
An accelerated conjugate gradient algorithm
with guaranteed descent and conjugacy

conditions for unconstrained optimization

Neculai Andrei
Research Institute for Informatics,

Center for Advanced Modeling and Optimization,
8-10, Averescu Avenue, Bucharest 1, Romania,

E-mail: nandrei@ici.ro

Abstract. In this paper we suggest a new conjugate gradient algorithm that for all
both the descent and the conjugacy conditions are guaranteed. The search direction is
selected as a linear combination of

0k ≥

1kg +− and where ,ks 1 1()k kg f x+ += ∇ ,
 and the coefficients in this linear combination are selected in such a way

that both the descent and the conjugacy condition are satisfied at every iteration. It is
shown that for general nonlinear functions with bounded Hessian the algorithm with
strong Wolfe line search generates directions bounded away from infinity. The algorithm
uses an acceleration scheme that modify the steplength

1k ks x x+= − k

kα in such a manner as to improve
the reduction of the function values along the iterations. Numerical comparisons with
some conjugate gradient algorithms using a set of 750 unconstrained optimization
problems, some of them from the CUTE library, show that the computational scheme
outperform the known conjugate gradient algorithms like Hestenes and Stiefel, Polak,
Ribière and Polyak, Dai and Yuan or hybrid Dai and Yuan as well as CG_DESCENT by
Hager and Zhang with Wolfe line search.

Keywords: Conjugate gradient, Wolfe line search, descent condition, conjugacy condition,
unconstrained optimization.
AMS subject classifications: 49M20, 65K05, 90C30

1. Introduction
For solving the unconstrained optimization problems
 min ()

nx R
f x

∈
, (1.1)

where : nf R → R is a continuously differentiable function, bounded from below, one of the
most elegant and probably the simplest methods are the conjugate gradient methods. For
solving this problem, starting from an initial guess 0

nx R∈ , a nonlinear conjugate gradient

method, generates a sequence { }kx as:

 1k k k kx x dα+ = + , (1.2)
where 0kα > is obtained by line search, and the directions are generated as: kd
 1 1k k k kdd g β+ += − + 0 0g, d = − . (1.3)
In (1.3) kβ is known as the conjugate gradient parameter, 1k ks x x+ k= − and .
The search direction , assumed to be a descent one, plays the main role in these methods.
On the other hand, the stepsize

()k kg f x= ∇

kd

kα guarantees the global convergence in some cases and is
crucial in efficiency. Plenty of conjugate gradient methods are known, and an excellent
survey of these methods, with a special attention on their global convergence, is given by
Hager and Zhang [18]. Different conjugate gradient algorithms correspond to different

 1

choices for the scalar parameter .kβ Line search in the conjugate gradient algorithms often is
based on the standard Wolfe conditions [32, 33]
 () () T

k k k k k k k ,f x d f x g dα ρα+ − ≤ (1.4)

 , (1.5) ()T
k k k k kg x d d g dα σ+ ≥ T

k

.where is supposed to be a descent direction and 0 1kd ρ σ< ≤ <
A numerical comparison of conjugate gradient algorithms (1.2) and (1.3) with Wolfe line
search, for different formulae of parameter kβ computation, including the Dolan and Moré
performance profile, is given in [6].
If the initial direction is selected as 0d 0d g0= − , and the objective function to be minimized
is a convex quadratic function

1()
2

T Tf x x Ax b x c= + + (1.6)

and the exact line searches are used, that is

0
arg min (),k k kf x d

α
α α

>
= + (1.7)

then the conjugacy condition
 0T

i jd Ad = (1.8)
holds for all This relation (1.8) is the original condition used by Hestenes and Stiefel
[19] to derive the conjugate gradient algorithms, mainly for solving symmetric positive-
definite systems of linear equations. Using (1.3) and (1.6)-(1.8) it can be shown that

.i j≠

1kx + is

the minimum of the quadratic function (1.6) in the subspace { }1 2, , ,k kx span g g g+ … and

the gradients are mutually orthogonal unless that 1 2, , , kg g g… 0kg = [15]. It follows that
for convex quadratic functions the solution will be found after at most iterations. Powell
[27] shown that if the initial search direction is not then even for quadratic functions (1.6)
the conjugate gradient algorithms does not terminate within a finitely number of iterations. It
is well known that the conjugate gradient algorithm converges at least linearly [23], and an
upper bound for the rate of convergence is obtained by Yuan [30].

n
0g

Conjugate gradient algorithm (1.2) and (1.3) with exact line search always satisfy the
condition

2
1 1 1

T
k k kg d g+ + += − which is in a direct connection with the sufficient descent

condition

2
1 1 1

T
k k kg d t g+ + +≤ − (1.9)

for some positive constant The sufficient descent condition has been used often in the
literature to analyze the global convergence of the conjugate gradient algorithms with inexact
line search based on the strong Wolfe conditions. The sufficient descent condition is not
needed in the convergence analyses of the Newton or quasi-Newton algorithms. However, it
is necessary for the global convergence of conjugate gradient algorithms [12].

0.t >

Let us denote For a general nonlinear twice differential function 1 .k ky g g+= − k ,f
by the mean value theorem, there exists some (0,1)ξ ∈ such that
 (1.10) 2

1 1 (T T
k k k k k k k kd y d f x d dα ξα+ += ∇ +) .

