
New Accelerated Conjugate Gradient Algorithms for
Unconstrained Optimization

Neculai Andrei
Research Institute for Informatics,

Center for Advanced Modeling and Optimization,
8-10, Averescu Avenue, Bucharest 1, Romania

and
Academy of Romanian Scientists,

54, Splaiul Independentei, Bucharest 5, Romania
E-mail: nandrei@ici.ro

Abstract. New accelerated nonlinear conjugate gradient algorithms which are mainly
modifications of the Dai and Yuan’s for unconstrained optimization are proposed.
Using the exact line search, the algorithm reduces to the Dai and Yuan conjugate
gradient computational scheme. For inexact line search the algorithm satisfies the
sufficient descent condition. Since the step lengths in conjugate gradient algorithms
may differ from 1 by two order of magnitude and tend to vary in a very unpredictable
manner, we suggest an acceleration scheme able to improve the efficiency of the
algorithms. A global convergence result is proved when the strong Wolfe line search
conditions are used. Computational results for a set consisting of 750 unconstrained
optimization test problems show that these new conjugate gradient algorithms
substantially outperform the Dai-Yuan conjugate gradient algorithm and its hybrid
variants.

Keywords: Unconstrained optimization, conjugate gradient method, sufficient descent
condition, conjugacy condition, Newton direction, numerical comparisons
AMS 2000 Mathematics Subject Classification: 49M07, 49M10, 90C06, 65K

Dedicated to the memory of Professor Gene H. Golub (1932-2007)

1. Introduction
Conjugate gradient methods represent an important class of unconstrained optimization
algorithms with strong local and global convergence properties and modest memory
requirements. A history of these algorithms has been given by Golub and O’Leary [28], as
well as by O’Leary [38]. A survey of development of different versions of nonlinear
conjugate gradient methods, with special attention to global convergence properties is
presented by Hager and Zhang [31]. A survey on their definition including 40 conjugate
gradient algorithms for unconstrained optimization is given by Andrei [7]. The conjugate
gradient algorithms have been introduced early in 1952 by Cornelius Lanczos [34, 35] and by
Magnus Hestenes with the cooperation of J.B. Rosser, G. E. Forsythe, L. Paige, M. Stein, R.
Hayes and U. Hochstrasser at the Institute for Numerical Analysis, a part of National Bureau
of Standards in Los Angeles, and by Eduard Stiefel at Eidgenössischen Technischen
Hochschule in Zürich (see Hestenes and Stiefel [32]). Even if the conjugate gradient methods
are now over 50 years old, they continue to be of a considerable interest particularly due to
their convergence properties and to a very easy implementation in computer programs of the
corresponding algorithms.
 Many researchers in this area brought significant contributions, clarifying many
theoretical and computational aspects of this class of algorithms. Particularly, for the
development of effective algorithms for solving basic linear algebra problems Golub and
Kahan [27] discussed the use of the Lanczos algorithm in computing the singular value
decomposition of non-quadratic functions. Concus, Golub and O’Leary [15] considered
preconditioning of conjugate gradient algorithms. An important extension of the conjugate

 1

gradient algorithm was given by Concus and Golub [16] where the Hermitian part of the
matrix is taken as a preconditioner. A development of a block form of the Lanczos algorithm
has been proposed by Golub, Underwood and Wilkinson [29]. Fletcher and Reeves extended
the conjugate gradient algorithm to minimization of non-quadratic functions [25], thus
opening an important area of research and applications. Developments of this algorithm have
been considered inter allia by Polak and Ribière [41], Polyak [42], Perry [40], Shanno [44,
45], Gilbert and Nocedal [26], Liu and Storey [37], Hu and Storey [33],Touati-Ahmed and
Storey [46]. Recently, the papers of Nocedal [39], Dai and Yuan [20, 21], Hager and Zhang
[30], Andrei [1-6, 8-11] present important theoretical and computational contributions to the
development of this class of algorithms.

In this paper we suggest new nonlinear conjugate gradient algorithms which are
mainly modifications of the Dai and Yuan [20] conjugate gradient computational scheme. In
these algorithms the direction is computed as a linear combination between and

 i.e. where
1kd + 1kg +−

,ks 1 1 1 ,N
k k k kd gθ β+ + += − + ks k1k ks x x+= − . The parameter kθ is computed in

such a way that the direction 1kd + is the Newton direction or it satisfies the conjugacy

condition. On the other hand, N
kβ is a proper modification of the Dai and Yuan’s

computational scheme in such a way that the direction 1kd + satisfies the sufficient descent
condition. For the exact line search the proposed algorithms reduce to the Dai and Yuan
conjugate gradient computational scheme.
 The paper has the following structure. In Section 2 we present the development of the
conjugate gradient algorithms with sufficient descent condition, while in section 3 we prove
the global convergence of the algorithms under strong Wolfe line search conditions. In
Section 4 we present an acceleration of the algorithm while in Section 5 we compare the
computational performance of the new conjugate gradient schemes against the Dai and Yuan
method and its hybrid variants [21] using 750 unconstrained optimization test problems from
the CUTE [14] library along with some other large-scale unconstrained optimization problems
presented in [12]. Using the Dolan and Moré performance profiles [23] we prove that these
new accelerated conjugate gradient algorithms outperform the Dai-Yuan algorithm as well as
its hybrid variants.

2. Modifications of the Dai-Yuan conjugate gradient algorithm
For solving the unconstrained optimization problem
 { }min f x x R n() : ,∈ (2.1)
where is continuously differentiable we consider a nonlinear conjugate gradient
algorithm:

f R Rn: →

 x x dk k k+ k= +1 α , (2.2)
where the stepsize α k is positive and the directions are computed by the rule: dk

 1 1 1 ,N
k k k k ksd gθ β+ + += − + d g0 0= − , (2.3)

where

2 2

1 1
2

()
,

()

T
k k k kN

k T T
k k k k

g g s g
y s y s

β + + += − 1 (2.4)

and 1kθ + is a parameter which follows to be determined. Here g f xk = ∇ ()k and
y g gk k k= −+1 , s x xk k k= −+1 .

