 1.ρ σ< ≤ <  
Dai et al. [12] proved that for any conjugate gradient method with strong Wolfe line search 
the following general result holds: 
 
Lemma 3.1. Suppose that the assumptions (i) and (ii) hold and consider any conjugate 
gradient method (1.2) and (1.3), where  is a descent direction and kd kα  is obtained by the 
strong Wolfe line search (3.1) and (3.2). If 

                                                               2
1

1
k kd≥

= ∞∑ ,                                                        (3.3) 

then 
                                                             liminf 0.k

k
g

→∞
=  ■                                                   (3.4) 
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Therefore, the iteration can fail, in the sense that 0kg γ≥ > , for all  only if ,k kd →∞  
sufficiently rapidly. The following theorem can be proved. 
 
Theorem 3.1. Suppose that the assumptions (i) and (ii) hold and consider the conjugate 
gradient algorithm (2.1), where the direction 1kd +  is given by (2.2), (2.5)-(2.7) and the step 

length kα  is obtained by the strong Wolfe line search (3.1) and (3.2). Assume that 2 ( )f x∇  is 

bounded, i.e. 2 ( ) ,f x MI∇ ≤  for any ,x S∈  where M  is a positive constant, then 
liminf 0.kk

g
→∞

=  

 
Proof.  Since 2 ( )f x∇  is bounded we have 

                         
22

1( ) ( ) (T T T
k k k k k k k k k ky s g g s s f x s M s O s+= − = ∇ ≤ = 2 ),                  (3.5) 

where kx  is a point on the line segment connecting kx  and 1.kx +  Observe that 

1 1 ( )T
k k k k k ks g s g s O s+ +≤ ≤ Γ = ,  

                                           1 1 ( )T
k k k k k ky g y g L s O s+ +≤ ≤ Γ = .  

Hence, 
                                                   2

1 1( )( ) (T T
k k k k ks g y g O s+ + = ).                                            (3.6) 

Therefore for all sufficiently large , k
                                                               2(k kO s∆ = ).                                                       (3.7) 
On the other hand, observe that 

{ }2 22
1 1( ) ( ) max ( ), ( ) ( )T T

k k k k k k k ky s g t s g u O s O s O s+ +− + = =2 2
, 

                  { }2 2
1 1 1 1( ) ( ) max ( ), ( ) (T T

k k k k k k k k ky g g t s g g u O s O s O s+ + + +− + = = ).  

Therefore for all sufficiently large , k

                              
2

2

( )
(1)

( )
k

k
k

O s
O

O s
θ = =    and   2

( ) 1 .
( )( )

k
k

kk

O s
O sO s

β = =                      (3.8) 

From (2.2) we have 

                           1 1
1(1) (1).

( )k k k k k k
k

d g s O s O
O s

θ β+ +≤ + ≤ Γ + =                    (3.9) 

Therefore, there is an index and a positive constant 0k B , such that for all , 0k k≥ kd B≤ , 

i.e. 2
1

1
k kd≥

= ∞∑ . By Lemma 1 we have liminf 0.kk
g

→∞
=  ■ 

 
From (2.6) and (2.7) we see that 

2 2
1 1 1

1 1

( ) ( )T T
k k k k k k

k k
k k

y s g y g g
d g+ + +

+ +

⎡ ⎤
= −⎢ ⎥

∆ ∆⎢ ⎥⎣ ⎦
ks t  

                                         
2 2

1 1 1
1

( ) ( ) .
T T
k k k k k

k
k k

s g g s gs g+ + +
+

⎡ ⎤
+ −⎢ ⎥

∆ ∆⎢ ⎥⎣ ⎦
k u                               (3.10) 
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Since the algorithm is convergent, i.e. { } *
kx x→ , where *x  is the local optimal point of 

(1.1), it follows that lim 0k ks→∞ = . On the other hand,  for  Therefore 
the coefficient of u  in (3.10) tends to zero, i.e. the algorithm is not sensitive to the values of 
parameter  

1 0T
k ks g + → .k →∞

.u
However, since  for  it follows that  1 0T

k ks g + → ,k →∞
2

1( )
,

T
k k k

k

t y s g
t+ → −

∆
 

showing that the descent condition (2.3) is more important than the conjugacy condition (2.4). 
However, the conjugacy condition is important in the economy of our algorithm because it 
includes the information of the second order. 
 