Therefore, it seems reasonable to replace (1.8) with the following conjugacy condition
 1 0.T

k kd y+ = (1.11)
In order to accelerate the conjugate gradient algorithm Perry [22] (see also Shanno [28])
extended the conjugacy condition by incorporating the second order information. He used the
secant condition where is a symmetric approximation to the inverse 1 ,k k kH y s+ = kH

 2

Hessian. Since for quasi-Newton method the search direction 1kd + is computed as
 it follows that 1 1 ,k kd H g+ += − 1k+

1 ,T
+

1
T
+

1 1 1 1 1() ()T T T
k k k k k k k k k kd y H g y g H y g s+ + + + += − = − = −

thus obtaining a new conjugacy condition. Recently, Dai and Liao [11] extended this
condition and suggested the following new conjugacy condition
 , (1.12) 1

T
k k k kd y ug s+ = −

where is a scalar. Conjugate gradient algorithms are based on the conjugacy condition.
To minimize a convex quadratic function in a subspace spanned by a set of mutually
conjugate directions is equivalent to minimize this function along each conjugate direction in
turn. This is a very good idea, but the performance of these algorithms is dependent on the
accuracy of the line search. However, in conjugate gradient algorithms we always use inexact
line search. Hence, when the line search is not exact, the “pure” conjugacy condition (1.11)
may have disadvantages. Therefore, it seems more reasonable to consider in conjugate
gradient algorithms the conjugacy condition (1.12). When the algorithm is convergent
observe that tends to zero along the iterations, and therefore conjugacy condition
(1.12) tends to the pure conjugacy condition (1.11).

0u ≥

1
T
k kg s+

In this paper we suggest a new conjugate gradient algorithm that for all both
the descent and the conjugacy conditions are guaranteed. In section 2 we present the main
ingredients of the search direction computation. The search direction is selected as a linear
combination of

0k ≥

1kg +− and where the coefficients in this linear combination are selected
in such a way that both the descent and the conjugacy condition to be satisfied at every
iteration. In section 3 we prove the convergence of the algorithm. It is shown that for general
nonlinear functions with bounded Hessian the algorithm with strong Wolfe line search
generates directions bounded away from infinity. Section 4 is devoted to present an
acceleration scheme of the algorithm. The idea of this computational scheme is to take
advantage that the step lengths

,ks

kα in conjugate gradient algorithms are very different from 1.
Therefore, we suggest we modify kα in such a manner as to improve the reduction of the
function values along the iterations. Section 5 is devoted to present the ACGSYS algorithm.
We prove that for uniformly convex functions the convergence of the accelerated algorithm is
still linear, but the reduction in function values is significantly improved. In section 6 some
numerical experiments and performance profiles of Dolan-Moré [14] corresponding to this
new conjugate gradient algorithm are given. The performance profiles correspond to a set of
750 unconstrained optimization problems presented in [1]. It is shown that this new conjugate
gradient algorithm outperforms the classical Hestenes and Stiefel [19], Dai and Yuan [13],
Polak, Ribière and Polyak [24, 25] or hybrid Dai and Yuan [13] conjugate gradient algorithms
and also the CG_DESCENT conjugate gradient algorithm with Wolfe line search by Hager
and Zhang [17].

2. Conjugate gradient algorithm with guaranteed descent and
 conjugacy conditions
For solving the minimization problem (1.1) consider the following conjugate gradient
algorithm
 1k k k kx x dα+ = + , (2.1)
where 0kα > is obtained by Wolfe line search, and the directions are generated as: kd
 1 1k k kd g k ksθ β+ += − + , (2.2)

0d g= − 0 , where kθ and kβ are scalar parameters which follows to be determined.
Algorithms of this form, or variations of it, have been studied by many authors. For example,
Birgin and Martínez [7] suggested a spectral conjugate gradient method, where

 3

/T T
k k k ks s s yθ = k . On the other hand Andrei [3,4,5] considers a preconditioned conjugate

gradient algorithm where the preconditioner is a scaled memoryless BFGS matrix and the
parameter scaling the gradient is selected as the spectral gradient. Yuan and Stoer [31] studied
the conjugate gradient algorithm on a subspace, where the search direction at the th

iteration () is taken from the subspace
1kd + k −

1k ≥ { }1,k kspan g d+ .

In our algorithm for all the 0k ≥ kθ and kβ scalar parameters in (2.2) are
determined from the descent condition

2
1 1 1 1 1 1

T T T
k k k k k k k k kg d g g g s t gθ β+ + + + + += − + = − (2.3)

and the conjugacy condition (1.12)
 (2.4) 1 1 (T T T T

k k k k k k k k k ky d y g y s u s gθ β+ += − + = − 1),+

where and are scalar parameters. Observe that in (2.3) we modified the classical
sufficient descent condition (1.9) with equality. It is worth saying that the main condition in
any conjugate gradient algorithm is the descent condition

0t > 0u >

0T
k kg d < or the sufficient descent

condition (1.9). The conjugacy condition (1.11) or its modification (1.12) is not so stringent.
In fact very few conjugate gradient algorithms satisfy this condition. For example, the
Hestenes – Stiefel algorithm has this property that the pure conjugacy condition always holds,
independent of the line search.

If , then (2.4) is the “pure” conjugacy condition. However, in our algorithm in
order to accelerate the algorithm and incorporate the second order information we take .

0u =
0u >

Now, let us define

2
1 1 1()() (T T T

k k k k k k k ky g s g g y s+ + +∆ = −). (2.5)

Supposing that then from the linear algebraic system given by (2.3) and (2.4) we get 0k∆ ≠

2 2

1() ()T T
k k k k k

k
k

y s g t s g u
θ + +− +

=
∆

1 , (2.6)

2 2

1 1 1 1() ()T T
k k k k k k

k
k

y g g t s g g u
β + + + +− +

=
∆

. (2.7)

If the line search is exact, that is 1 0,T
k ks g + = then

2
1 ()T

k k k kg y s+ 0∆ = − < , if the line

search satisfies the Wolfe condition (1.5) and if 1 0.kg + ≠ Therefore from (2.6) and (2.7) we

get k tθ = and i.e. 1() /(T T
k k k k ky g t y sβ +=),

 1
1 1

T

1
HSk k

k k kT
k k

y gd t g s td
y s

+
+ +

⎛ ⎞
= − + =⎜

⎝ ⎠
k+⎟ , (2.8)

where 1
HS
kd + is the Hestenes-Stiefel direction.