Observe that if f is a quadratic function and α k is selected to achieve the exact
minimum of f in the direction , then dk s gk

T
k+ =1 0 and the formula (2.4) for N

kβ reduces
to the Dai and Yuan computational scheme [20]. However, in this paper we refer to general
nonlinear functions and inexact line search.
 We were led to this computational scheme by modifying the Dai and Yuan algorithm

 2

β k
DY k

T
k

k
T

k

g g
y s

= + +1 1 ,

in order to conserve the sufficient descent condition and to have some other properties for an
efficient conjugate gradient algorithm. Using a standard Wolfe line search, the Dai and Yuan
method always generates descent directions and under Lipschitz assumption it is globally
convergent. In [17] Dai established a remarkable property relating the descent directions to
the sufficient descent condition, showing that if there exist constants γ 1 and γ 2 such that

γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ (,)0 1 , there exists a constant such that the

sufficient descent condition

c > 0

g d c gi
T

i ≤ −
2

i holds for at least ⎣ ⎦pk indices
i k∈ [,],0 where ⎣ ⎦j denotes the largest integer ≤ j. In our algorithm the parameter β k is
selected in such a manner that the sufficient descent condition is satisfied at every iteration.
As we know, despite the strong convergence theory that has been developed for the Dai and
Yuan method, it is susceptible to jamming, that is it begins to take small steps without making
significant progress to the minimum. When the iterates jam, becomes tiny while ky kg is

bounded away from zero. Therefore, N
kβ is a proper modification of the .DY

kβ

Theorem 2.1. If 1 1/ 4,kθ + ≥ then the direction (d1 1 1 ,N

k k k k ksd gθ β+ + += − + g0 0= −),

where N
kβ is given by (2.4) satisfies the sufficient descent condition

2

1 1 1 1
1 .
4

T
k k k kg d gθ+ + + +

⎛ ⎞≤ − −⎜ ⎟
⎝ ⎠

 (2.5)

Proof. Since d g0 = 0− , we have g d gT

0 0 0

2
= − , which satisfy (2.5). Multiplying (2.3) by

, we have gk
T
+1

2 2

2 1 11 1 1
1 1 1 1 2

()()() .
()

TT T
k k kT k k k k

k k k k T T
k k k k

g s gg g g sg d g
y s y s

θ + ++ + +
+ + + += − + − (2.6)

Now, using the inequality
21 (

2
Tu v u v≤ + 2) we have:

1 11 1 1
2

() / 2 2()()()
()

TT TT T
k k k k k kk k k k

T T
k k k k

y s g g s gg g g s
y s y s

+ ++ + + 1+
⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦=

2 22 2
1 1 1

2

1 1 () 2()
2 2

()

T T
k k k k k k

T
k k

y s g g s g

y s

+ + +
⎡ ⎤+⎢ ⎥⎣ ⎦≤

22

2 1 1
1 2

()1 .
4 ()

T
k k k

k T
k k

g s g
g

y s
+ +

+= + (2.7)

Using (2.7) in (2.6) we get (2.5).

To conclude, the sufficient descent condition from (2.5), the quantity 1 1/ 4kθ + − is required
to be nonnegative. Supposing that 1 1/ 4 0kθ + − > , then the direction given by (2.3) and (2.4)
is a descent direction. Dai and Yuan [20, 21] present conjugate gradient schemes with the
property that g dk

T
k < 0 when If y sk

T
k > 0. f is strongly convex or the line search satisfies

the Wolfe conditions, then and the Dai and Yuan scheme yield descent. In our y sk
T

k > 0

 3

algorithm observe that, if for all k , 1 1/ 4,kθ + ≥ and the line search satisfies the Wolfe
conditions, then for all k the search direction (2.3) and (2.4) satisfy the sufficient descent

condition. Note that in (2.5) we bound by g dk
T

k+ +1 1
2

1(1/ 4)k kgθ +− − 1 ,+ while for scheme

of Dai and Yuan only the non-negativity of is established. g dk
T

k+ +1 1

To determine the parameter θ k+1 in (2.3) we suggest the following two procedures.

A) Our motivation to get a good algorithm for solving (2.1) is to choose the parameter θ k+1 in
such a way that for every the direction 1k ≥ 1kd + given by (2.3) be the Newton direction.
Therefore, from the equation
 2 1

1 1 1 1() N
k k k k k kf x g gθ β−
+ + + +−∇ = − + s (2.8)

after some algebra we get

2

1 21
1 12

1 1

1 1 ()
()

T
k Tk k

k kT T T
k k k k k k k

g s g s f x s s g
s f x g y s y s

θ + +
+ +

+ +
1 .T

k k k k+

⎡ ⎤⎛ ⎞
= − ∇ +⎢ ⎥⎜ ⎟∇ ⎢ ⎥⎝ ⎠⎣ ⎦

 (2.9)

The salient point in this formula for θ k+1 is the presence of the Hessian. For large-scale
problems, choices for the update parameter that do not require the evaluation of the Hessian
matrix are often preferred in practice to the methods that require the Hessian in each iteration.
Therefore, in order to have an algorithm for solving large-scale problems we assume that in
(2.8) we use an approximation 1kB + of the true Hessian 2

1(k)f x +∇ and let 1kB + satisfy the
quasi-Newton equation 1 .k k kB s y+ = This leads us to:

2

2 1 1
1 1

1

()1 .
T

k k k T
k k kT T

k k k k

g s g
g

y g y s
θ + +

+ +
+

1ks g +

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
 (2.10)

Observe that if 1kθ + given by (2.10) is greater than or equal to 1/ then according to
Theorem 2.1 the direction (2.3) satisfies the sufficient descent condition (2.5). On the other
hand, if in (2.10)

4,

1 1/ 4,kθ + < then we take ex abrupto 1 1kθ + = in (2.3).