4. Acceleration of the algorithm 
It is common to see that in conjugate gradient algorithms the search directions tend to be 
poorly scaled and as a consequence the line search must perform more function evaluations in 
order to obtain a suitable steplength .kα  Therefore, the research efforts was directed to design 
procedures for direction computation which takes the second order information. The 
algorithms implemented in CONMIN by Shanno and Phua [29] or SCALCG by Andrei [3-5] 
use the BFGS preconditioning with remarkable results. In this section we focus on the step 
length modification. In the context of gradient descent algorithm with backtracking this idea 
of step length modification has been considered for the first time in [2]. 
Jorge Nocedal [21] pointed out that in conjugate gradient methods the step lengths may differ 
from 1 in a very unpredictable manner. They can be larger or smaller than 1 depending on 
how the problem is scaled. This is in very sharp contrast to the Newton and quasi-Newton 
methods, including the limited memory quasi-Newton methods, which accept the unit 
steplength most of the time along the iterations, and therefore usually they require only few 
function evaluations per search direction. Numerical comparisons between conjugate gradient 
methods and the limited memory quasi Newton method, by Liu and Nocedal [20], show that 
the latter is more successful [6]. One explanation of efficiency of this limited memory quasi-
Newton method is given by its ability to accept unity step lengths along the iterations. In this 
section we take advantage of this behavior of conjugate gradient algorithms and present an 
acceleration scheme. Basically it modifies the step length in a multiplicative manner to 
improve the reduction of the function values along the iterations. First, for completeness, we 
prove that the step length kα given by the Wolfe line search conditions is bounded away from 
zero (see also [17]). Secondly, we present the acceleration scheme. 
 
Line search. For implementing the algorithm (1.2) one of the crucial elements is the stepsize 
computation. In the following we consider the line searches that satisfy the Wolfe conditions 
(1.4) and (1.5). 
 
Proposition 4.1. Assume that  is a descent direction and kd f∇  satisfies the Lipschitz 

condition ( ) ( )k kf x f x L x x∇ −∇ ≤ −  for all x  on the line segment connecting kx  and 

1,kx +  where is a positive constant. If the line search satisfies the Wolfe conditions (1.4) and 
(1.5), then 

L

                                                         2
(1 ) .

T
k k

k
k

g d
L d
σα −

≥                                                    (4.1) 
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Proof. To prove (4.1) subtract  from both sides of (1.5) and using the Lipschitz 
condition we get: 

T
k kg d

2
1( 1) ( )T T

k k k k k k kg d g g d L dσ α+− ≤ − ≤ .  

But,  is a descent direction and since kd 1σ < , we immediately get (4.1). ■ 
 
Therefore, satisfying the Wolfe line search conditions kα  is bounded away from zero, i.e. for 
all  there exists a positive constant 0k ≥ ω , such that .kα ω≥  
 
Acceleration scheme. Suppose that the function f  is twice continuously differentiable. At the 
iteration  we know 1,2,...k = ,kx  ,kf   and . Now, by the Wolfe line search (1.4) and 
(1.5) we can compute 

kg kd

kα  with which the following point k kz x dkα= +  is determined. The 
first Wolfe condition (1.4) shows that the steplength 0,kα >  satisfies: 

( ) ( ) ( ) .T
k k k k k k kf z f x d f x g dα ρα= + ≤ +  

With these, let us introduce the accelerated conjugate gradient algorithm by means of the 
following iterative scheme: 
                                                          1k k k k kx x dγ α+ = + ,                                                    (4.2) 
where 0kγ >  is a parameter which follows to be determined in such a manner as to improve 
the behavior of the algorithm. Now, we have: 

                  ( )22 21( ) ( ) ( ) .
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dα α α α+ = + + ∇ +           (4.3) 

On the other hand, for 0γ >  we have: 

            ( )22 2 21( ) ( ) ( )
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dγα γα γ α γα+ = + + ∇ + .