Proposition 2.1. If

2

1
2

1 1

,k
T
k k k

g

y g g
σ +

+ +

≤
+

 (2.9)

then for all . 1,k ≥ 0k∆ <

Proof. Observe that
 (2.10) 1 .T T T T

k k k k k k k ks g s y s g s y+ = + <
The Wolfe condition (1.5) gives

 4

 (2.11) 1 .T T T T
k k k k k k k kg s g s y s g sσ σ σ+ ≥ = − + 1+

Since 1,σ < we can rearrange (2.11) to obtain

 1 .
1

T
k k k kg s y sTσ

σ+
−

≥
−

 (2.12)

Now, combining this lower bound for with the upper bound (2.10) we get 1
T
k kg s+

 1 max 1, .
1

T T
k k k kg s y s σ

σ+
⎧ ⎫≤ ⎨ ⎬−⎩ ⎭

 (2.13)

Again, observe that the Wolfe condition gives (if 0T
k ky s > 0kg ≠). Therefore, if σ is

bounded as in (2.9), then
2

1 1 1 max 1,
1

T T T T T
k k k k k k k k k k kg s g y y s g y y s gσ

σ+ + + +
⎧ ⎫≤ ≤⎨ ⎬−⎩ ⎭

1 .

i.e. for all ■ 0k∆ < 1.k ≥

From (2.9) observe that 1σ < . Since

2 0T
k k kg s t g= − < , i.e. is a descent direction, it

follows that

kd
2

1 .T
k k kg y g+ → 1+ Therefore 1/ 2,σ → i.e. 0 1ρ σ< < < , since usually ρ is

selected enough small to ensure the reduction of function values along the iterations.

3. Convergence analysis
In this section we analyze the convergence of the algorithm (2.1) and (2.2), where kθ and kβ
are given by (2.6) and (2.7) respectively, and 0d g0= − . In the following we consider that

 for all , otherwise a stationary point is obtained. Assume that: 0kg ≠ 1k ≥
(i) The level set { }0: () ()nS x R f x f x= ∈ ≤ is bounded.

(ii) In a neighborhood of , the function N S f is continuously differentiable and its
gradient is Lipschitz continuous, i.e. there exists a constant such that 0L >

() ()f x f y L x∇ −∇ ≤ − y , for all , .x y N∈

Under these assumptions on f there exists a constant 0Γ ≥ such that ()f x∇ ≤ Γ for all

.x S∈ In order to prove the global convergence, we assume that the step size kα in (2.1) is
obtained by the strong Wolfe line search, that is,
 () () T

k k k k k k k ,f x d f x g dα ρα+ − ≤ (3.1)

 ()T T
k k k k k kg x d d g dα σ+ ≤ . (3.2)

where ρ and σ are positive constants such that 0 1.ρ σ< ≤ <
Dai et al. [12] proved that for any conjugate gradient method with strong Wolfe line search
the following general result holds:

Lemma 3.1. Suppose that the assumptions (i) and (ii) hold and consider any conjugate
gradient method (1.2) and (1.3), where is a descent direction and kd kα is obtained by the
strong Wolfe line search (3.1) and (3.2). If

 2
1

1
k kd≥

= ∞∑ , (3.3)

then
 liminf 0.k

k
g

→∞
= ■ (3.4)

 5

Therefore, the iteration can fail, in the sense that 0kg γ≥ > , for all only if ,k kd →∞
sufficiently rapidly. The following theorem can be proved.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold and consider the conjugate
gradient algorithm (2.1), where the direction 1kd + is given by (2.2), (2.5)-(2.7) and the step

length kα is obtained by the strong Wolfe line search (3.1) and (3.2). Assume that 2 ()f x∇ is

bounded, i.e. 2 () ,f x MI∇ ≤ for any ,x S∈ where M is a positive constant, then
liminf 0.kk

g
→∞

=

Proof. Since 2 ()f x∇ is bounded we have

22

1() () (T T T
k k k k k k k k k ky s g g s s f x s M s O s+= − = ∇ ≤ = 2), (3.5)

where kx is a point on the line segment connecting kx and 1.kx + Observe that

1 1 ()T
k k k k k ks g s g s O s+ +≤ ≤ Γ = ,

 1 1 ()T
k k k k k ky g y g L s O s+ +≤ ≤ Γ = .

Hence,
 2

1 1()() (T T
k k k k ks g y g O s+ + =). (3.6)

Therefore for all sufficiently large , k
 2(k kO s∆ =). (3.7)
On the other hand, observe that

{ }2 22
1 1() () max (), () ()T T

k k k k k k k ky s g t s g u O s O s O s+ +− + = =2 2
,

 { }2 2
1 1 1 1() () max (), () (T T

k k k k k k k k ky g g t s g g u O s O s O s+ + + +− + = =).

Therefore for all sufficiently large , k

2

2

()
(1)

()
k

k
k

O s
O

O s
θ = = and 2

() 1 .
()()

k
k

kk

O s
O sO s

β = = (3.8)

From (2.2) we have

 1 1
1(1) (1).

