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Abstract. New accelerated nonlinear conjugate gradient algorithms which are mainly  
modifications of the Dai and Yuan’s for unconstrained optimization are proposed. 
Using the exact line search, the algorithm reduces to the Dai and Yuan conjugate 
gradient computational scheme. For inexact line search the algorithm satisfies the 
sufficient descent condition. Since the step lengths in conjugate gradient algorithms 
may differ from 1 by two order of magnitude and tend to vary in a very unpredictable 
manner, we suggest an acceleration scheme able to improve the efficiency of the 
algorithms. A global convergence result is proved when the strong Wolfe line search 
conditions are used. Computational results for a set consisting of 750 unconstrained 
optimization test problems show that these new conjugate gradient algorithms 
substantially outperform the Dai-Yuan conjugate gradient algorithm and its hybrid 
variants.  
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1. Introduction 
Conjugate gradient methods represent an important class of unconstrained optimization 
algorithms with strong local and global convergence properties and modest memory 
requirements. A history of these algorithms has been given by Golub and O’Leary [28], as 
well as by O’Leary [38]. A survey of development of different versions of nonlinear 
conjugate gradient methods, with special attention to global convergence properties is 
presented by Hager and Zhang [31]. A survey on their definition including 40 conjugate 
gradient algorithms for unconstrained optimization is given by Andrei [7]. The conjugate 
gradient algorithms have been introduced early in 1952 by Cornelius Lanczos [34, 35] and by 
Magnus Hestenes with the cooperation of J.B. Rosser, G. E. Forsythe, L. Paige, M. Stein, R. 
Hayes and U. Hochstrasser at the Institute for Numerical Analysis, a part of National Bureau 
of Standards in Los Angeles, and by Eduard Stiefel at Eidgenössischen Technischen 
Hochschule in Zürich (see Hestenes and Stiefel [32]). Even if the conjugate gradient methods 
are now over 50 years old, they continue to be of a considerable interest particularly due to 
their convergence properties and to a very easy implementation in computer programs of the 
corresponding algorithms.  
 Many researchers in this area brought significant contributions, clarifying many 
theoretical and computational aspects of this class of algorithms. Particularly, for the 
development of effective algorithms for solving basic linear algebra problems Golub and 
Kahan [27] discussed the use of the Lanczos algorithm in computing the singular value 
decomposition of non-quadratic functions. Concus, Golub and O’Leary [15] considered 
preconditioning of conjugate gradient algorithms. An important extension of the conjugate 
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gradient algorithm was given by Concus and Golub [16] where the Hermitian part of the 
matrix is taken as a preconditioner. A development of a block form of the Lanczos algorithm 
has been proposed by Golub, Underwood and Wilkinson [29]. Fletcher and Reeves extended 
the conjugate gradient algorithm to minimization of non-quadratic functions [25], thus 
opening an important area of research and applications. Developments of this algorithm have 
been considered inter allia by Polak and Ribière [41], Polyak [42], Perry [40], Shanno [44, 
45], Gilbert and Nocedal [26], Liu and Storey [37], Hu and Storey [33],Touati-Ahmed and 
Storey [46]. Recently, the papers of Nocedal [39], Dai and Yuan [20, 21], Hager and Zhang 
[30], Andrei [1-6, 8-11] present important theoretical and computational contributions to the 
development of this class of algorithms. 

In this paper we suggest new nonlinear conjugate gradient algorithms which are 
mainly modifications of the Dai and Yuan [20] conjugate gradient computational scheme. In 
these algorithms the direction  is computed as a linear combination between and 

 i.e.  where 
1kd + 1kg +−

,ks 1 1 1 ,N
k k k kd gθ β+ + += − + ks k1k ks x x+= − . The parameter kθ  is computed in 

such a way that the direction 1kd +  is the Newton direction or it satisfies the conjugacy 

condition. On the other hand, N
kβ  is a proper modification of the Dai and Yuan’s 

computational scheme in such a way that the direction 1kd + satisfies the sufficient descent 
condition. For the exact line search the proposed algorithms reduce to the Dai and Yuan 
conjugate gradient computational scheme.  
 The paper has the following structure. In Section 2 we present the development of the 
conjugate gradient algorithms with sufficient descent condition, while in section 3 we prove 
the global convergence of the algorithms under strong Wolfe line search conditions. In 
Section 4 we present an acceleration of the algorithm while in Section 5 we compare the 
computational performance of the new conjugate gradient schemes against the Dai and Yuan 
method and its hybrid variants [21] using 750 unconstrained optimization test problems from 
the CUTE [14] library along with some other large-scale unconstrained optimization problems 
presented in [12]. Using the Dolan and Moré performance profiles [23] we prove that these 
new accelerated conjugate gradient algorithms outperform the Dai-Yuan algorithm as well as 
its hybrid variants. 
 