B) The second procedure is based on the conjugacy condition. Dai and Liao [18] introduced
the conjugacy condition where is a scalar. This is indeed very
reasonable since in real computation the inexact line search is generally used. However, this
condition is very dependent on the nonnegative parameter , for which we do not know any
formula to choose in an optimal manner. Therefore, even if in our developments we use the
inexact line search we adopt here a more conservative approach and consider the conjugacy
condition This leads us to:

1 1,
T T
k k k ky d ts g+ += − 0t ≥

t

1 0.T
k ky d + =

2

2 1 1
1 1

1

()1 .
T

k k k
k kT T

k k k k

g s g
g

y g y s
θ + +

+ +
+

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
 (2.11)

Again, if 1kθ + given by (2.11) is greater than or equal to 1/ then according to Theorem 2.1
the direction (2.3) satisfies the sufficient descent condition (2.5). On the other hand, if in
(2.11)

4,

1 1/ 4,kθ + < then we take 1 1kθ + = in (2.3).
The line search in the conjugate gradient algorithms for kα computation is often based on the
standard Wolfe conditions:
 () () T

k k k k k k k ,f x d f x g dα ρα+ − ≤ (2.12)

 , (2.13) 1
T
k k k kg d g dσ+ ≥ T

 4

where is a descent direction and 0 1kd .ρ σ< ≤ <
In [21] Dai and Yuan proved the global convergence of a conjugate gradient algorithm for
which where with ,DY

k k ktβ β= [,1]kt c∈ − (1) /(1).c σ σ= − + Our algorithm is a
modification of the Dai and Yuan’s with the following property.
Observe that

2

1 11
T

kN k k
k T T

k k k k

g s g r
y s y s

β + +⎡ ⎤
= − =⎢ ⎥

⎣ ⎦
,DY

k kβ (2.14)

where

 11
T
k k

k T
k k

s gr
y s

.+= − (2.15)

From the second Wolfe condition it follows that 1 1,
T T T T
k k k k k k k ks g s g y s s gσ σ σ+ +≥ = − + i.e.

1 .
1

T T
k k k ks g y sσ

σ+
−

≥
−

Since by the Wolfe condition , it follows that 0T
k ky s > 1 .

1

T
k k

T
k k

s g
y s

σ
σ

+ −
≥

−
 Hence

1 .
1kr σ

≤
−

Therefore,
1 .

1
N DY
k kβ β

σ
≤

−

3. Convergence analysis
In this section we analyze the convergence of the algorithm (2.2), (2.3), (2.4) and (2.10) or
(2.11) where . In the following we consider that 0d = − 0g 0kg ≠ for all , otherwise a
stationary point is obtained. Assume that:

1k ≥

(i) The level set { }0: () ()nS x R f x f x= ∈ ≤ is bounded.

(ii) In a neighborhood of , the function N S f is continuously differentiable and its
gradient is Lipschitz continuous, i.e. there exists a constant such that 0L >

() ()f x f y L x∇ −∇ ≤ − y , for all , .x y N∈

Under these assumptions on f there exists a constant 0Γ ≥ such that ()f x∇ ≤ Γ for all

.x S∈ In order to prove the global convergence, we assume that the step size kα in (2.2) is
obtained by the strong Wolfe line search, that is,
 () () T

k k k k k k k ,f x d f x g dα ρα+ − ≤ (3.1)

 1 .T
k k k kg d g dσ+ ≤ T (3.2)

where ρ and σ are positive constants such that 0 1.ρ σ< ≤ <
Dai et al. [22] proved that for any conjugate gradient method with strong Wolfe line search
the following general result holds:

Lemma 3.1. Suppose that the assumptions (i) and (ii) hold and consider any conjugate
gradient method (2.2) and (2.3), where is a descent direction and kd kα is obtained by the
strong Wolfe line search (3.1) and (3.2). If

 2
1

1
k kd≥

= ∞∑ , (3.3)

then

 5

 liminf 0.k
k

g
→∞

= ■ (3.4)

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold and consider the algorithm (2.2),
(2.3), (2.4) and (2.10) or (2.11), where 1kd + is a descent direction and kα is obtained by the

strong Wolfe line search (3.1) and (3.2). If there exists a constant 0γ ≥ such ()f xγ ≤ ∇ ,

1/ 4 kθ τ≤ ≤ , where τ is a positive constant and the angle kϕ between and is
bounded, i.e.

kg kd
cos kϕ ξ≤ for all , then the algorithm satisfies li 0,1,k = … minf 0.kk

g
→∞

=

Proof. Observe that But 1 (1)T T T T

k k k k k k k ky s g s g s g sσ+= − ≥ − . cos .T
k k k k kg s g s ϕ= Since

 is a descent direction it follows that kd 0T
k k k kg s g s ξ≤ ≤ for all 0,1, ,k = … i.e.