()k k k k k k
k

d g s O s O
O s

θ β+ +≤ + ≤ Γ + = (3.9)

Therefore, there is an index and a positive constant 0k B , such that for all , 0k k≥ kd B≤ ,

i.e. 2
1

1
k kd≥

= ∞∑ . By Lemma 1 we have liminf 0.kk
g

→∞
= ■

From (2.6) and (2.7) we see that

2 2
1 1 1

1 1

() ()T T
k k k k k k

k k
k k

y s g y g g
d g+ + +

+ +

⎡ ⎤
= −⎢ ⎥

∆ ∆⎢ ⎥⎣ ⎦
ks t

2 2

1 1 1
1

() () .
T T
k k k k k

k
k k

s g g s gs g+ + +
+

⎡ ⎤
+ −⎢ ⎥

∆ ∆⎢ ⎥⎣ ⎦
k u (3.10)

 6

Since the algorithm is convergent, i.e. { } *
kx x→ , where *x is the local optimal point of

(1.1), it follows that lim 0k ks→∞ = . On the other hand, for Therefore
the coefficient of u in (3.10) tends to zero, i.e. the algorithm is not sensitive to the values of
parameter

1 0T
k ks g + → .k →∞

.u
However, since for it follows that 1 0T

k ks g + → ,k →∞
2

1()
,

T
k k k

k

t y s g
t+ → −

∆

showing that the descent condition (2.3) is more important than the conjugacy condition (2.4).
However, the conjugacy condition is important in the economy of our algorithm because it
includes the information of the second order.

4. Acceleration of the algorithm
It is common to see that in conjugate gradient algorithms the search directions tend to be
poorly scaled and as a consequence the line search must perform more function evaluations in
order to obtain a suitable steplength .kα Therefore, the research efforts was directed to design
procedures for direction computation which takes the second order information. The
algorithms implemented in CONMIN by Shanno and Phua [29] or SCALCG by Andrei [3-5]
use the BFGS preconditioning with remarkable results. In this section we focus on the step
length modification. In the context of gradient descent algorithm with backtracking this idea
of step length modification has been considered for the first time in [2].
Jorge Nocedal [21] pointed out that in conjugate gradient methods the step lengths may differ
from 1 in a very unpredictable manner. They can be larger or smaller than 1 depending on
how the problem is scaled. This is in very sharp contrast to the Newton and quasi-Newton
methods, including the limited memory quasi-Newton methods, which accept the unit
steplength most of the time along the iterations, and therefore usually they require only few
function evaluations per search direction. Numerical comparisons between conjugate gradient
methods and the limited memory quasi Newton method, by Liu and Nocedal [20], show that
the latter is more successful [6]. One explanation of efficiency of this limited memory quasi-
Newton method is given by its ability to accept unity step lengths along the iterations. In this
section we take advantage of this behavior of conjugate gradient algorithms and present an
acceleration scheme. Basically it modifies the step length in a multiplicative manner to
improve the reduction of the function values along the iterations. First, for completeness, we
prove that the step length kα given by the Wolfe line search conditions is bounded away from
zero (see also [17]). Secondly, we present the acceleration scheme.

Line search. For implementing the algorithm (1.2) one of the crucial elements is the stepsize
computation. In the following we consider the line searches that satisfy the Wolfe conditions
(1.4) and (1.5).

Proposition 4.1. Assume that is a descent direction and kd f∇ satisfies the Lipschitz

condition () ()k kf x f x L x x∇ −∇ ≤ − for all x on the line segment connecting kx and

1,kx + where is a positive constant. If the line search satisfies the Wolfe conditions (1.4) and
(1.5), then

L

 2
(1) .

T
k k

k
k

g d
L d
σα −

≥ (4.1)

 7

Proof. To prove (4.1) subtract from both sides of (1.5) and using the Lipschitz
condition we get:

T
k kg d

2
1(1) ()T T

k k k k k k kg d g g d L dσ α+− ≤ − ≤ .

But, is a descent direction and since kd 1σ < , we immediately get (4.1). ■

Therefore, satisfying the Wolfe line search conditions kα is bounded away from zero, i.e. for
all there exists a positive constant 0k ≥ ω , such that .kα ω≥

Acceleration scheme. Suppose that the function f is twice continuously differentiable. At the
iteration we know 1,2,...k = ,kx ,kf and . Now, by the Wolfe line search (1.4) and
(1.5) we can compute

kg kd

kα with which the following point k kz x dkα= + is determined. The
first Wolfe condition (1.4) shows that the steplength 0,kα > satisfies:

() () () .T
k k k k k k kf z f x d f x g dα ρα= + ≤ +

With these, let us introduce the accelerated conjugate gradient algorithm by means of the
following iterative scheme:
 1k k k k kx x dγ α+ = + , (4.2)
where 0kγ > is a parameter which follows to be determined in such a manner as to improve
the behavior of the algorithm. Now, we have:

 ()22 21() () () .
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dα α α α+ = + + ∇ + (4.3)

On the other hand, for 0γ > we have:

 ()22 2 21() () ()
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dγα γα γ α γα+ = + + ∇ + .

(),

 (4.4)

With these we can write:
 () ()k k k k k k kf x d f x dγα α+ = + +Ψ γ (4.5)
where

2 2 21() (1) () (1)
2

T T
k k k k kd f x d g dγ γ α γ αΨ = − ∇ + − k k k

 () ()22 .k k k k k ko d o dγ α α α α+ − 2 (4.6)

Let us denote:
 0,T

k k k ka g dα= ≤
2 2 () ,T

k k k k kb d f x dα= ∇

 ()2 .k k ko dε α=

Observe that , since is a descent direction, and for convex functions
Besides,

0ka ≤ kd 0.kb ≥

kε is independent of .γ Therefore,

 2 21() (1) (1) .
2k k k k kb a k kγ γ γ γ α ε αΨ = − + − + − ε

k

 (4.7)

Now, we see that () (2)k k k kb aγ α ε γ′Ψ = + + and () 0k mγ′Ψ = where

 .
2

k
m

k k

a
b

γ
kα ε

= −
+

 (4.8)

 8

Observe that Therefore, assuming that (0) 0.k ka′Ψ = < 2k k kb 0,α ε+ > then ()k γΨ is a
convex quadratic function with minimum value in point mγ and

2((2))() 0
2(2)

k k k k
k m

k k k

a b
b

α εγ
α ε

+ +
Ψ = − ≤

+
.