( ),

      (4.4) 

With these we can write: 
                                         ( ) ( )k k k k k k kf x d f x dγα α+ = + +Ψ γ                                  (4.5) 
where 

2 2 21( ) ( 1) ( ) ( 1)
2

T T
k k k k kd f x d g dγ γ α γ αΨ = − ∇ + − k k k  

                                              ( ) ( )22 .k k k k k ko d o dγ α α α α+ − 2                                     (4.6) 

Let us denote: 
                                                        0,T

k k k ka g dα= ≤  
2 2 ( ) ,T

k k k k kb d f x dα= ∇  

                                                        ( )2 .k k ko dε α=  

Observe that , since  is a descent direction, and for convex functions  
Besides, 

0ka ≤ kd 0.kb ≥

kε  is independent of .γ  Therefore, 

                                 2 21( ) ( 1) ( 1) .
2k k k k kb a k kγ γ γ γ α ε αΨ = − + − + − ε

k

                          (4.7) 

Now, we see that ( ) ( 2 )k k k kb aγ α ε γ′Ψ = + +  and ( ) 0k mγ′Ψ =  where 

                                                           .
2

k
m

k k

a
b

γ
kα ε

= −
+

                                                   (4.8) 
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Observe that  Therefore, assuming that (0) 0.k ka′Ψ = < 2k k kb 0,α ε+ >  then ( )k γΨ  is a 
convex quadratic function with minimum value in point mγ  and 

2( ( 2 ))( ) 0
2( 2 )

k k k k
k m

k k k

a b
b

α εγ
α ε

+ +
Ψ = − ≤

+
.  

Considering mγ γ=  in (4.5) and since , we see that for every  0kb ≥ 1k ≥
2( ( 2 ))( ) ( ) ( )

2( 2 )
k k k k

k m k k k k k k k k
k k k

a b ,f x d f x d f x d
b

α εγ α α α
α ε

+ +
+ = + − ≤ +

+
 

which is a possible improvement of the values of function f  (when ( 2 )k k k ka b 0α ε+ + ≠ ). 
Therefore, using this simple multiplicative modification of the stepsize kα  as k kγ α  where 

/( 2 )k m k k k ka bγ γ α= = − + ε  we get: 
2

1
( ( 2 ))( ) ( ) ( )

2( 2 )
T k k k k

k k k k k k k k k
k k k

a bf x f x d f x g d
b

α εγ α ρα
α ε+

+ +
= + ≤ + −

+
 

                              
2( ( 2 ))( ) ( ),

2( 2 )
k k k k

k
k k k

a b
k kf x

b
α ε ρ
α ε

⎡ ⎤+ +
= − − ≤⎢ +⎣ ⎦

a f x⎥                               (4.9) 

since  (  is a descent direction). 0,ka ≤ kd
Now, neglecting the contribution of kε  in (4.9), we still get an improvement of the function 
values as 

2

1
( )( ) ( ) ( )

2
k k

k k k
k

a b .kf x f x a f x
b

ρ+

⎡ ⎤+
≤ − − ≤⎢ ⎥

⎣ ⎦
 

In order to get the algorithm we have to determine a way for  computation. For this, at 
point 

kb

k kz x dkα= +  we have: 

2 21( ) ( ) ( ) ( ) ,
2

T T
k k k k k k k k k k kf z f x d f x g d d f x dα α α= + = + + ∇  

where kx  is a point on the line segment connecting kx  and  On the other hand, at point .z

k k kx z dα= −  we have: 

2 21( ) ( ) ( ) ( ) ,
2

T T
k k k k z k k k k kf x f z d f z g d d f x dα α α= − = − + ∇  

where  and ( )zg f= ∇ z kx  is a point on the line segment connecting kx  and  Having in 
view the local character of searching and that the distance between 

.z

kx  and z is small enough, 
we can consider .k k kx x x= =  So, adding the above equalities we get: 

                                                                                                                   (4.10) ,T
k k kb yα= − kd

zwhere  Observe that for strictly convex functions  However, if , 
then the acceleration scheme doesn’t have any effect by considering 

.k ky g g= − 0.kb > 0kb =
1kγ =  in (4.2). 

Observe that if ka b> k , then 1.kγ >  In this case k k kγ α α> and it is also possible 

that 1k kγ α ≤  or 1.k kγ α >  Hence, the steplength k kγ α  can be greater than 1. On the other 

hand, if ,k ka b≤  then 1.kγ ≤  In this case ,k k kγ α α≤  so the steplength k kγ α  is reduced. 