(1) .T
k k k ky s g sσ ξ≥ − −

With these
2 2 2

1 1
2 2

1 ,
1 (1) (1)

k kN
k T

k k k k k k

g g
y s g s s s

ηβ
σ σ ξ σ ξγ

+ + Γ
≤ ≤ ≤ =

− − − − −

where
2

2 .
(1)

η
σ ξγ
Γ

=
− −

Therefore

1 1 1 .N
k k k k k k

k

d g s s
s
ηθ β τ τ+ + +≤ + ≤ Γ + = Γ η+

This relation shows that

2 2
1 1

1 1 1 .
()k kkd τ η≥ ≥

≥ =
Γ +∑ ∑ ∞

Hence, from Lemma 3.1 it follows that liminf 0k
k

g
→∞

= . ■

4. Acceleration of the algorithm
In conjugate gradient algorithms the search directions tend to be poorly scaled and as a
consequence the line search must perform more function evaluations in order to obtain a
suitable steplength .kα In order to improve the performances of the conjugate gradient
algorithms the efforts were directed to design procedures for direction computation based on
the second order information. For example, CONMIN [43], and SCALCG [2-5] take this idea
of BFGS preconditioning. In this section we focus on the step length modification. In the
context of gradient descent algorithm with backtracking the step length modification has been
considered for the first time in [6]. Nocedal [39] pointed out that in conjugate gradient
methods the step lengths may differ from 1 in a very unpredictable manner. They can be
larger or smaller than 1 depending on how the problem is scaled. Numerical comparisons
between conjugate gradient methods and the limited memory quasi Newton method, by Liu
and Nocedal [36], show that the latter is more successful [8]. One explanation of the
efficiency of the limited memory quasi-Newton method is given by its ability to accept unity
step lengths along the iterations. In this section we take advantage of this behavior of
conjugate gradient algorithms and present an acceleration scheme. Basically this modifies the
step length in a multiplicative manner to improve the reduction of the function values along
the iterations.

 6

Line search. For using the algorithm (2.2) one of the crucial elements is the stepsize
computation. For sake of generality in the following we consider the line searches that satisfy
either the Goldstein’s conditions [24]:
 (4.1) 1 2() ()T T

k k k k k k k k k kg d f x d f x g dρ α α ρ α≤ + − ≤ ,
where 1

2 120 1ρ ρ< < < < 0,k and α > or the Wolfe conditions (2.12) and (2.13).

Proposition 4.1. Assume that is a descent direction and kd f∇ satisfies the Lipschitz

condition () ()k kf x f x L x x∇ −∇ ≤ − for all x on the line segment connecting kx and

1,kx + where is a positive constant. If the line search satisfies the Goldstein conditions (4.1),
then

L

 1
2

(1) .
T
k k

k
k

g d
L d
ρα −

≥ (4.2)

If the line search satisfies the Wolfe conditions (2.12) and (2.13), then

 2
(1) .

T
k k

k
k

g d
L d
σα −

≥ (4.3)

Proof. If the Goldstein conditions are satisfied, then using the mean value theorem from (4.1)
we get:
 1 () (T

k k k k k k kg d f x d f xρ α α≤ + −)

 ()T
k k k kf x dα ξ= ∇ + d 22 ,T

k k k k kg d L dα α≤ +

where [0,].kξ α∈ From this inequality we immediately get (4.2).

Now, to prove (4.3) subtract from both sides of (2.13) and using the Lipschitz
condition we get:

T
k kg d

2

1(1) ()T T
k k k k k k kg d g g d L dσ +− ≤ − ≤ .α (4.4)

But, is a descent direction and since kd 1σ < , we immediately get (4.3). ■

Therefore, satisfying the Goldstein or the Wolfe line search conditions α is bounded away
from zero, i.e. there exists a positive constant ω , such that .α ω≥

Acceleration scheme [6]. Given the initial point 0x we can compute 0 0(),f f x=

 and by Wolfe line search conditions (2.12) and (2.13) the steplength 0 ()g f x= ∇ 0 0α is
determined. With these, the next iteration is computed as: 1 0 0 0x x dα= + , () where 0d g= − 0

1f and are immediately determined and the direction can be computed as:

, where the conjugate gradient parameter
1g 1d

1 1 1 0
Nd gθ β= − + 0s 0

Nβ is computed as in (2.4) and
the scaling factor 1θ is computed as in (2.10) or (2.11). Therefore, at the iteration

we know

1,2,...k =
,kx ,kf and kg 1 1.

N
k k k k kd g sθ β − −= − + Suppose that is a descent direction (i.e. kd

1/ 4kθ ≥). By the Wolfe line search (2.12) and (2.13) we can compute kα with which the
following point k kz x dkα= + is determined. The first Wolfe condition (2.12) shows that the
steplength 0kα > satisfies:

() () () .T
k k k k k k kf z f x d f x g dα ρα= + ≤ +

 7

With these, let us introduce the accelerated conjugate gradient algorithm by means of the
following iterative scheme:
 1k k k k kx x dγ α+ = + , (4.5)
where 0kγ > is a parameter which follows to be determined in such a manner as to improve
the behavior of the algorithm. Now, we have:

 ()22 21() () () .
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dα α α α+ = + + ∇ + (4.6)

On the other hand, for 0γ > we have:

 ()22 2 21() () ()
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dγα γα γ α γα+ = + + ∇ + .

(),

 (4.7)

With these we can write:
 () ()k k k k k k kf x d f x dγα α+ = + +Ψ γ (4.8)
where

2 2 21() (1) () (1)
2

T T
k k k k kd f x d g dγ γ α γ αΨ = − ∇ + − k k k

 () ()22 .k k k k k ko d o dγ α α α α+ − 2 (4.9)

Let us denote:
 0,T

k k k ka g dα= ≤
2 2 () ,T

k k k k kb d f x dα= ∇

 ()2 .k k ko dε α=

Observe that , since is a descent direction, and for convex functions 0ka ≤ kd 0.kb ≥
Therefore,

 2 21() (1) (1) .
2k k k k kb a k kγ γ γ γ α εΨ = − + − + −α ε

k

 (4.10)

Now, we see that () (2)k k k kb aγ α ε γ′Ψ = + + and () 0k mγ′Ψ = where

 .
2

k
m

k k

a
b

γ
kα ε

= −
+

 (4.11)

Observe that Therefore, assuming that (0) 0.k ka′Ψ = ≤ 2k k kb 0,α ε+ > then ()k γΨ is a
convex quadratic function with minimum value in point mγ and

2((2))() 0
2(2)

k k k k
k m

k k k

a b
b

α εγ
α ε

+ +
Ψ = − ≤

+
.