Considering mγ γ= in (4.5) and since , we see that for every 0kb ≥ 1k ≥
2((2))() () ()

2(2)
k k k k

k m k k k k k k k k
k k k

a b ,f x d f x d f x d
b

α εγ α α α
α ε

+ +
+ = + − ≤ +

+

which is a possible improvement of the values of function f (when (2)k k k ka b 0α ε+ + ≠).
Therefore, using this simple multiplicative modification of the stepsize kα as k kγ α where

/(2)k m k k k ka bγ γ α= = − + ε we get:
2

1
((2))() () ()

2(2)
T k k k k

k k k k k k k k k
k k k

a bf x f x d f x g d
b

α εγ α ρα
α ε+

+ +
= + ≤ + −

+

2((2))() (),

2(2)
k k k k

k
k k k

a b
k kf x

b
α ε ρ
α ε

⎡ ⎤+ +
= − − ≤⎢ +⎣ ⎦

a f x⎥ (4.9)

since (is a descent direction). 0,ka ≤ kd
Now, neglecting the contribution of kε in (4.9), we still get an improvement of the function
values as

2

1
()() () ()

2
k k

k k k
k

a b .kf x f x a f x
b

ρ+

⎡ ⎤+
≤ − − ≤⎢ ⎥

⎣ ⎦

In order to get the algorithm we have to determine a way for computation. For this, at
point

kb

k kz x dkα= + we have:

2 21() () () () ,
2

T T
k k k k k k k k k k kf z f x d f x g d d f x dα α α= + = + + ∇

where kx is a point on the line segment connecting kx and On the other hand, at point .z

k k kx z dα= − we have:

2 21() () () () ,
2

T T
k k k k z k k k k kf x f z d f z g d d f x dα α α= − = − + ∇

where and ()zg f= ∇ z kx is a point on the line segment connecting kx and Having in
view the local character of searching and that the distance between

.z

kx and z is small enough,
we can consider .k k kx x x= = So, adding the above equalities we get:

 (4.10) ,T
k k kb yα= − kd

zwhere Observe that for strictly convex functions However, if ,
then the acceleration scheme doesn’t have any effect by considering

.k ky g g= − 0.kb > 0kb =
1kγ = in (4.2).

Observe that if ka b> k , then 1.kγ > In this case k k kγ α α> and it is also possible

that 1k kγ α ≤ or 1.k kγ α > Hence, the steplength k kγ α can be greater than 1. On the other

hand, if ,k ka b≤ then 1.kγ ≤ In this case ,k k kγ α α≤ so the steplength k kγ α is reduced.

Therefore, if ka b≠ k , then 1kγ ≠ and the steplength kα computed by Wolfe conditions will

be modified by its increasing or its reducing through factor .kγ

 9

 Neglecting kε in (4.7), we see that (1) 0kΨ = and if / 2,k ka b≤ then

 and (0) / 2k 0k ka bΨ = − − ≤ 1.kγ < Therefore, for any [0,1]γ ∈ , () 0.k γΨ ≤ As a
consequence for any (0,1),γ ∈ it follows that ()k k k k().f x d f xγα+ < In this case, for any

[0,1]γ ∈ , .k k kγ α α≤ However, in our algorithm we selected k mγ γ= as the point achieving
the minimum value of ().k γΨ

5. ACGSYS algorithm
Step 1. Select a starting point 0x dom f∈ and compute: 0 ()0f f x= and

Select some positive values for t and . Set
0 0().g f x= ∇

u 0 0d g= − and 0.k =
Step 2. Test a criterion for stopping the iterations. If the test is satisfied, then stop;

otherwise continue with step 3.
Step 3. Using the Wolfe line search conditions determine the steplength .kα

Step 4. Compute: k k kz x dα= + ()zg f z= ∇ z, and .k ky g g= −

Step 5. Compute: , and . T
k k ka gα= kd kd

k

T
k k kb yα= −

Step 6. If then compute 0,kb ≠ /k ka bγ = − and update the variables as

1k k k k kx x dγ α+ = + , otherwise update the variables as 1k k k kx x dα+ = + . Compute

1kf + and Compute 1.kg + 1k ky g g+ k= − and 1 .k ks x x+ k= −

Step 7. Determine kθ and kβ as in (2.6) and (2.7) respectively, where is computed as
in (2.5).

k∆

Step 8. Compute the search direction as: 1 1k k kd g k ksθ β+ += − + .

Step 9. Restart criterion. If
2

1 10.2T
k k kg g g+ +> then set 1 1k kd g+ += − .

Step 10. Consider and go to step 2. ■ 1k k= +

It is well known that if f is bounded along the direction then there exists a stepsize kd kα
satisfying the Wolfe line search conditions (1.4) and (1.5). In our algorithm when the Powell
restart condition is satisfied, then we restart the algorithm with the negative gradient 1.kg +−
Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion are
sufficient to prove the global convergence of the algorithm. The first trial of the step length
crucially affects the practical behavior of the algorithm. At every iteration the starting
guess for the step

1k ≥
kα in the line search is computed as 1 1 /k k kd dα − − . This selection was

used for the first time by Shanno and Phua in CONMIN [29] and in SCALCG by Andrei [3-
5].

In the following, for uniformly convex functions, we prove the linear convergence of
the acceleration scheme. Recall that a function f is uniformly convex on the level set

{ }0: () ()S x f x f x= ≤ if there is a positive constant such that m
21() () () ()

2
Tf y f x f x y x m y x≥ +∇ − + −

for all , .x y S∈ For uniformly convex functions it is easy to prove that

()2 *() 2 () ()f x m f x f x∇ ≥ − ,

for all ,x S∈ where *x is a local solution of (1.1) [9].