Therefore, if ka b≠ k , then 1kγ ≠  and the steplength kα  computed by Wolfe conditions will 

be modified by its increasing or its reducing through factor .kγ  
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 Neglecting kε  in (4.7), we see that (1) 0kΨ =  and if / 2,k ka b≤  then 

 and (0) / 2k 0k ka bΨ = − − ≤ 1.kγ <  Therefore, for any [0,1]γ ∈ , ( ) 0.k γΨ ≤  As a 
consequence for any (0,1),γ ∈  it follows that ( )k k k k( ).f x d f xγα+ <  In this case, for any 

[0,1]γ ∈ , .k k kγ α α≤  However, in our algorithm we selected k mγ γ=  as the point achieving 
the minimum value of ( ).k γΨ   
 
5. ACGSYS algorithm 
Step 1. Select a starting point 0x dom f∈  and compute: 0 ( )0f f x=  and  

Select some positive values for t  and . Set 
0 0( ).g f x= ∇

u 0 0d g= −  and 0.k =  
Step 2. Test a criterion for stopping the iterations. If the test is satisfied, then stop; 

otherwise continue with step 3. 
Step 3. Using the Wolfe line search conditions determine the steplength .kα  

Step 4. Compute: k k kz x dα= + ( )zg f z= ∇ z,  and .k ky g g= −  

Step 5. Compute: , and . T
k k ka gα= kd kd

k

T
k k kb yα= −

Step 6. If  then compute 0,kb ≠ /k ka bγ = −  and update the variables as 

1k k k k kx x dγ α+ = + , otherwise update the variables as 1k k k kx x dα+ = + . Compute 

1kf +  and  Compute 1.kg + 1k ky g g+ k= −  and 1 .k ks x x+ k= −  

Step 7. Determine kθ  and kβ  as in (2.6) and (2.7) respectively, where  is computed as 
in (2.5). 

k∆

Step 8. Compute the search direction as: 1 1k k kd g k ksθ β+ += − + . 

Step 9. Restart criterion. If 
2

1 10.2T
k k kg g g+ +>  then set 1 1k kd g+ += − . 

Step 10. Consider  and go to step 2.  ■ 1k k= +
 
It is well known that if f  is bounded along the direction  then there exists a stepsize kd kα  
satisfying the Wolfe line search conditions (1.4) and (1.5). In our algorithm when the Powell 
restart condition is satisfied, then we restart the algorithm with the negative gradient 1.kg +−  
Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion are 
sufficient to prove the global convergence of the algorithm. The first trial of the step length 
crucially affects the practical behavior of the algorithm. At every iteration  the starting 
guess for the step 

1k ≥
kα  in the line search is computed as 1 1 /k k kd dα − − .  This selection was 

used for the first time by Shanno and Phua in CONMIN [29] and in SCALCG by Andrei [3-
5]. 

In the following, for uniformly convex functions, we prove the linear convergence of 
the acceleration scheme. Recall that a function f  is uniformly convex on the level set 

{ }0: ( ) ( )S x f x f x= ≤  if there is a positive constant  such that m
21( ) ( ) ( ) ( )

2
Tf y f x f x y x m y x≥ +∇ − + −  

for all , .x y S∈  For uniformly convex functions it is easy to prove that 

( )2 *( ) 2 ( ) ( )f x m f x f x∇ ≥ − , 

for all ,x S∈  where *x  is a local solution of (1.1) [9]. 
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Proposition 5.1. Suppose that f  is a uniformly convex function on the level set 

{ }0: ( ) ( )S x f x f x= ≤ . Assume that  satisfies the descent condition kd 2T
k k kg d t g= − , 

where , there is the constant  such that 0t > 0c > 2 T
k kc g g d− ≤ k   and 

2 2
3 2k kc g d c g≤ ≤ 2

k 0., where  Then the sequence generated by ACGSYS 

converges linearly to 
2 3,c c >

*,x  solution to the problem (1.1). 
 