Considering mγ γ= in (4.8) and since , we see that for every 0kb ≥ k
2((2))() () ()

2(2)
k k k k

k m k k k k k k k k
k k k

a b ,f x d f x d f x d
b

α εγ α α α
α ε

+ +
+ = + − ≤ +

+

which is a possible improvement of the values of function f (when (2)k k k ka b 0α ε+ + ≠).
Therefore, using this simple multiplicative modification of the stepsize kα as k kγ α where

/(2)k m k k k ka bγ γ α= = − + ε we get:
2

1
((2))() () ()

2(2)
T k k k k

k k k k k k k k k
k k k

a bf x f x d f x g d
b

α εγ α ρα
α ε+

+ +
= + ≤ + −

+

2((2))() (),

2(2)
k k k k

k
k k k

a b
k kf x

b
α ε ρ
α ε

⎡ ⎤+ +
= − − ≤⎢ +⎣ ⎦

a f x⎥ (4.12)

 8

since (is a descent direction). 0,ka ≤ kd
Observe that if is a descent direction, then kd

2 2((2)) ()
2(2) 2

k k k k k k

k k k k

a b a b
b b

α ε
α ε

+ + +
>

+

and from (4.12) we get:
2

1
((2))() ()

2(2)
k k k k

k k
k k k

a b
kf x f x a

b
α ε ρ
α ε+

⎡ ⎤+ +
≤ − −⎢ ⎥+⎣ ⎦

2()() ().

2
k k

k k
k

a b
kf x a

b
ρ

⎡ ⎤+
< − − ≤⎢ ⎥

⎣ ⎦
f x

Therefore, neglecting the contribution of kε , we still get an improvement on the function
values.
Now, in order to get the algorithm we have to determine a way for computation. For this,
at point

kb

k kz x dkα= + we have:

2 21() () () () ,
2

T T
k k k k k k k k k k kf z f x d f x g d d f x dα α α= + = + + ∇ �

where kx� is a point on the line segment connecting kx and On the other hand, at point .z

k k kx z dα= − we have:

2 21() () () () ,
2

T T
k k k k z k k k k kf x f z d f z g d d f x dα α α= − = − + ∇

where and ()zg f= ∇ z kx is a point on the line segment connecting kx and Having in
view the local character of searching and that the distance between

.z

kx and is small enough,
we can consider

z
.k k kx x x= =� So, adding the above equalities we get:

 (4.13) ,T
k k kb yα= − kd

zwhere .k ky g g= −

Observe that if ka b> k , then 1.kγ > In this case k k kγ α α> and it is also possible

that 1k kγ α ≤ or 1.k kγ α > Hence, the steplength k kγ α can be greater than 1. On the other

hand, if ,k ka b≤ then 1.kγ ≤ In this case ,k k kγ α α≤ so the steplength k kγ α is reduced.

Therefore, if ka b≠ k , then 1kγ ≠ and the steplength kα computed by Wolfe conditions

will be modified by its increasing or its reducing through factor .kγ

 Neglecting kε in (4.10), we see that (1) 0kΨ = and if / 2,k ka b≤ then

 and (0) / 2 0k k ka bΨ = − − ≤ 1.kγ < Therefore, for any [0,1]γ ∈ , () 0.k γΨ ≤ As a
consequence for any (0,1),γ ∈ it follows that ()k k k k().f x d f xγα+ < In this case, for any

[0,1]γ ∈ , .k k kγ α α≤ However, in our algorithm we selected k mγ γ= as the point achieving
the minimum value of ().k γΨ

5. AMDYN and AMDYC Algorithms
Considering the definitions of gk , sk and we present the following conjugate gradient
algorithms which are accelerated, modified versions of the Dai and Yuan algorithm with
Newton direction (AMDYN) or with conjugacy condition (AMDYC).

yk

 9

AMDYN and AMDYC Algorithms
Step 1. Initialization. Select and the parameters x R n

0 ∈ 0 1.ρ σ< < < Compute f x()0

and g0 . Consider d g0 0= − and α 0 01= / g . Set k = 0.

Step 2. Test for continuation of iterations. If gk ∞
−≤ 10 6 , then stop, else set k k= +1.

Step 3. Line search. Compute α k satisfying the Wolfe line search conditions (2.12) and
(2.13).
Step 4. Compute: k k kz x dα= + ()zg f z= ∇ z and .k ky g g= − ,

Step 5. Compute: , and . T
k k ka gα= kd kd

k

T
k k kb yα= −

Step 6. If then compute 0,kb ≠ /k ka bγ = − and update the variables as

1k k k k kx x dγ α+ = + , otherwise update the variables as 1k k k kx x dα+ = + . Compute 1kf + and
 Compute 1.kg + 1k ky g g+ k= − and 1 .k ks x x+ k= −

Step 7. 1kθ + computation. For the algorithm AMDYN, 1kθ + is computed as in (2.10). For the
algorithm AMDYC, 1kθ + is computed as in (2.11). If 1 1/ 4,kθ + < then we set 1 1kθ + = .

Step 8. Direction computation. Compute , where 1 1
N

k k k kd gθ β+ += − + s N
kβ is computed as

in (2.4). If
 g d d gk

T
k+

−
+≤ −1

3
2 1 2

10 , (5.1)
then define dk+ d=1 , otherwise set d gk+ k+= −1 .1 Compute the initial guess

α αk k k kd d= − −1 1 / , set k k= +1 and continue with step 2.