2. Modifications of the Dai-Yuan conjugate gradient algorithm 
For solving the unconstrained optimization problem 
                                                         { }min f x x R n( ) : ,∈                                                  (2.1) 
where  is continuously differentiable we consider a nonlinear conjugate gradient 
algorithm: 

f R Rn: →

                                                           x x dk k k+ k= +1 α ,                                                    (2.2) 
where the stepsize α k is positive and the directions are computed by the rule: dk

                                               1 1 1 ,N
k k k k ksd gθ β+ + += − + d g0 0= − ,                                   (2.3) 

where 

                                                
2 2

1 1
2

( )
,

( )

T
k k k kN

k T T
k k k k

g g s g
y s y s

β + + += − 1                                        (2.4) 

and 1kθ +  is a parameter which follows to be determined. Here g f xk = ∇ ( )k  and 
y g gk k k= −+1 ,  s x xk k k= −+1 .   

Observe that if f is a quadratic function and α k  is selected to achieve the exact 
minimum of f  in the direction , then dk s gk

T
k+ =1 0 and the formula (2.4) for N

kβ reduces 
to the Dai and Yuan computational scheme [20]. However, in this paper we refer to general 
nonlinear functions and inexact line search. 
 We were led to this computational scheme by modifying the Dai and Yuan algorithm  

 2



β k
DY k

T
k

k
T

k

g g
y s

= + +1 1 , 

in order to conserve the sufficient descent condition and to have some other properties for an 
efficient conjugate gradient algorithm. Using a standard Wolfe line search, the Dai and Yuan 
method always generates descent directions and under Lipschitz assumption it is globally 
convergent. In [17] Dai established a remarkable property relating the descent directions to 
the sufficient descent condition, showing that if there exist constants γ 1  and γ 2  such that 

γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ ( , )0 1 , there exists a constant such that the 

sufficient descent condition 

c > 0

g d c gi
T

i ≤ −
2

i holds for at least ⎣ ⎦pk  indices 
i k∈ [ , ],0 where ⎣ ⎦j  denotes the largest integer ≤ j. In our algorithm the parameter β k is 
selected in  such a manner that the sufficient descent condition is satisfied at every iteration. 
As we know, despite the strong convergence theory that has been developed for the Dai and 
Yuan method, it is susceptible to jamming, that is it begins to take small steps without making 
significant progress to the minimum. When the iterates jam,  becomes tiny while ky kg  is 

bounded away from zero. Therefore, N
kβ  is a proper modification of the .DY

kβ  
 
Theorem 2.1. If  1 1/ 4,kθ + ≥  then the direction  ( d1 1 1 ,N

k k k k ksd gθ β+ + += − + g0 0= − ), 

where N
kβ  is given by (2.4) satisfies the sufficient descent condition 

                                                     
2

1 1 1 1
1 .
4

T
k k k kg d gθ+ + + +

⎛ ⎞≤ − −⎜ ⎟
⎝ ⎠

                                     (2.5) 

 
Proof. Since d g0 = 0− , we have g d gT

0 0 0

2
= − ,  which satisfy (2.5). Multiplying (2.3) by 

, we have gk
T
+1

                         
2 2

2 1 11 1 1
1 1 1 1 2

( )( )( ) .
( )

TT T
k k kT k k k k

k k k k T T
k k k k

g s gg g g sg d g
y s y s

θ + ++ + +
+ + + += − + −           (2.6) 

Now, using the inequality 
21 (

2
Tu v u v≤ + 2 )  we have: 

1 11 1 1
2

( ) / 2 2( )( )( )
( )

TT TT T
k k k k k kk k k k

T T
k k k k

y s g g s gg g g s
y s y s

+ ++ + + 1+
⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦=  

2 22 2
1 1 1

2

1 1 ( ) 2( )
2 2

( )

T T
k k k k k k

T
k k

y s g g s g

y s

+ + +
⎡ ⎤+⎢ ⎥⎣ ⎦≤  

                                      
22

2 1 1
1 2

( )1 .
4 ( )

T
k k k

k T
k k

g s g
g

y s
+ +

+= +                                                     (2.7) 

Using (2.7) in (2.6) we get (2.5).  
 
To conclude, the sufficient descent condition from (2.5), the quantity 1 1/ 4kθ + −  is required 
to be nonnegative. Supposing that 1 1/ 4 0kθ + − > , then the direction given by (2.3) and (2.4) 
is a descent direction. Dai and Yuan [20, 21] present conjugate gradient schemes with the 
property that g dk

T
k < 0  when  If y sk

T
k > 0. f is strongly convex or the line search satisfies 

the Wolfe conditions, then and the Dai and Yuan scheme yield descent. In our y sk
T

k > 0
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algorithm observe that, if for all k , 1 1/ 4,kθ + ≥  and the line search satisfies the Wolfe 
conditions, then for all k  the search direction (2.3) and (2.4) satisfy the sufficient descent 

condition. Note that in (2.5) we bound by g dk
T

k+ +1 1
2

1( 1/ 4)k kgθ +− − 1 ,+ while for scheme 

of Dai and Yuan only the non-negativity of  is established.  g dk
T

k+ +1 1

To determine the parameter θ k+1 in (2.3) we suggest the following two procedures.    
 