Proof. From (4.9) we have that 1( ) (k )kf x f x+ ≤  for all  Since .k f  is bounded from below, 
it follows that 

1lim( ( ) ( )) 0.k kk
f x f x +→∞

− =  

Now, since f  is uniformly convex there exist positive constants  and m ,M  such that 
 on  Suppose that 2 ( )mI f x MI≤ ∇ ≤ .S k kx d Sα+ ∈  and k m kx d Sγ α+ ∈  for all 0.α >  

We have: 

                                         
2( )( ) ( )

2
k k

k m k k k
k

a bf x d f x d
b

γ α α +
+ ≤ + − .                             (5.1) 

But, from uniform convexity we have the following quadratic upper bound on ( )k kf x dα+ : 
221( ) ( )

2
T

k k k k k kf x d f x g d M dα α α+ ≤ + + .  

Therefore, 
2 22

2
1( ) ( )
2k k k k kf x d f x t g Mc gα α α+ ≤ − +  

                                                       
22

2
1( ) .
2k kf x t Mc gα α⎡ ⎤= + − +⎢ ⎥⎣ ⎦

    

Observe that for 20 /( ),t Mcα≤ ≤  2
2

1
2 2

tt Mcα α α− + ≤ −

.

 which follows from the 

convexity of  2
2( / 2)t Mcα α− +  Using this result we get: 

                           
2 2( ) ( ) ( )

2k k k k k k
tf x d f x g f x t gα α ρ+ ≤ − ≤ − α ,                    (5.2) 

since 1/ 2.ρ <   
From proposition 4.1 the Wolfe line search terminates with a value 0.α ω≥ >  

Therefore, for 20 /(t Mc ),α≤ ≤  this provides a lower bound on the decrease in the function 
,f  i.e.  

                                              2( ) ( )k k k kf x d f x t gα ρ ω+ ≤ − .                                      (5.3) 
On the other hand, 

                      
( )22 2

2 23 23
2

22

( ) ( ) .
2 22

k kk k
k

k k

c g mc ga b mc c g
b MMc g

ω ω− ++ −
≥ =

c
                  (5.4) 

Considering (5.3) and (5.4) from (5.1) we get: 

                         
2

2 23

2

( )( ) ( )
2k m k k k k
mc cf x d f x t g g

Mc
ωγ α ρ ω −

+ ≤ − − .                     (5.5) 

Therefore 
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2
23

2

( )( ) ( ) .
2k k m k k
mc cf x f x d t g

Mc
ωγ α ρ ω

⎡ ⎤−
− + ≥ +⎢ ⎥

⎣ ⎦
 

But,  and as a consequence  goes to zero, i.e. 1( ) ( ) 0k kf x f x +− → kg kx  converges to *.x  

Having in view that ( )kf x  is a nonincreasing sequence, it follows that ( )kf x  converges to 
*( ).f x  From (5.5) we see that 

                                  
2

23
1

2

( )( ) ( )
2k k
mc cf x f x t g

Mc
ωρ ω+

⎡ ⎤−
≤ − +⎢

⎣ ⎦
.k⎥                               (5.6) 

Combining this with 
2 *2 ( ( ) )k kg m f x f≥ −  and subtracting *f  from both sides of (5.6) 

we conclude: 
* *

1( ) ( ( ) )k k ,f x f f x fκ+ − ≤ −  
where  

2
3

2

( )1 2 1.
2
mc cm t

Mc
ωκ ρ ω

⎡ ⎤−
= − + <⎢ ⎥

⎣ ⎦
 

Therefore, ( )kf x  converges to *f  at least as fast as a geometric series with a factor that 
depends on the parameter ρ  in the first Wolfe condition, the bounds  and m ,M  and the 
parameter  introduced in the descent condition. Hence, the convergence of the acceleration 
scheme is at least linear. ■ 

t

 
 
6. Numerical results and comparisons 
In this section we report some numerical results obtained with an implementation of the 
ACGSYS algorithm. The code is written in Fortran and compiled with f77 (default compiler 
settings) on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 75 large-
scale unconstrained optimization test functions in generalized or extended form [1] (some 
from CUTE library [8]). For each test function we have taken ten numerical experiments with 
the number of variables  The algorithm implements the Wolfe line 

search conditions with 

1000,2000,...,10000.n =

0.0001,ρ =  2
1 1/( ),T

k k k kg y g gσ + + += + 2
1 and the same stopping 

criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute component of a vector. If 

,σ ρ<  then we set 0.8.σ =  If k mε∆ ≥ , where mε  is epsilon machine, then kθ  and kβ  are 

computed as in (2.6) and (2.7), respectively. Otherwise, set 1kθ =  and 2
1 / T

k k kg yβ += ks

,

, 
i.e. we consider the Dai-Yuan conjugate gradient algorithm [13]. In ACGSYS we set  
and . In all the algorithms we considered in this numerical study the maximum 
number of iterations is limited to 10000. 