 It is well known that if f is bounded along the direction then there exists a
stepsize

dk

α k satisfying the Wolfe line search conditions (2.12) and (2.13). In our algorithm
when the angle between and d − +gk 1 is not acute enough, then we restart the algorithm with
the negative gradient − +gk 1 . More sophisticated reasons for restarting the algorithms have
been proposed in the literature, but we are interested in the performance of a conjugate
gradient algorithm that uses this restart criterion, associated to a direction satisfying the
sufficient descent condition. Under reasonable assumptions, conditions (2.12), (2.13) and
(5.1) are sufficient to prove the global convergence of the algorithm.
 The initial selection of the step length crucially affects the practical behaviour of the
algorithm. At every iteration k ≥ 1 the starting guess for the step α k in the line search is

computed as α k k kd d− −1 1 2
/

2
. This selection, was considered for the first time by Shanno

and Phua in CONMIN [43]. It is also considered in the packages: SCG by Birgin and
Martínez [13] and in SCALCG by Andrei [2-5, 11].

Proposition 5.1. Suppose that f is a uniformly convex function on the level set

{ }0: () ()S x f x f x= ≤ , and satisfies the sufficient descent condition kd 2
1 ,T

k k kg d c g< −

where , and 1 0c > 2 2
2kd c g≤ k , where Then the sequence generated by AMDYN

or AMDYC converges linearly to
2 0.c >

*,x solution to the problem (2.1).

Proof. From (4.12) we have that 1() (k)kf x f x+ ≤ for all Since .k f is bounded below, it
follows that

1lim(() ()) 0.k kk
f x f x +→∞

− =

 10

Now, since f is uniformly convex there exist positive constants and m ,M such that
 on Suppose that 2 ()mI f x MI≤ ∇ ≤ .S k kx d Sα+ ∈ and k m kx d Sγ α+ ∈ for all 0.α >

We have:
2()() ()

2
k k

k m k k k
k

a bf x d f x d
b

γ α α +
+ ≤ + − .

But, from uniform convexity we have the following quadratic upper bound on ()k kf x dα+ :
221() ()

2
T

k k k k k kf x d f x g d M dα α α+ ≤ + + .

Therefore,
2 22

1 2
1() ()
2k k k k kf x d f x c g Mc gα α α+ ≤ − +

22

1 2
1() .
2k kf x c Mc gα α⎡ ⎤= + − +⎢ ⎥⎣ ⎦

Observe that for 1 20 /(),c Mcα≤ ≤ 2 1
1 2

1
2 2

cc Mcα α α− + ≤ −

.

 which follows from the

convexity of 2
1 2(/ 2)c Mcα α− + Using this result we get:

2 2
1 1

1() () ()
2k k k k k kf x d f x c g f x c gα α ρ+ ≤ − ≤ − α ,

since 1/ 2.ρ <
From proposition 4.1 the Wolfe line search terminates with a value 0.α ω≥ >

Therefore, for 1 20 /(c Mc),α≤ ≤ this provides a lower bound on the decrease in the function
,f i.e.

2

1() ()k k k kf x d f x c gα ρ ω+ ≤ − . (5.2)
On the other hand,

42 22 2

22 1 2 1
22

22

()() () .
2 22

kk k
k

k k

Mc c ga b Mc c g
b MMc g

α α ω
α

−+ −
≥ ≥

c
 (5.3)

Considering (5.2) and (5.3) we get:

2

2 22 1
1

2

()() ()
2k m k k k k

Mc cf x d f x c g g
Mc

ωγ α ρ ω −
+ ≤ − − . (5.4)

Therefore,
2

22 1
1

2

()() ()
2k k m k k

Mc cf x f x d c g
Mc

ωγ α ρ ω
⎡ ⎤−

− + ≥ +⎢ ⎥
⎣ ⎦

.

→

But, and as a consequence goes to zero, i.e. 1() () 0k kf x f x +− kg kx converges to *.x
Having in view that ()kf x is a nonincreasing sequence, it follows that ()kf x converges to

*().f x From (5.4) we see that

2

22 1
1 1

2

()() ()
2k k

Mc cf x f x c g
Mc

ωρ ω+

⎡ ⎤−
≤ − +⎢

⎣ ⎦
.k⎥ (5.5)

Combining this with
2 *2 (())k kg m f x f≥ − and subtracting *f from both sides of (5.5)

we conclude: * *
1() (())k k ,f x f c f x f+ − ≤ − where

 11

2
2 1

1
2

()1 2 1.
2

Mc cc m c
Mc

ωρ ω
⎡ ⎤−

= − + <⎢ ⎥
⎣ ⎦

Therefore, ()kf x converges to *f at least as fast as a geometric series with a factor that
depends on the parameter ρ in the first Wolfe condition and the bounds and m M of the
Hessian. So, the convergence of the acceleration scheme is at least linear. ■

6. Numerical results and comparisons
In this section we present the computational performance of a Fortran implementation of the
AMDYN and AMDYC algorithms on a set of 750 unconstrained optimization test problems.
The test problems are the unconstrained problems in the CUTE [14] library, along with other
large-scale optimization problems presented in [12]. We selected 75 large-scale unconstrained
optimization problems in extended or generalized form. For each function we have considered
ten numerical experiments with the increasing number of variables

 All algorithms implement the Wolfe line search conditions with n = 1000 2000 10000, , ,… .
0.0001ρ = and 0.9σ = , and the same stopping criterion gk ∞

−≤ 10 6 , where .
∞

is the
maximum absolute component of a vector. The comparisons of algorithms are given in the
following context. Let and be the optimal value found by ALG1 and ALG2, for
problem respectively. We say that, in the particular problem the
performance of ALG1 was better than the performance of ALG2 if

f i
ALG1 f i

ALG2

i = 1 750, ,… , i,

 f fi
ALG

i
ALG1 2 10− < −3 (6.1)

and the number of iterations, or the number of function-gradient evaluations, or the CPU time
of ALG1 was less than the number of iterations, or the number of function-gradient
evaluations, or the CPU time corresponding to ALG2, respectively.
All codes are written in double precision Fortran and compiled with f77 (default compiler
settings) on an Intel Pentium 4, 1.8GHz workstation. All these codes are authored by Andrei.
 In the first set of numerical experiments we compare AMDYN versus AMDYC. In
Table 1 we present the number of problems solved by these two algorithms with a minimum
number of iterations (#iter), a minimum number of function and its gradient evaluations (#fg)
and the minimum cpu time.