 10

Proposition 5.1. Suppose that f is a uniformly convex function on the level set

{ }0: () ()S x f x f x= ≤ . Assume that satisfies the descent condition kd 2T
k k kg d t g= − ,

where , there is the constant such that 0t > 0c > 2 T
k kc g g d− ≤ k and

2 2
3 2k kc g d c g≤ ≤ 2

k 0., where Then the sequence generated by ACGSYS

converges linearly to
2 3,c c >

*,x solution to the problem (1.1).

Proof. From (4.9) we have that 1() (k)kf x f x+ ≤ for all Since .k f is bounded from below,
it follows that

1lim(() ()) 0.k kk
f x f x +→∞

− =

Now, since f is uniformly convex there exist positive constants and m ,M such that
 on Suppose that 2 ()mI f x MI≤ ∇ ≤ .S k kx d Sα+ ∈ and k m kx d Sγ α+ ∈ for all 0.α >

We have:

2()() ()

2
k k

k m k k k
k

a bf x d f x d
b

γ α α +
+ ≤ + − . (5.1)

But, from uniform convexity we have the following quadratic upper bound on ()k kf x dα+ :
221() ()

2
T

k k k k k kf x d f x g d M dα α α+ ≤ + + .

Therefore,
2 22

2
1() ()
2k k k k kf x d f x t g Mc gα α α+ ≤ − +

22

2
1() .
2k kf x t Mc gα α⎡ ⎤= + − +⎢ ⎥⎣ ⎦

Observe that for 20 /(),t Mcα≤ ≤ 2
2

1
2 2

tt Mcα α α− + ≤ −

.

 which follows from the

convexity of 2
2(/ 2)t Mcα α− + Using this result we get:

2 2() () ()

2k k k k k k
tf x d f x g f x t gα α ρ+ ≤ − ≤ − α , (5.2)

since 1/ 2.ρ <
From proposition 4.1 the Wolfe line search terminates with a value 0.α ω≥ >

Therefore, for 20 /(t Mc),α≤ ≤ this provides a lower bound on the decrease in the function
,f i.e.

 2() ()k k k kf x d f x t gα ρ ω+ ≤ − . (5.3)
On the other hand,

()22 2

2 23 23
2

22

() () .
2 22

k kk k
k

k k

c g mc ga b mc c g
b MMc g

ω ω− ++ −
≥ =

c
 (5.4)

Considering (5.3) and (5.4) from (5.1) we get:

2

2 23

2

()() ()
2k m k k k k
mc cf x d f x t g g

Mc
ωγ α ρ ω −

+ ≤ − − . (5.5)

Therefore

 11

2
23

2

()() () .
2k k m k k
mc cf x f x d t g

Mc
ωγ α ρ ω

⎡ ⎤−
− + ≥ +⎢ ⎥

⎣ ⎦

But, and as a consequence goes to zero, i.e. 1() () 0k kf x f x +− → kg kx converges to *.x

Having in view that ()kf x is a nonincreasing sequence, it follows that ()kf x converges to
*().f x From (5.5) we see that

2

23
1

2

()() ()
2k k
mc cf x f x t g

Mc
ωρ ω+

⎡ ⎤−
≤ − +⎢

⎣ ⎦
.k⎥ (5.6)

Combining this with
2 *2 (())k kg m f x f≥ − and subtracting *f from both sides of (5.6)

we conclude:
* *

1() (())k k ,f x f f x fκ+ − ≤ −
where

2
3

2

()1 2 1.
2
mc cm t

Mc
ωκ ρ ω

⎡ ⎤−
= − + <⎢ ⎥

⎣ ⎦

Therefore, ()kf x converges to *f at least as fast as a geometric series with a factor that
depends on the parameter ρ in the first Wolfe condition, the bounds and m ,M and the
parameter introduced in the descent condition. Hence, the convergence of the acceleration
scheme is at least linear. ■

t

6. Numerical results and comparisons
In this section we report some numerical results obtained with an implementation of the
ACGSYS algorithm. The code is written in Fortran and compiled with f77 (default compiler
settings) on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 75 large-
scale unconstrained optimization test functions in generalized or extended form [1] (some
from CUTE library [8]). For each test function we have taken ten numerical experiments with
the number of variables The algorithm implements the Wolfe line

search conditions with

1000,2000,...,10000.n =

0.0001,ρ = 2
1 1/(),T

k k k kg y g gσ + + += + 2
1 and the same stopping

criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute component of a vector. If

,σ ρ< then we set 0.8.σ = If k mε∆ ≥ , where mε is epsilon machine, then kθ and kβ are

computed as in (2.6) and (2.7), respectively. Otherwise, set 1kθ = and 2
1 / T

k k kg yβ += ks

,

,
i.e. we consider the Dai-Yuan conjugate gradient algorithm [13]. In ACGSYS we set
and . In all the algorithms we considered in this numerical study the maximum
number of iterations is limited to 10000.

7 / 8t =
0.01u =

 The comparisons of algorithms are given in the following context. Let and
be the optimal value found by ALG1 and ALG2, for problem

respectively. We say that, in the particular problem the performance of ALG1 was better
than the performance of ALG2 if:

f i
ALG1

f i
ALG2 i = 1 750, ,…

i,

 f fi
ALG

i
ALG1 2 10− < −3 (6.1)

and the number of iterations, or the number of function-gradient evaluations, or the CPU time
of ALG1 was less than the number of iterations, or the number of function-gradient
evaluations, or the CPU time corresponding to ALG2, respectively.

 12

In the first set of numerical experiments we compare ACGSYS versus Hestenes and

Stiefel (HS) (1
T

HS k k
k T

k k

y g
y s

β +=) [19], Dai and Yuan (DY) (1 1
T

DY k k
k T

k k

g g
y s

β + +=) [13] and versus

Polak-Ribière-Polyak (PRP) (1
T

PRP k k
k T

k k

y g
g g

β +=) [24, 25], conjugate gradient algorithms.

