
Accelerated scaled memoryless BFGS preconditioned 
conjugate gradient algorithm for unconstrained 

optimization 
 

NECULAI  ANDREI 
Research Institute for Informatics,  

Center for Advanced Modeling and Optimization, 
8-10, Averescu Avenue, Bucharest 1, Romania 

and 
Academy of Romanian Scientists, 

54, Splaiul Independentei, Bucharest 5, Romania 
E-mail: nandrei@ici.ro 

 
Abstract. An accelerated scaled memoryless BFGS preconditioned conjugate gradient 
algorithm for solving unconstrained optimization problems is presented. The basic idea is 
to combine the scaled memoryless BFGS method and the preconditioning technique in the 
frame of the conjugate gradient method. The preconditioner, which is also a scaled 
memoryless BFGS matrix, is reset when the Beale-Powell restart criterion holds. The 
parameter scaling the gradient is selected as spectral gradient. For steplength computation 
the method uses the advantage that the step lengths in conjugate gradient algorithms may 
differ from 1 by two order of magnitude and tend to vary in an unpredictable manner. 
Thus, we suggest an acceleration scheme able to improve the efficiency of the algorithm. 
Under common assumptions, the method is proved to be globally convergent. It is shown 
that for uniformly convex functions the convergence of the accelerated algorithm is still 
linear, but the reduction in the function values is significantly improved. In very mild 
conditions it is shown that, for strongly convex functions, the algorithm is globally 
convergent. Computational results for a set consisting of 750 unconstrained optimization 
test problems show that this new accelerated scaled conjugate gradient algorithm 
substantially outperforms known conjugate gradient methods. 
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1. Introduction 
 
In this paper we consider the following unconstrained optimization problem: 
                                                                  min f x( )                                                             (1.1) 
where  is continuously differentiable and its gradient is available. We are 
interested in elaborating an algorithm for solving large-scale cases for which the Hessian of 

f R Rn: →

f  is either not available or requires a large amount of storage and computational costs. 
The paper presents a conjugate gradient algorithm based on a combination of the scaled 
memoryless BFGS method and the preconditioning technique [3,4]. For general nonlinear 
functions a good preconditioner is any matrix that approximates ∇ −2 f x( ) ,* 1 where is the 
solution of (1.1). In this algorithm the preconditioner is a scaled memoryless BFGS matrix 
which is reset when the Powell restart criterion holds. The scaling factor in the preconditioner 
is selected as spectral gradient [33].  

x*

 The algorithm uses the conjugate gradient direction where the famous parameter β k  
is obtained by equating the conjugate gradient direction with the direction corresponding to 
the Newton method [5,6]. Thus, we get a general formula for the direction computation, 
which could be particularized to include the Polak-Ribiére [29] and Polyak [30] and the 
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Fletcher and Reeves [18] conjugate gradient algorithms, the spectral conjugate gradient 
(SCG) by Birgin and Martínez [11] or the algorithm of Dai and Liao [13], for This 
direction is then modified in a canonical manner as it was considered earlier by Oren and 
Luenberger [26], Oren and Spedicato [27], Perry [28] and Shanno [34, 35], by means of a 
scaled, memoryless BFGS preconditioner placed into the Beale-Powell restart technology. 
The scaling factor is computed in a spectral manner based on the inverse Rayleigh quotient, as 
suggested by Raydan [33]. The method could be considered as an extension of the spectral 
conjugate gradient (SCG) by Birgin and Martínez [11] or of a variant of the conjugate 
gradient algorithm by Dai and Liao [13] (for 

t = 1.

t = 1 ) suggested to overcome the lack of 
positive definiteness of the matrix defining their search direction. 

In [25] Jorge Nocedal articulated a number of open problems in conjugate gradient 
algorithms. One of them focuses on the step length. Intensive numerical experiments with 
conjugate gradient algorithms proved that the step length may differ from 1 up to two orders 
of magnitude, being larger or smaller than 1, depending on how the problem is scaled. 
Moreover, the sizes of the step length tend to vary in a totally unpredictable way. This is in 
sharp contrast with the Newton and quasi-Newton methods, as well as with the limited 
memory quasi-Newton methods, which usually admit the unit step length for most of the 
iterations and require only very few function evaluations for step length determination. 
Therefore, in this paper we take the advantage of this behavior of the step lengths in conjugate 
gradient algorithms and present an acceleration scheme, which modify the step length in such 
a manner to improve the reduction in functions values. 
 The paper is organized as follows: In section 2 we present the scaled conjugate 
gradient algorithm BFGS preconditioned. The algorithm performs two types of steps: a 
standard one in which a double quasi-Newton updating scheme is used and a restart one 
where the current information is used to define the search direction. The convergence of the 
algorithm for strongly convex functions is proved in section 3. In section 4 we present an 
acceleration scheme of the algorithm. The idea of this computational scheme is to take 
advantage that the step lengths kα  in conjugate gradient algorithms are very different from 1. 
Therefore, we suggest we modify kα  in such a manner as to improve the reduction of the 
function values along the iterations. In section 5 we present the ASCALCG algorithm and we 
prove that for uniformly convex functions the convergence of the accelerated algorithm is still 
linear, but the reduction in function values is significantly improved. Finally, in section 6 we 
present computational results on a set of 750 unconstrained optimization problems from the 
CUTE [12] collection along with some other large-scale unconstrained optimization problems 
presented in [1]. The Dolan-Moré [17] performance profiles of ASCALCG versus some 
known conjugate gradient algorithms including SCALCG by Andrei [3,4,5,6], 
CG_DESCENT by Hager and Zhang [19,20,21], LBFGS by Liu and Nocedal [23], truncated 
Newton TN by Nash [24] and the accelerated conjugate gradient with modified secant 
condition ACGMSEC [10] prove that ASCALCG is top performer among these algorithms. 
 