Table 1. Performance of AMDYN versus AMDYC. 750 problems.
 AMDYN AMDYC =

iter 83 105 562
fg 152 147 451
CPU 143 119 488

Both algorithms have similar performances. However, subject to cpu time metric, AMDYN
proves to be slightly better.

In the second set of numerical experiments we compare AMDYN and AMDYC
algorithms with the Dai and Yuan (DY) algorithm. Figures 1 and 2 present the Dolan-Moré
performance profile for these algorithms subject to the cpu time metric. We see that both
AMDYN and AMDYC is top performer, being more successful and more robust than the Dai
and Yuan algorithm. When comparing AMDYN with the Dai and Yuan algorithm (Figure 1),
subject to the number of iterations, we see that AMDYN was better in 619 problems (i.e. it
achieved the minimum number of iterations in 619 problems). DY was better in 27 problems
and they achieved the same number of iterations in 60 problems, etc. Out of 750 problems,
only for 706 of them does the criterion (6.1) hold.

 12

Fig. 1. Performance profile of AMDYN versus DY.

Fig. 2. Performance profile of AMDYC versus DY.

Dai and Yuan [21] studied the hybrid conjugate gradient algorithms and proposed the
following two hybrid methods:

 {1max ,min , ,
1

hDY DY HS DY
k k k

σβ β β
σ

− }kβ
⎧ ⎫= −⎨ ⎬+⎩ ⎭

 (6.2)

 { }{ }max 0,min ,hDYz HS DY
k kβ β= kβ , (6.3)

 13

where showing their global convergence when the Lipschitz assumption
holds and the standard Wolfe line search is used. The numerical experiments of Dai and Ni
[19] proved that the second hybrid method (hDYz) is the better, outperforming the Polak-
Ribière [41] and Polyak [42] method. In the third set of numerical experiments we compare
the Dolan-Moré performance profile of AMDYN and AMDYC versus Dai-Yuan hybrid
conjugate gradient subject to the cpu time metric, as in Figures 3 and 4.

1 /HS T T
k k k ky g y sβ += ,k

hDY
kβ

Fig. 3. Performance profile of AMDYN versus hDY.

Fig. 4. Performance profile of AMDYC versus hDY.

 14

In the fourth set of numerical experiments, in Figures 5 and 6, we compare the Dolan-
Moré performance profile of AMDYN and AMDYC versus Dai-Yuan hybrid conjugate
gradient subject to the cpu time metric. hDYz

kβ

Fig. 5. Performance profile of AMDYN versus hDYz.

Fig. 6. Performance profile of AMDYC versus hDYz.

 15

7. Conclusion
We have presented a new conjugate gradient algorithm for solving large-scale unconstrained
optimization problems. The parameter β k is a modification of the Dai and Yuan
computational scheme in such a manner that the direction generated by the algorithm
satisfies the sufficient descent condition, independent of the line search. Under strong Wolfe
line search conditions we proved the global convergence of the algorithm. We present
computational evidence that the performance of our algorithms AMDYN and AMDYC was
higher than that of the Dai and Yuan conjugate gradient algorithm and its hybrid variants, for
a set consisting of 750 problems.

dk

References
[1] Andrei, N.: Conjugate gradient algorithms for large scale unconstrained optimization. ICI

Technical Report, January 12, 2005.
[2] Andrei, N.: Scaled conjugate gradient algorithms for unconstrained optimization.

Computational Optimization and Applications, 38 (2007), pp. 401-416.
[3] Andrei, N.: Scaled memoryless BFGS preconditioned conjugate gradient algorithm for

unconstrained optimization. Optimization Methods and Software 22 (2007), pp. 561-
571.

[4] Andrei, N.: A scaled BFGS preconditioned conjugate gradient algorithm for
unconstrained optimization. Applied Mathematics Letters 20 (2007), pp. 645-650.

[5] Andrei, N.: A scaled nonlinear conjugate gradient algorithm for unconstrained
optimization. Optimization, 57 (2008), pp. 549-570.

[6] Andrei, N.: An acceleration of gradient descent algorithm with backtracking for
unconstrained optimization. Numerical Algorithms, 42 (2006), pp.63-73.

[7] Andrei, N.: 40 conjugate gradient algorithms for unconstrained optimization. A survey on
their definition. ICI Technical Report No. 13/08, March 14, 2008.

[8] Andrei, N.: Numerical comparison of conjugate gradient algorithms for unconstrained
optimization. Studies in Informatics and Control, 16 (2007), pp.333-352.

[9] Andrei, N.: A Dai-Yuan conjugate gradient algorithm with sufficient descent and
conjugacy conditions for unconstrained optimization. Applied Mathematics Letters 21
(2008), pp. 165-171.

[10] Andrei, N.: Another hybrid conjugate gradient algorithm for unconstrained optimization.
Numerical Algorithms, 47 (2008), pp.143-156.

[11] Andrei, N.: Performance profiles of conjugate gradient algorithms for unconstrained
optimization. Encyclopedia of Optimization, 2nd edition, 2008, C.A. Floudas and P.M.
Pardalos (Eds.), entry 762, in press.