7 / 8t =
0.01u =

 The comparisons of algorithms are given in the following context. Let and 
be the optimal value found by ALG1 and ALG2, for problem  

respectively. We say that, in the particular problem  the performance of ALG1 was better 
than the performance of ALG2 if:  

f i
ALG1

f i
ALG2 i = 1 750, ,…

i,

                                                          f fi
ALG

i
ALG1 2 10− < −3                                              (6.1) 

and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. 
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In the first set of numerical experiments we compare ACGSYS versus Hestenes and 

Stiefel (HS) ( 1
T

HS k k
k T

k k

y g
y s

β += ) [19], Dai and Yuan (DY) ( 1 1
T

DY k k
k T

k k

g g
y s

β + += ) [13] and versus 

Polak-Ribière-Polyak  (PRP) ( 1
T

PRP k k
k T

k k

y g
g g

β += ) [24, 25], conjugate gradient algorithms. 

Figures 1-3 present the Dolan and Moré [14] CPU performance profile of ACGSYS versus 
HS, DY and PRP, respectively. 

An attractive feature of the Hestenes and Stiefel conjugate gradient algorithm is that 
the pure conjugacy condition 1 0T

k ky d + =  always is satisfied, independent of the line search. 
However, for an exact line search the convergence properties of the HS method are similar to 
the convergence properties of the PRP method. Therefore, by Powell’s example [26], the HS 
method with exact line search may not converge for a general nonlinear function. On the other 
hand, the DY method always generates descent directions, and in [10] Dai established a 
remarkable property for the DY conjugate gradient algorithm, relating the descent directions 
to the sufficient descent condition. It is shown that if there exist constants γ 1  and γ 2  such 

that γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ ( , )0 1 , there exists a constant such that 

the sufficient descent condition 

c > 0

g d c gi
T

i ≤ −
2

i holds for at least ⎣ ⎦pk  indices 
where i k∈ [ , ],0 ⎣ ⎦j  denotes the largest integer ≤ j. However, the DY method does not 

satisfy the conjugacy condition.  
In contrast, observe that in ACGSYS the search directions are always descent 

directions and the conjugacy condition always is satisfied independent of the accuracy of the 
line search.  

In a performance profile plot, the top curve corresponds to the method that solved the 
most problems in a time that was within a factor τ  of the best time. The percentage of the test 
problems for which a method is the fastest is given on the left axis of the plot. The right side 
of the plot gives the percentage of the test problems that were successfully solved by these 
algorithms, respectively. Mainly, the right side is a measure of the robustness of an algorithm. 

 
Fig. 1. ACGSYS versus Hestenes-Stiefel. 
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Fig. 2. ACGSYS versus Dai-Yuan. 

 
Fig. 3. ACGSYS versus Polak-Ribière-Polyak. 

 
When comparing ACGSYS with these conjugate gradient algorithms subject to CPU time 
metric we see that ACGSYS is top performer, i.e. the accelerated conjugate gradient 
algorithm with guaranteed descent and conjugacy conditions is more successful and more 
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robust than the considered conjugate gradient algorithms. For example, when comparing 
ACGSYS with Hestene-Stiefel (HS) (see Figure 1), subject to the number of iterations, we see 
that ACGSYS was better in 617 problems (i.e. it achieved the minimum number of iterations 
in 617 problems). HS was better in 39 problems and they achieved the same number of 
iterations in 66 problems, etc. Out of 750 problems, only for 722 problems does the criterion 
(6.1) hold. Therefore, ACGSYS appears to generate the best search direction and the best 
steplength, on average. 
 In the second set of numerical experiments we compare ACGSYS versus hybrid Dai-
Yuan ( { }{ }max ,min ,hDY DY HS DY