A) Our motivation to get a good algorithm for solving (2.1) is to choose the parameter θ k+1 in 
such a way that for every  the direction 1k ≥ 1kd +  given by (2.3) be the Newton direction. 
Therefore, from the equation 
                                              2 1

1 1 1 1( ) N
k k k k k kf x g gθ β−
+ + + +−∇ = − + s                                  (2.8) 

after some algebra we get 

                
2

1 21
1 12

1 1

1 1 ( )
( )

T
k Tk k

k kT T T
k k k k k k k

g s g s f x s s g
s f x g y s y s

θ + +
+ +

+ +
1 .T

k k k k+

⎡ ⎤⎛ ⎞
= − ∇ +⎢ ⎥⎜ ⎟∇ ⎢ ⎥⎝ ⎠⎣ ⎦

       (2.9) 

The salient point in this formula for θ k+1  is the presence of the Hessian. For large-scale 
problems, choices for the update parameter that do not require the evaluation of the Hessian 
matrix are often preferred in practice to the methods that require the Hessian in each iteration. 
Therefore, in order to have an algorithm for solving large-scale problems we assume that in 
(2.8) we use an approximation 1kB +  of the true Hessian 2

1( k )f x +∇  and let 1kB +  satisfy the 
quasi-Newton equation 1 .k k kB s y+ =  This leads us to: 

                                  
2

2 1 1
1 1

1

( )1 .
T

k k k T
k k kT T

k k k k

g s g
g

y g y s
θ + +

+ +
+

1ks g +

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
                     (2.10) 

Observe that if 1kθ +  given by (2.10) is greater than or equal to 1/  then according to 
Theorem 2.1 the direction (2.3) satisfies the sufficient descent condition (2.5). On the other 
hand, if in (2.10) 

4,

1 1/ 4,kθ + <  then we take ex abrupto 1 1kθ + =  in (2.3). 
 
B) The second procedure is based on the conjugacy condition. Dai and Liao [18] introduced 
the conjugacy condition  where  is a scalar. This is indeed very 
reasonable since in real computation the inexact line search is generally used. However, this 
condition is very dependent on the nonnegative parameter , for which we do not know any 
formula to choose in an optimal manner. Therefore, even if in our developments we use the 
inexact line search we adopt here a more conservative approach and consider the conjugacy 
condition  This leads us to: 

1 1,
T T
k k k ky d ts g+ += − 0t ≥

t

1 0.T
k ky d + =

                                          
2

2 1 1
1 1

1

( )1 .
T

k k k
k kT T

k k k k

g s g
g

y g y s
θ + +

+ +
+

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
                           (2.11) 

Again, if 1kθ +  given by (2.11) is greater than or equal to 1/  then according to Theorem 2.1 
the direction (2.3) satisfies the sufficient descent condition (2.5). On the other hand, if in 
(2.11) 

4,

1 1/ 4,kθ + <  then we take 1 1kθ + =  in (2.3).  
The line search in the conjugate gradient algorithms for kα  computation is often based on the 
standard Wolfe conditions: 
                                                 ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                  (2.12) 

                                                 ,                                                               (2.13) 1
T
k k k kg d g dσ+ ≥ T
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where  is a descent direction and 0 1kd .ρ σ< ≤ <  
In [21] Dai and Yuan proved the global convergence of a conjugate gradient algorithm for 
which  where  with ,DY

k k ktβ β= [ ,1]kt c∈ − (1 ) /(1 ).c σ σ= − +  Our algorithm is a 
modification of the Dai and Yuan’s with the following property.  
Observe that  

                                              
2

1 11
T

kN k k
k T T

k k k k

g s g r
y s y s

β + +⎡ ⎤
= − =⎢ ⎥

⎣ ⎦
,DY

k kβ                                    (2.14) 

where  

                                                              11
T
k k

k T
k k

s gr
y s

.+= −                                                     (2.15) 

From the second Wolfe condition it follows that 1 1,
T T T T
k k k k k k k ks g s g y s s gσ σ σ+ +≥ = − +  i.e.  

1 .
1

T T
k k k ks g y sσ

σ+
−

≥
−

 

Since by the Wolfe condition , it follows that 0T
k ky s > 1 .

1

T
k k

T
k k

s g
y s

σ
σ

+ −
≥

−
 Hence 

1 .
1kr σ

≤
−

 

Therefore, 
1 .

1
N DY
k kβ β

σ
≤

−
  

 
3. Convergence analysis 
In this section we analyze the convergence of the algorithm (2.2), (2.3), (2.4) and (2.10) or 
(2.11) where . In the following we consider that 0d = − 0g 0kg ≠  for all , otherwise a 
stationary point is obtained. Assume that: 

1k ≥

(i) The level set { }0: ( ) ( )nS x R f x f x= ∈ ≤  is bounded. 