Figures 1-3 present the Dolan and Moré [14] CPU performance profile of ACGSYS versus
HS, DY and PRP, respectively.

An attractive feature of the Hestenes and Stiefel conjugate gradient algorithm is that
the pure conjugacy condition 1 0T

k ky d + = always is satisfied, independent of the line search.
However, for an exact line search the convergence properties of the HS method are similar to
the convergence properties of the PRP method. Therefore, by Powell’s example [26], the HS
method with exact line search may not converge for a general nonlinear function. On the other
hand, the DY method always generates descent directions, and in [10] Dai established a
remarkable property for the DY conjugate gradient algorithm, relating the descent directions
to the sufficient descent condition. It is shown that if there exist constants γ 1 and γ 2 such

that γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ (,)0 1 , there exists a constant such that

the sufficient descent condition

c > 0

g d c gi
T

i ≤ −
2

i holds for at least ⎣ ⎦pk indices
where i k∈ [,],0 ⎣ ⎦j denotes the largest integer ≤ j. However, the DY method does not

satisfy the conjugacy condition.
In contrast, observe that in ACGSYS the search directions are always descent

directions and the conjugacy condition always is satisfied independent of the accuracy of the
line search.

In a performance profile plot, the top curve corresponds to the method that solved the
most problems in a time that was within a factor τ of the best time. The percentage of the test
problems for which a method is the fastest is given on the left axis of the plot. The right side
of the plot gives the percentage of the test problems that were successfully solved by these
algorithms, respectively. Mainly, the right side is a measure of the robustness of an algorithm.

Fig. 1. ACGSYS versus Hestenes-Stiefel.

 13

Fig. 2. ACGSYS versus Dai-Yuan.

Fig. 3. ACGSYS versus Polak-Ribière-Polyak.

When comparing ACGSYS with these conjugate gradient algorithms subject to CPU time
metric we see that ACGSYS is top performer, i.e. the accelerated conjugate gradient
algorithm with guaranteed descent and conjugacy conditions is more successful and more

 14

robust than the considered conjugate gradient algorithms. For example, when comparing
ACGSYS with Hestene-Stiefel (HS) (see Figure 1), subject to the number of iterations, we see
that ACGSYS was better in 617 problems (i.e. it achieved the minimum number of iterations
in 617 problems). HS was better in 39 problems and they achieved the same number of
iterations in 66 problems, etc. Out of 750 problems, only for 722 problems does the criterion
(6.1) hold. Therefore, ACGSYS appears to generate the best search direction and the best
steplength, on average.
 In the second set of numerical experiments we compare ACGSYS versus hybrid Dai-
Yuan ({ }{ }max ,min ,hDY DY HS DY

k k k kβcβ β β= − (1) /(1), c σ σ= − + , 0.8σ =) [13]. The

hDY method reduces to the Fletcher and Reeves method [16] if f is a strictly convex
quadratic function and the line search is exact. For a standard Wolfe line search, Dai and
Yuan [13] proved that it produces descent directions at every iteration and they established
the global convergence of their hybrid conjugate gradient algorithm when the Lipschitz
assumption holds. However, the hDY conjugate gradient algorithm does not satisfy the
conjugacy condition. Figure 4 presents the Dolan and Moré CPU time performance profile of
ACGSYS versus hDY. The best performance, relative to the CPU time metric, again was
obtained by ACGSYS, the top curve in Figure 4.

Fig. 4. ACGSYS versus hybrid Dai-Yuan.

In the third set of numerical experiments we compare ACGSYS versus

CG_DESCENT by Hager and Zhang [17]. Figure 5 presents the Dolan and Moré CPU time
performance profile of ACGSYS versus CG_DESCENT with Wolfe line search.
CG_DESCENT was devised in order to ensure sufficient descent, independent of the
accuracy of the line search. Hager and Zhang [17] proved that the direction in their

algorithm satisfies the sufficient descent condition
kd

2(7 / 8)T
k k kg d g≤ − . This is the main

reason we have considered in all our numerical experiments. 7 / 8t =

 15

Fig. 5. ACGSYS versus CG_DESCENT by Hager and Zhang.

However, in CG_DESCENT the directions do not satisfy the conjugacy condition (1.11).
Again, the best performance, relative to the CPU time metric, was obtained by ACGSYS, the
top curve in Figure 5.
 In the last set of numerical experiments we present a sensitivity study of the
ACGSYS subject to the variation of parameter Table 1 presents the total number of
iterations (#itert), the total number of function and its gradient evaluations (#fgt) and the total
CPU time (#cput) for solving the above set of 750 unconstrained optimization problems for

 and for different values of For example, for solving the set of 750 problems with
 and , the total number of iteration is 284678, the total number of function

and its gradient evaluations is 696921 and the total CPU time is 322.82 seconds, etc.

.u

7 / 8t = .u
7 / 8t = 0.001u =

Table 1. Sensitivity of the algorithm subject to .u 7 / 8t = .

u #itert #fgt #cput
0.001 284678 696921 322.82
0.005 281919 702663 325.40
0.01 281197 714022 345.83
0.05 288053 684277 304.03
0.1 279370 687177 313.06
0.5 286722 685759 316.16
0 297382 721890 329.38
1 300556 713043 334.45
5 285184 677952 301.60

10 281560 677557 306.82
50 283533 663013 304.46

In section 3 we argued that the ACGSYS algorithm is not sensitive to the variation of In
Table 1 we have a computational evidence of this behavior of ACGSYS corresponding to a
set of 11 numerical experiments. For example, subject to the CPU time metric we see that the
average of the total CPU time corresponding to these 11 numerical experiments for solving
750 problems in each experiment is 3504/11=318.546 seconds. The largest deviation is of

.u

 16

27.29 seconds and corresponds to the numerical experiment in which 0.01.u = Therefore, in
all these 11 numerical experiments the maximum deviation is of 27.29/750=0.0363 seconds
per problem.