[12] Andrei, N.: An unconstrained optimization test functions collection. Advanced Modeling
and Optimization – An electronic International Journal, 10 (2008), pp.147-161

 [13] Birgin, E., Martínez, J.M.: A spectral conjugate gradient method for unconstrained
optimization, Applied Math. and Optimization, 43 (2001), pp.117-128.

[14] Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, Ph.L.: CUTE: constrained and
unconstrained testing environments, ACM Trans. Math. Software, 21 (1995), pp.123-
160.

[15] Concus, P., Golub, G.H., O’Leary, D.P.: A generalized conjugate gradient method for
the numerical solution of elliptic partial differential equations, in J.R. Bunch and D.J.
Rose (Eds.) Sparse Matrix Computations, Academic Press, New York, 1976, pp.309-
332.

[16] Concus, P., Golub, G.H.: A generalized conjugate gradient method for nonsymmetric
systems of linear equations, in R. Glowinski and J.L. Lions (Eds.) Computing Methods
in Applied Sciences and Engineering (2nd International Symposium, Versailles 1975),
Part I, Springer Lecture Notes in Economics and Mathematical Systems 134, New
York, 1976, pp.56-65.

[17] Dai, Y.H.: New properties of a nonlinear conjugate gradient method. Numer. Math., 89
(2001), pp.83-98.

 16

[18] Dai, Y.H., Liao, L.Z.: New conjugacy con7 ditions and related nonlinear conjugate
gradient methods. Appl. Math. Optim., 43 (2001), pp. 87-101.

[19] Dai, Y.H. Ni, Q.: Testing different conjugate gradient methods for large-scale
unconstrained optimization, J. Comput. Math., 21 (2003), pp.311-320.

[20] Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global
convergence property, SIAM J. Optim., 10 (1999), pp.177-182.

[21] Dai, Y.H. Yuan, Y.: An efficient hybrid conjugate gradient method for unconstrained
optimization. Annals of Operations Research, 103 (2001), pp.33-47.

[22] Dai, Y.H., Han, J.Y., Liu, G.H., Sun, D.F., Yin, X., Yuan, Y.: Convergence properties of
nonlinear conjugate gradient methods. SIAM Journal on Optimization 10 (1999), 348-
358.

[23] Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles,
Math. Programming, 91 (2002), pp. 201-213.

[24] Goldstein, A.A.: On steepest descent, SIAM J. Control, Vol. 3, pp.147-151, 1965.
[25] Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Computer

Journal, 7 (1964), pp.149-154.
[26] Gilbert, J.C. Nocedal, J.: Global convergence properties of conjugate gradient methods

for optimization. SIAM J. Optim., 2 (1992), pp.21-42.
[27] Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix.

SIAM J. Numer. Anal., 2 (Series B) (1965), pp. 205-224.
[28] Golub, G.H. O’Leary, D.P.: Some history of the conjugate gradient and Lanczos

algorithms: 1948-1976. SIAM Review, 31 (1976), pp.50-100.
[29] Golub, G.H., Underwood, R., Wilkinson, J.H.: The Lanczos algorithm for the symmetric

Ax Bxλ= problem. Technical Report, Stanford University Computer Science
Department, Stanford, California, 1972.

[30] Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and
an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192.

[31] Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pacific
journal of Optimization, 2 (2006), pp.35-58.

[32] Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems, J.
Research Nat. Bur. Standards Sec. B. 48, pp. 409-436, 1952.

[33] Hu, Y.F., Storey, C.: Global convergence result for conjugate gradient methods. JOTA,
71, (1991), pp.399-405.

[34] Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators, J. Res. Nat. Bur. Standards, 45 (1950), pp.255-282.

[35] Lanczos, C.: Solution of systems of linear equations by minimized iterations, J. Res. Nat.
Bur. Standards, 49 (1952), pp.33-53.

[36] Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization
methods. Mathematical Programming, 45 (1989), pp. 503-528.

[37] Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, Part 1: Theory.
JOTA, 69 (1991), pp.129-137.

[38] O’Leary, D.P.: Conjugate gradients and related KMP algorithms: The beginnings. In L.
Adams and J.L. Nazareth (Eds.) Linear and Nonlinear Conjugate Gradient – Related
Methods. SIAM, Philadelphia, 1996, pp.1-8.

[39] Nocedal, J.: Conjugate gradient methods and nonlinear optimization, in L. Adams and
J.L. Nazareth (Eds.) Linear and Nonlinear Conjugate Gradient – Related Methods,
SIAM, Philadelphia, 1996, pp.9-23.

[40] Perry, J.M.: A class of conjugate gradient algorithms with a two-step variable-metric
memory, Discussion Paper 269, Center for Mathematical Studies in Economic and
Management Sciences, Northwestern University, Evanston, Illinois, 1977.

[41] Polak, E., Ribière, G. : Note sur la convergence de méthodes de directions conjuguée,
Revue Francaise Informat. Recherche Opérationnelle, 3e Année 16 (1969), pp.35-43.

[42] Polyak, B.T.: The conjugate gradient method in extreme problems,USSR Comp. Math.
Math. Phys., 9 (1969), pp.94-112.

 17

[43] Shanno, D.F., Phua, V: Algorithm 500, Minimization of unconstrained multivariate
functions, ACM Trans. on Math. Soft., 2, pp.87-94, 1976.

[44] Shanno, D.F.: On the convergence of a new conjugate gradient algorithm,SIAM J.
Numer. Anal., 15 (1978), pp.1247-1257.

[45] Shanno, D.F.: Conjugate gradient methods with inexact searches. Math. Oper. Res., 3
(1978), pp.244-256.

[46] Touati-Ahmed, D., Storey, C.: Efficient hybrid conjugate gradient techniques, Journal Of
Optimization Theory and Applications, 64 (1990), pp. 379-397.

June 18, 2008

 18