(ii) In a neighborhood  of , the function N S f is continuously differentiable and its 
gradient is Lipschitz continuous, i.e. there exists a constant  such that 0L >

( ) ( )f x f y L x∇ −∇ ≤ − y , for all , .x y N∈  

Under these assumptions on f  there exists a constant 0Γ ≥  such that ( )f x∇ ≤ Γ  for all 

.x S∈  In order to prove the global convergence, we assume that the step size kα  in (2.2) is 
obtained by the strong Wolfe line search, that is, 
                                             ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                        (3.1) 

                                              1 .T
k k k kg d g dσ+ ≤ T                                                                   (3.2) 

where ρ  and σ  are positive constants such that 0 1.ρ σ< ≤ <  
Dai et al. [22] proved that for any conjugate gradient method with strong Wolfe line search 
the following general result holds: 
 
Lemma 3.1. Suppose that the assumptions (i) and (ii) hold and consider any conjugate 
gradient method (2.2) and (2.3), where  is a descent direction and kd kα  is obtained by the 
strong Wolfe line search (3.1) and (3.2). If 
 

                                                               2
1

1
k kd≥

= ∞∑ ,                                                       (3.3) 

then 
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                                                          liminf 0.k
k

g
→∞

=  ■                                                     (3.4) 

 
Theorem 3.1. Suppose that the assumptions (i) and (ii) hold and consider the algorithm (2.2), 
(2.3), (2.4) and (2.10) or (2.11), where  1kd +  is a descent direction and kα  is obtained by the 

strong Wolfe line search (3.1) and (3.2). If there exists a constant 0γ ≥  such ( )f xγ ≤ ∇ , 

1/ 4 kθ τ≤ ≤ , where τ  is a positive constant and the angle kϕ  between  and  is 
bounded, i.e. 

kg kd
cos kϕ ξ≤  for all , then the algorithm satisfies li  0,1,k = … minf 0.kk

g
→∞

=

 
Proof. Observe that  But 1 ( 1)T T T T

k k k k k k k ky s g s g s g sσ+= − ≥ − . cos .T
k k k k kg s g s ϕ=  Since 

 is a descent direction it follows that kd 0T
k k k kg s g s ξ≤ ≤  for all 0,1, ,k = … i.e.  

(1 ) .T
k k k ky s g sσ ξ≥ − −  

With these 
2 2 2

1 1
2 2

1 ,
1 (1 ) (1 )

k kN
k T

k k k k k k

g g
y s g s s s

ηβ
σ σ ξ σ ξγ

+ + Γ
≤ ≤ ≤ =

− − − − −
 

where 
2

2 .
(1 )

η
σ ξγ
Γ

=
− −

 

Therefore 

1 1 1 .N
k k k k k k

k

d g s s
s
ηθ β τ τ+ + +≤ + ≤ Γ + = Γ η+  

This relation shows that 

2 2
1 1

1 1 1 .
( )k kkd τ η≥ ≥

≥ =
Γ +∑ ∑ ∞  

Hence, from Lemma 3.1 it follows that liminf 0k
k

g
→∞

= .  ■ 

 
4. Acceleration of the algorithm 
In conjugate gradient algorithms the search directions tend to be poorly scaled and as a 
consequence the line search must perform more function evaluations in order to obtain a 
suitable steplength .kα  In order to improve the performances of the conjugate gradient 
algorithms the efforts were directed to design procedures for direction computation based on 
the second order information. For example, CONMIN [43], and SCALCG [2-5] take this idea 
of BFGS preconditioning. In this section we focus on the step length modification. In the 
context of gradient descent algorithm with backtracking the step length modification has been 
considered for the first time in [6]. Nocedal [39] pointed out that in conjugate gradient 
methods the step lengths may differ from 1 in a very unpredictable manner. They can be 
larger or smaller than 1 depending on how the problem is scaled. Numerical comparisons 
between conjugate gradient methods and the limited memory quasi Newton method, by Liu 
and Nocedal [36], show that the latter is more successful [8]. One explanation of the 
efficiency of the limited memory quasi-Newton method is given by its ability to accept unity 
step lengths along the iterations. In this section we take advantage of this behavior of 
conjugate gradient algorithms and present an acceleration scheme. Basically this modifies the 
step length in a multiplicative manner to improve the reduction of the function values along 
the iterations.  
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Line search. For using the algorithm (2.2) one of the crucial elements is the stepsize 
computation. For sake of generality in the following we consider the line searches that satisfy 
either the Goldstein’s conditions [24]: 
                                                             (4.1) 1 2( ) ( )T T

k k k k k k k k k kg d f x d f x g dρ α α ρ α≤ + − ≤ ,
where 1

2 120 1ρ ρ< < < < 0,k and α >  or the Wolfe conditions (2.12) and (2.13). 
 
Proposition 4.1. Assume that  is a descent direction and kd f∇  satisfies the Lipschitz 

condition ( ) ( )k kf x f x L x x∇ −∇ ≤ −  for all x  on the line segment connecting kx  and 

1,kx +  where is a positive constant. If the line search satisfies the Goldstein conditions (4.1), 
then 

L

                                                         1
2

(1 ) .
T
k k

k
k

g d
L d
ρα −

≥                                                   (4.2) 

If the line search satisfies the Wolfe conditions (2.12) and (2.13), then 

                                                         2
(1 ) .