7. Conclusions
For solving large scale unconstrained optimization problems we have presented a new
conjugate gradient algorithm that for all both the descent and the conjugacy conditions
are guaranteed. In our algorithm the search direction is selected as a linear combination of

 and where the coefficients in this linear combination are selected in such a way
that both the descent and the conjugacy condition are satisfied at every iteration. Besides, in
our algorithm the step length is modified by an acceleration scheme which proved to be very
efficient in reducing the values of the minimizing function along the iterations. For a test set
consisting of 750 problems with dimensions ranging between 1000 and 10,000, the CPU time
performance profiles of ACGSYS was higher than those of HS, PRP, DY, hDY and
CG_DESCENT with Wolfe line search. At present ACGSYS is the fastest conjugate gradient
algorithm.

0k ≥

1kg +− ,ks

References
[1] N. Andrei, An unconstrained optimization test functions collection. Advanced Modeling

and Optimization, 10 (2008), pp. 147-161.
[2] N. Andrei, An acceleration of gradient descent algorithm with backtracking for

unconstrained optimization, Numerical Algorithms, 42 (2006), pp. 63-73.
[3] N. Andrei, Scaled conjugate gradient algorithms for unconstrained optimization.

Computational Optimization and Applications, 38 (2007), pp. 401-416.
[4] N. Andrei, Scaled memoryless BFGS preconditioned conjugate gradient algorithm for

unconstrained optimization. Optimization Methods and Software, 22 (2007), 561-571.
[5] N. Andrei, A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained

optimization. Applied Mathematics Letters, 20 (2007), 645-650.
[6] N. Andrei, Numerical comparison of conjugate gradient algorithms for unconstrained

optimization. Studies in Informatics and Control, 16 (2007), pp.333-352.
[7] E. Birgin and J.M. Martínez, A spectral conjugate gradient method for unconstrained

optimization, Applied Math. and Optimization, 43, pp.117-128, 2001.
[8] I. Bongartz, A.R. Conn, N.I.M. Gould and P.L. Toint, CUTE: constrained and

unconstrained testing environments, ACM Trans. Math. Software, 21, pp.123-160,
1995.

[9] S. Boyd, L. Vandenberghe, Convex optimization. Cambridge University Press, 2004.
[10] Y.H. Dai, New properties of a nonlinear conjugate gradient method. Numer. Math., 89

(2001), pp.83-98.
[11] Y.H. Dai and L.Z. Liao, New conjugacy conditions and related nonlinear conjugate

gradient methods. Applied Mathematical Optimization, 43 (2001), pp. 87-101.
[12] Y.H. Dai, Han, J.Y., Liu, G.H., Sun, D.F., Yin, .X. and Yuan, Y., Convergence

properties of nonlinear conjugate gradient methods. SIAM Journal on Optimization 10
(1999), 348-358.

[13] Y.H. Dai, Y. Yuan, An efficient hybrid conjugate gradient method for unconstrained
optimization, Ann. Oper. Res., 103 (2001) 33-47.

[14] Dolan, E.D. and Moré, J.J., Benchmarking optimization software with performance
profiles, Math. Programming 91, 201-213 (2002)

[15] R. Fletcher, Practical Optimization:Vol. 1: Unconstrained optimization. John Wiley and
Sons, Chichester, 1980.

[16] R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients. Computer
Journal 7 (1964), pp. 149-154.

[17] W.W. Hager and H. Zhang, “A new conjugate gradient method with guaranteed descent
and an efficient line search”, SIAM Journal on Optimization, 16 (2005) 170-192.

 17

[18] W.W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods. Pacific
journal of Optimization, 2 (2006) 35-58.

[19] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems, J.
Research Nat. Bur. Standards, 49 (1952) 409-436.

[20] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization
methods. Mathematical Programming, 45 (1989), pp. 503-528.

[21] J. Nocedal, Conjugate gradient methods and nonlinear optimization. In Linear and
nonlinear Conjugate Gradient related methods, L. Adams and J.L. Nazareth (eds.),
SIAM, 1996, pp.9-23.

[22] A. Perry, A modified conjugate gradient algorithm. Operations Research 26 (1978), pp.
1073-1078.

[23] E. Polak, Computational methods in optimization: A unified approach. Academic Press,
New York, 1971.

[24] E. Polak, G. Ribière, Note sur la convergence de directions conjuguée, Rev. Francaise
Informat Recherche Operationelle, 3e Année 16 (1969) 35-43.

[25] B.T. Polyak, The conjugate gradient method in extreme problems. USSR Comp. Math.
Math. Phys., 9 (1969) 94-112.

[26] M.J.D. Powell, Nonconvex minimization calculations and the conjugate gradient method.
Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, vol. 1066,
Springer-Verlag, Berlin, 1984, pp. 122-141.

[27] M.J.D. Powell, Some convergence properties of the conjugate gradient method.
Mathematical Ptrogramming, 11 (1976), pp.42-49.

[28] D.F. Shanno, Conjugate gradient methods with inexact searches. Mathematics of
Operations Research 3 (1978), pp. 244-256.

[29] D.F. Shanno, K.H. Phua, Algorithm 500, Minimization of unconstrained multivariate
functions, ACM Trans. on Math. Soft., 2 (1976) 87-94.

[30] Y. Yuan, Analysis on the conjugate gradient method. Technical Report, Computing
Center, Academia Sinica, China, 1990.

[31] Y. Yuan, J. Stoer, A subspace study on conjugate gradient algorithms. Z. Angew. Math.
Mech., 75 (1995), pp. 69-77.

[32] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev. 11 (1969) 226-235.
[33] P. Wolfe, Convergence conditions for ascent methods II: some corrections, SIAM Rev.

13 (1971) 185-188.

December 10, 2008

 18