k k k kβcβ β β= − (1 ) /(1 ), c σ σ= − + , 0.8σ = ) [13]. The 

hDY method reduces to the Fletcher and Reeves method [16] if f  is a strictly convex 
quadratic function and the line search is exact. For a standard Wolfe line search, Dai and 
Yuan [13] proved that it produces descent directions at every iteration and they established 
the global convergence of their hybrid conjugate gradient algorithm when the Lipschitz 
assumption holds. However, the hDY conjugate gradient algorithm does not satisfy the 
conjugacy condition. Figure 4 presents the Dolan and Moré CPU time performance profile of 
ACGSYS versus hDY. The best performance, relative to the CPU time metric, again was 
obtained by ACGSYS, the top curve in Figure 4.  
 

 
Fig. 4. ACGSYS versus hybrid Dai-Yuan. 

 
In the third set of numerical experiments we compare ACGSYS versus 

CG_DESCENT by Hager and Zhang [17]. Figure 5 presents the Dolan and Moré CPU time 
performance profile of ACGSYS versus CG_DESCENT with Wolfe line search. 
CG_DESCENT was devised in order to ensure sufficient descent, independent of the 
accuracy of the line search. Hager and Zhang [17] proved that the direction  in their 

algorithm satisfies the sufficient descent condition 
kd

2(7 / 8)T
k k kg d g≤ − . This is the main 

reason we have considered  in all our numerical experiments.  7 / 8t =
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Fig. 5. ACGSYS versus CG_DESCENT by Hager and Zhang. 

 
However, in CG_DESCENT the directions do not satisfy the conjugacy condition (1.11). 
Again, the best performance, relative to the CPU time metric, was obtained by ACGSYS, the 
top curve in Figure 5.  
 In the last set of numerical experiments we present a sensitivity study of the 
ACGSYS subject to the variation of parameter  Table 1 presents the total number of 
iterations (#itert), the total number of function and its gradient evaluations (#fgt) and the total 
CPU time (#cput) for solving the above set of 750 unconstrained optimization problems for 

 and for different values of  For example, for solving the set of 750 problems with 
 and , the total number of iteration is 284678, the total number of function 

and its gradient evaluations is 696921 and the total CPU time is 322.82 seconds, etc.  

.u

7 / 8t = .u
7 / 8t = 0.001u =

 
Table 1. Sensitivity of the algorithm subject to  .u 7 / 8t = . 

u #itert #fgt #cput 
0.001 284678 696921 322.82 
0.005 281919 702663 325.40 
0.01 281197 714022 345.83 
0.05 288053 684277 304.03 
0.1 279370 687177 313.06 
0.5 286722 685759 316.16 
0 297382 721890 329.38 
1 300556 713043 334.45 
5 285184 677952 301.60 

10 281560 677557 306.82 
50 283533 663013 304.46 

 
In section 3 we argued that the ACGSYS algorithm is not sensitive to the variation of  In 
Table 1 we have a computational evidence of this behavior of ACGSYS corresponding to a 
set of 11 numerical experiments. For example, subject to the CPU time metric we see that the 
average of the total CPU time corresponding to these 11 numerical experiments for solving 
750 problems in each experiment is 3504/11=318.546 seconds. The largest deviation is of 

.u

 16



27.29 seconds and corresponds to the numerical experiment in which 0.01.u =  Therefore, in 
all these 11 numerical experiments the maximum deviation is of 27.29/750=0.0363 seconds 
per problem. 
 
7. Conclusions 
For solving large scale unconstrained optimization problems we have presented a new 
conjugate gradient algorithm that for all  both the descent and the conjugacy conditions 
are guaranteed. In our algorithm the search direction is selected as a linear combination of 

 and  where the coefficients in this linear combination are selected in such a way 
that both the descent and the conjugacy condition are satisfied at every iteration. Besides, in 
our algorithm the step length is modified by an acceleration scheme which proved to be very 
efficient in reducing the values of the minimizing function along the iterations. For a test set 
consisting of 750 problems with dimensions ranging between 1000 and 10,000, the CPU time 
performance profiles of ACGSYS was higher than those of HS, PRP, DY, hDY and 
CG_DESCENT with Wolfe line search. At present ACGSYS is the fastest conjugate gradient 
algorithm. 

0k ≥

1kg +− ,ks
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