T
k k

k
k

g d
L d
σα −

≥                                                    (4.3) 

 
Proof. If the Goldstein conditions are satisfied, then using the mean value theorem from (4.1) 
we get: 
                                     1 ( ) (T

k k k k k k kg d f x d f xρ α α≤ + − )

                                                      ( )T
k k k kf x dα ξ= ∇ + d 22 ,T

k k k k kg d L dα α≤ +  

where [0, ].kξ α∈  From this inequality we immediately get (4.2). 

Now, to prove (4.3) subtract  from both sides of (2.13) and using the Lipschitz 
condition we get: 

T
k kg d

                                       
2

1( 1) ( )T T
k k k k k k kg d g g d L dσ +− ≤ − ≤ .α                                 (4.4) 

But,  is a descent direction and since kd 1σ < , we immediately get (4.3). ■ 
 
Therefore, satisfying the Goldstein or the Wolfe line search conditions α is bounded away 
from zero, i.e. there exists a positive constant ω , such that .α ω≥  
 
Acceleration scheme [6]. Given the initial point 0x  we can compute 0 0( ),f f x=  

 and by Wolfe line search conditions (2.12) and (2.13) the steplength 0 ( )g f x= ∇ 0 0α  is 
determined. With these, the next iteration is computed as: 1 0 0 0x x dα= + ,  ( ) where 0d g= − 0

1f  and  are immediately determined and the direction  can be computed as: 

, where the conjugate gradient parameter 
1g 1d

1 1 1 0
Nd gθ β= − + 0s 0

Nβ  is computed as in (2.4) and 
the scaling factor 1θ  is computed as in (2.10) or (2.11). Therefore, at the iteration  

we know 

1,2,...k =
,kx  ,kf   and kg 1 1.

N
k k k k kd g sθ β − −= − +  Suppose that  is a descent direction (i.e. kd

1/ 4kθ ≥ ). By the Wolfe line search (2.12) and (2.13) we can compute kα  with which the 
following point k kz x dkα= +  is determined. The first Wolfe condition (2.12) shows that the 
steplength 0kα >  satisfies: 

( ) ( ) ( ) .T
k k k k k k kf z f x d f x g dα ρα= + ≤ +  
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With these, let us introduce the accelerated conjugate gradient algorithm by means of the 
following iterative scheme: 
                                                          1k k k k kx x dγ α+ = + ,                                                    (4.5) 
where 0kγ >  is a parameter which follows to be determined in such a manner as to improve 
the behavior of the algorithm. Now, we have: 

                  ( )22 21( ) ( ) ( ) .
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dα α α α+ = + + ∇ +           (4.6) 

On the other hand, for 0γ >  we have: 

            ( )22 2 21( ) ( ) ( )
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dγα γα γ α γα+ = + + ∇ + .

( ),

      (4.7) 

With these we can write: 
                                         ( ) ( )k k k k k k kf x d f x dγα α+ = + +Ψ γ                                  (4.8) 
where 

2 2 21( ) ( 1) ( ) ( 1)
2

T T
k k k k kd f x d g dγ γ α γ αΨ = − ∇ + − k k k  

                                              ( ) ( )22 .k k k k k ko d o dγ α α α α+ − 2                                     (4.9) 

Let us denote: 
                                                        0,T

k k k ka g dα= ≤  
2 2 ( ) ,T

k k k k kb d f x dα= ∇  

                                                        ( )2 .k k ko dε α=  

Observe that , since  is a descent direction, and for convex functions  0ka ≤ kd 0.kb ≥
Therefore, 

                                 2 21( ) ( 1) ( 1) .
2k k k k kb a k kγ γ γ γ α εΨ = − + − + −α ε

k

                        (4.10) 

Now, we see that ( ) ( 2 )k k k kb aγ α ε γ′Ψ = + +  and ( ) 0k mγ′Ψ =  where 

                                                           .
2

k
m

k k

a
b

γ
kα ε

= −
+

                                                (4.11) 

Observe that  Therefore, assuming that (0) 0.k ka′Ψ = ≤ 2k k kb 0,α ε+ >  then ( )k γΨ  is a 
convex quadratic function with minimum value in point mγ  and 

2( ( 2 ))( ) 0
2( 2 )

k k k k
k m

k k k

a b
b

α εγ
α ε

+ +
Ψ = − ≤

+
.  

Considering mγ γ=  in (4.8) and since , we see that for every  0kb ≥ k
2( ( 2 ))( ) ( ) ( )

2( 2 )
k k k k

k m k k k k k k k k
k k k

a b ,f x d f x d f x d
b

α εγ α α α
α ε

+ +
+ = + − ≤ +

+
 

which is a possible improvement of the values of function f  (when ( 2 )k k k ka b 0α ε+ + ≠ ). 
Therefore, using this simple multiplicative modification of the stepsize kα  as k kγ α  where 

/( 2 )k m k k k ka bγ γ α= = − + ε  we get: 
2

1
( ( 2 ))( ) ( ) ( )

