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Figue 1 presents the Dolan-Moré CPU time performance profiles of ASCALCG (accelerated 
BFGS preconditioned conjugate gradient algorithm by Andrei [1-5]) versus CONMIN (BFGS 
preconditioned conjugate gradient algorithm by Shanno and Phua [16-18]), CG_DESCENT 
(W) (a conjugate gradient algorithm with guaranteed descent with Wolfe line search by Hager 
and Zhang [7-11]), CG_DESCENT (AW) (a conjugate gradient algorithm with guaranteed 
descent with approximate Wolfe line search by Hager and Zhang [7-11]), LBFGS (m=3) 
(limited memory quasi-Newton algorithm by Nocedal [13] and Liu and Nocedal [12] and TN 
(truncated Newton algorithm by Schlick and Fogelson [14,15]) for a set of 750 unconstrained 
optimization test functions described in [6]. 

 
Fig. 1. Performance profiles of ASCALCG versus CONMIN,  

CG_DESCENT, LBFGS(m=3) and TN.  
 

In Figure 1 for each algorithm we present the number of problems solved in minimum CPU 
time with dimensions ranging from 1000 to 10,000 variables. The left side of the figures gives 
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the percentage of the test problems that were fastest solved by each of the algorithms. The top 
curve corresponds to the algorithm that solved the most problems in a time that was within a 
factor τ  of the best time. Observe that for 1τ =  the top curve in Figure 1 corresponds to 
CG_DESCENT (AW), this algorithm is clearly the fastest for this set of 597 test problems. 
The right side of the plots gives the percentage of the test problems that were successfully 
solved by each of the algorithms. Mainly, the right side is a measure of the robustness of an 
algorithm. In Figure 1 we see that ASCALCG and LBFGS (m=3) are the most robust 
algorithms we considered in this numerical study, ASCALCG being slight better. 
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