2( 2 )
T k k k k

k k k k k k k k k
k k k

a bf x f x d f x g d
b

α εγ α ρα
α ε+

+ +
= + ≤ + −

+
 

                              
2( ( 2 ))( ) ( ),

2( 2 )
k k k k

k
k k k

a b
k kf x

b
α ε ρ
α ε

⎡ ⎤+ +
= − − ≤⎢ +⎣ ⎦

a f x⎥                            (4.12) 
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since  (  is a descent direction). 0,ka ≤ kd
Observe that if  is a descent direction, then kd

2 2( ( 2 )) ( )
2( 2 ) 2

k k k k k k

k k k k

a b a b
b b

α ε
α ε

+ + +
>

+
 

and from (4.12) we get: 
2

1
( ( 2 ))( ) ( )

2( 2 )
k k k k

k k
k k k

a b
kf x f x a

b
α ε ρ
α ε+

⎡ ⎤+ +
≤ − −⎢ ⎥+⎣ ⎦

 

                                                
2( )( ) ( ).

2
k k

k k
k

a b
kf x a

b
ρ

⎡ ⎤+
< − − ≤⎢ ⎥

⎣ ⎦
f x  

Therefore, neglecting the contribution of kε , we still get an improvement on the function 
values. 
Now, in order to get the algorithm we have to determine a way for  computation. For this, 
at point 

kb

k kz x dkα= +  we have: 

2 21( ) ( ) ( ) ( ) ,
2

T T
k k k k k k k k k k kf z f x d f x g d d f x dα α α= + = + + ∇ �  

where kx�  is a point on the line segment connecting kx  and  On the other hand, at point .z

k k kx z dα= −  we have: 

2 21( ) ( ) ( ) ( ) ,
2

T T
k k k k z k k k k kf x f z d f z g d d f x dα α α= − = − + ∇  

where  and ( )zg f= ∇ z kx  is a point on the line segment connecting kx  and  Having in 
view the local character of searching and that the distance between 

.z

kx  and is small enough, 
we can consider 

z
.k k kx x x= =�  So, adding the above equalities we get: 

                                                                                                                   (4.13) ,T
k k kb yα= − kd

zwhere   .k ky g g= −

Observe that if ka b> k , then 1.kγ >  In this case k k kγ α α> and it is also possible 

that 1k kγ α ≤  or 1.k kγ α >  Hence, the steplength k kγ α  can be greater than 1. On the other 

hand, if ,k ka b≤  then 1.kγ ≤  In this case ,k k kγ α α≤  so the steplength k kγ α  is reduced. 

Therefore, if ka b≠ k , then 1kγ ≠  and the steplength kα  computed by Wolfe conditions 

will be modified by its increasing or its reducing through factor .kγ  

 Neglecting kε  in (4.10), we see that (1) 0kΨ =  and if / 2,k ka b≤  then 

 and (0) / 2 0k k ka bΨ = − − ≤ 1.kγ <  Therefore, for any [0,1]γ ∈ , ( ) 0.k γΨ ≤  As a 
consequence for any (0,1),γ ∈  it follows that ( )k k k k( ).f x d f xγα+ <  In this case, for any 

[0,1]γ ∈ , .k k kγ α α≤  However, in our algorithm we selected k mγ γ=  as the point achieving 
the minimum value of ( ).k γΨ   
 
5. AMDYN and AMDYC Algorithms 
Considering the definitions of gk , sk and we present the following conjugate gradient 
algorithms which are accelerated, modified versions of the Dai and Yuan algorithm with 
Newton direction (AMDYN) or with conjugacy condition (AMDYC). 

yk
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AMDYN and AMDYC Algorithms 
Step 1. Initialization. Select and the parameters x R n

0 ∈ 0 1.ρ σ< < <  Compute f x( )0  

and g0 .  Consider d g0 0= − and α 0 01= / g .  Set k = 0.  

Step 2. Test for continuation of iterations. If  gk ∞
−≤ 10 6 , then stop, else set k k= +1.  

Step 3. Line search. Compute α k satisfying the Wolfe line search conditions (2.12) and 
(2.13). 
Step 4. Compute: k k kz x dα= + ( )zg f z= ∇ z and .k ky g g= −  , 

Step 5. Compute: , and . T
k k ka gα= kd kd

k

T
k k kb yα= −

Step 6. If  then compute 0,kb ≠ /k ka bγ = −  and update the variables as 

1k k k k kx x dγ α+ = + , otherwise update the variables as 1k k k kx x dα+ = + . Compute 1kf +  and 
 Compute 1.kg + 1k ky g g+ k= −  and 1 .k ks x x+ k= −  

Step 7. 1kθ + computation. For the algorithm AMDYN, 1kθ +  is computed as in (2.10). For the 
algorithm AMDYC, 1kθ +  is computed as in (2.11). If 1 1/ 4,kθ + <  then we set 1 1kθ + = . 

Step 8. Direction computation. Compute , where 1 1
N

k k k kd gθ β+ += − + s N
kβ is computed as 

in (2.4). If  
                                                      g d d gk

T
k+

−
+≤ −1

3
2 1 2

10 ,                                           (5.1) 
then define dk+ d=1 ,  otherwise set d gk+ k+= −1 .1  Compute the initial guess 

α αk k k kd d= − −1 1 / ,  set k k= +1 and continue with step 2.  
 
 It is well known that if f is bounded along the direction  then there exists a 
stepsize 

dk

α k  satisfying the Wolfe line search conditions (2.12) and (2.13). In our algorithm 
when the angle between  and d − +gk 1 is not acute enough, then we restart the algorithm with 
the negative gradient − +gk 1 .  More sophisticated reasons for restarting the algorithms have 
been proposed in the literature, but we are interested in the performance of a conjugate 
gradient algorithm that uses this restart criterion, associated to a direction satisfying the 
sufficient descent condition. Under reasonable assumptions, conditions (2.12), (2.13) and 
(5.1) are sufficient to prove the global convergence of the algorithm.  
 The initial selection of the step length crucially affects the practical behaviour of the 
algorithm. At every iteration k ≥ 1 the starting guess for the step α k in the line search is 

computed as α k k kd d− −1 1 2
/

2
.  This selection, was considered for the first time by Shanno 

and Phua in CONMIN [43]. It is also considered in the packages: SCG by Birgin and 
Martínez [13] and in SCALCG by Andrei [2-5, 11]. 
 
Proposition 5.1. Suppose that f  is a uniformly convex function on the level set 

{ }0: ( ) ( )S x f x f x= ≤ , and  satisfies the sufficient descent condition kd 2
1 ,T

k k kg d c g< −  

where , and 1 0c > 2 2
2kd c g≤ k , where  Then the sequence generated by AMDYN 

or AMDYC converges linearly to 
2 0.c >

*,x  solution to the problem (2.1). 
 
Proof. From (4.12) we have that 1( ) (k )kf x f x+ ≤  for all  Since .k f  is bounded below, it 
follows that 

1lim( ( ) ( )) 0.k kk
f x f x +→∞

− =  
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Now, since f  is uniformly convex there exist positive constants  and m ,M  such that 
 on  Suppose that 2 ( )mI f x MI≤ ∇ ≤ .S k kx d Sα+ ∈  and k m kx d Sγ α+ ∈  for all 0.α >  

We have: 
2( )( ) ( )

2
k k

k m k k k
k

a bf x d f x d
b

γ α α +
+ ≤ + − .  

But, from uniform convexity we have the following quadratic upper bound on ( )k kf x dα+ : 
221( ) ( )

2
T

k k k k k kf x d f x g d M dα α α+ ≤ + + .  

Therefore, 
2 22

1 2
1( ) ( )
2k k k k kf x d f x c g Mc gα α α+ ≤ − +  

                                                       
22

1 2
1( ) .
2k kf x c Mc gα α⎡ ⎤= + − +⎢ ⎥⎣ ⎦

 

Observe that for 1 20 /( ),c Mcα≤ ≤  2 1
1 2

1
2 2

cc Mcα α α− + ≤ −

.

 which follows from the 

convexity of  2
1 2( / 2)c Mcα α− +  Using this result we get: 

2 2
1 1

1( ) ( ) ( )
2k k k k k kf x d f x c g f x c gα α ρ+ ≤ − ≤ − α , 

since 1/ 2.ρ <   
From proposition 4.1 the Wolfe line search terminates with a value 0.α ω≥ >  

Therefore, for 1 20 /(c Mc ),α≤ ≤  this provides a lower bound on the decrease in the function 
,f  i.e.  

                                              
2

1( ) ( )k k k kf x d f x c gα ρ ω+ ≤ − .                                      (5.2) 
On the other hand, 

                           
42 22 2

22 1 2 1
22

22

( )( ) ( ) .
2 22

kk k
k

k k

Mc c ga b Mc c g
b MMc g

α α ω
α

−+ −
≥ ≥

c
                   (5.3) 

Considering (5.2) and (5.3) we get: 

                         
2

2 22 1
1

2

( )( ) ( )
2k m k k k k

Mc cf x d f x c g g
Mc

ωγ α ρ ω −
+ ≤ − − .                   (5.4) 

Therefore, 
2

22 1
1

2

( )( ) ( )
2k k m k k

Mc cf x f x d c g
Mc

ωγ α ρ ω
⎡ ⎤−

− + ≥ +⎢ ⎥
⎣ ⎦

.

→

 

But,  and as a consequence  goes to zero, i.e. 1( ) ( ) 0k kf x f x +− kg kx  converges to *.x  
Having in view that ( )kf x  is a nonincreasing sequence, it follows that ( )kf x  converges to 

*( ).f x  From (5.4) we see that 

                                  
2

22 1
1 1

2

( )( ) ( )
2k k

Mc cf x f x c g
Mc

ωρ ω+

⎡ ⎤−
≤ − +⎢

⎣ ⎦
.k⎥                            (5.5) 

Combining this with 
2 *2 ( ( ) )k kg m f x f≥ −  and subtracting *f  from both sides of (5.5) 

we conclude: * *
1( ) ( ( ) )k k ,f x f c f x f+ − ≤ −  where  
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2
2 1

1
2

( )1 2 1.
2

Mc cc m c
Mc

ωρ ω
⎡ ⎤−

= − + <⎢ ⎥
⎣ ⎦

 

Therefore, ( )kf x  converges to *f  at least as fast as a geometric series with a factor that 
depends on the parameter ρ  in the first Wolfe condition and the bounds  and m M of the 
Hessian. So, the convergence of the acceleration scheme is at least linear. ■ 
 
6. Numerical results and comparisons 
In this section we present the computational performance of a Fortran implementation of the 
AMDYN and AMDYC algorithms on a set of 750 unconstrained optimization test problems. 
The test problems are the unconstrained problems in the CUTE [14] library, along with other 
large-scale optimization problems presented in [12]. We selected 75 large-scale unconstrained 
optimization problems in extended or generalized form. For each function we have considered 
ten numerical experiments with the increasing number of variables 

 All algorithms implement the Wolfe line search conditions with n = 1000 2000 10000, , ,… .
0.0001ρ =  and 0.9σ = , and the same stopping criterion gk ∞

−≤ 10 6 , where .
∞

is the 
maximum absolute component of a vector. The comparisons of algorithms are given in the 
following context. Let and be the optimal value found by ALG1 and ALG2, for 
problem  respectively. We say that, in the particular problem  the 
performance of ALG1 was better than the performance of ALG2 if  

f i
ALG1 f i

ALG2

i = 1 750, ,… , i,

                                                        f fi
ALG

i
ALG1 2 10− < −3                                                (6.1) 

and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. 
All codes are written in double precision Fortran and compiled with f77 (default compiler 
settings) on an Intel Pentium 4, 1.8GHz workstation. All these codes are authored by Andrei. 
 In the first set of numerical experiments we compare AMDYN versus AMDYC. In 
Table 1 we present the number of problems solved by these two algorithms with a minimum 
number of iterations (#iter), a minimum number of function and its gradient evaluations (#fg) 
and the minimum cpu time. 

Table 1. Performance of AMDYN versus AMDYC. 750 problems. 
 AMDYN AMDYC = 

# iter 83 105 562 
# fg 152 147 451 
CPU 143 119 488 

 
Both algorithms have similar performances. However, subject to cpu time metric, AMDYN 
proves to be slightly better.  

In the second set of numerical experiments we compare AMDYN and AMDYC 
algorithms with the Dai and Yuan (DY) algorithm. Figures 1 and 2 present the Dolan-Moré 
performance profile for these algorithms subject to the cpu time metric. We see that both 
AMDYN and AMDYC is top performer, being more successful and more robust than the Dai 
and Yuan algorithm. When comparing AMDYN with the Dai and Yuan algorithm (Figure 1), 
subject to the number of iterations, we see that AMDYN was better in 619 problems (i.e. it 
achieved the minimum number of iterations in 619 problems). DY was better in 27 problems 
and they achieved the same number of iterations in 60 problems, etc. Out of 750 problems, 
only for 706 of them does the criterion (6.1) hold.  
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Fig. 1. Performance profile of AMDYN versus DY. 

 
Fig. 2. Performance profile of AMDYC versus DY. 

 
Dai and Yuan [21] studied the hybrid conjugate gradient algorithms and proposed the 
following two hybrid methods: 

                                     {1max ,min , ,
1

hDY DY HS DY
k k k

σβ β β
σ

− }kβ
⎧ ⎫= −⎨ ⎬+⎩ ⎭

                            (6.2) 

                                               { }{ }max 0,min ,hDYz HS DY
k kβ β= kβ ,                                     (6.3) 
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where showing their global convergence when the Lipschitz assumption 
holds and the standard Wolfe line search is used. The numerical experiments of Dai and Ni 
[19] proved that the second hybrid method (hDYz) is the better, outperforming the Polak-
Ribière [41] and Polyak [42] method. In the third set of numerical experiments we compare 
the Dolan-Moré performance profile of AMDYN and AMDYC versus Dai-Yuan hybrid 
conjugate gradient  subject to the cpu time metric, as in Figures 3 and 4. 

1 /HS T T
k k k ky g y sβ += ,k

hDY
kβ

 
Fig. 3. Performance profile of AMDYN versus hDY. 

 
Fig. 4. Performance profile of AMDYC versus hDY. 

 

 14



In the fourth set of numerical experiments, in Figures 5 and 6, we compare the Dolan-
Moré performance profile of AMDYN and AMDYC versus Dai-Yuan hybrid conjugate 
gradient  subject to the cpu time metric. hDYz

kβ
 

 
Fig. 5. Performance profile of AMDYN versus hDYz. 

 
Fig. 6. Performance profile of AMDYC versus hDYz. 
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7. Conclusion 
We have presented a new conjugate gradient algorithm for solving large-scale unconstrained 
optimization problems. The parameter β k  is a modification of the Dai and Yuan 
computational scheme in such a manner that the direction generated by the algorithm 
satisfies the sufficient descent condition, independent of the line search. Under strong Wolfe 
line search conditions we proved the global convergence of the algorithm. We present 
computational evidence that the performance of our algorithms AMDYN and AMDYC was 
higher than that of the Dai and Yuan conjugate gradient algorithm and its hybrid variants, for 
a set consisting of 750 problems. 

dk
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