 
2. Scaled Conjugate Gradient Method 
 
The algorithm generates a sequence xk of approximations to the minimum ofx* f , in which 
                                                            x x dk k k+ k= +1 α ,                                                    (2.1) 
                                                       d g sk k k k+ + + k= − +1 1 1θ β ,                                             (2.2) 
where g f xk k ,= ∇ ( )  α k is selected to minimize f x( ) along the search direction , dk β k is 
a scalar parameter, s x xk k= −+1 k and θ k+1 is a parameter to be determined. The iterative 
process is initialized with an initial point x0 and d g0 0= − .  
 Observe that if θ k+ =1 1,  then we get the classical conjugate gradient algorithms 
according to the value of the scalar parameter β k .  On the other hand, if  β k = 0, then we 

 2



get another class of algorithms according to the selection of the parameter θ k+1 . Considering  
β k = 0,  there are two possibilities for θ k+1 : a positive scalar or a positive definite matrix. If 
θ k+ =1 1 , then we have the steepest descent algorithm. If θ k kf x+ +

−= ∇1
2

1
1( ) , or an 

approximation of it, then we get the Newton or the quasi-Newton algorithms, respectively. 
Therefore, we see that in the general case, when θ k+ ≠1 0 is selected in a quasi-Newton 
manner, and β k ≠ 0,  (2.2) represents a combination between the quasi-Newton and the 
conjugate gradient methods. However, if θ k+1 is a matrix containing some useful information 
about  the inverse Hessian of function f , we are better off using d gk k+ + k+= −1 1 1θ since the 
addition of the term β k ks in (2.2) may prevent the direction  from being a descent 
direction unless the line search is sufficiently accurate. Therefore, in this paper we shall 
consider 

dk

θ k+1 as a positive scalar which contains some useful information to the inverse 
Hessian of function f .  
 Our motivation to get a good algorithm for solving (1.1) is to choose the parameter 

kβ  in (2.2) in such a way so that for every  the direction 1k ≥ 1kd +  given by (2.2) be the 
Newton direction. Therefore, from the equality 
                                         − ∇ = − ++

−
+ + +

2
1

1
1 1 1f x g g sk k k k k( ) k ,θ β                                 (2.3) 

we get:                                      

                                           β
θ

k
k
T

k k k k
T

k

k
T

k k

s f x g s g
s f x s

=
∇ −

∇
+ + + +

+

2
1 1 1 1
2

1

( )
( )

.                                  (2.4) 

The salient point with this formula for kβ  computation is the presence of the Hessian. 
Observe that if the line search is exact we get the scaled Daniel method [16]. For large-scale 
problems, choices for the update parameter that do not require the evaluation of the Hessian 
matrix are often preferred in practice to the methods that require the Hessian. As we know, for 
quasi-Newton methods an approximation matrix kB  to the Hessian 2 ( )kf x∇  is used and 
updated so that the new matrix 1kB +  satisfies the secant condition 1k k kB s y+ = , where 

. Therefore, in order to have an algorithm for solving large-scale problems we 
can assume that the pair  satisfies the secant condition. In this case, Zhang, Deng and 

Chen [39] proved that if 

1k ky g g+= − k

( , )k ks y

ks  is sufficiently small, then 
32

1( ) (T T
k k k k k ks f x s s y O s+∇ − = ) . 

Therefore, using this assumption we get: 

                                                        1( ) .
T

k k k k
k T

k k

y s g
y s

θβ + −
= 1+                                             (2.5) 

Birgin and Martínez [11] arrived at the same formula for β k , but using a geometric 
interpretation of quadratic function minimization. The direction corresponding to β k given in 
(2.5) is as follows: 

                                       d g
y s g

y s
sk k k

k k k
T

k

k
T

k
k+ + +

+= − + +−
1 1 1

1θ 1θ( )
.                                (2.6) 

The following particularizations are obvious. If  θ k+ =1 1,  then (2.6) is the direction 
considered by Perry [28]. At the same time we see that (2.6) is the direction given by Dai and 
Liao [13] for obtained this time by an interpretation of the conjugacy condition. 
Additionally, if  

t = 1,
s gj

T
j+ =1 0, j k= 0 1, , , ,…  then from (2.6) we get: 

                                               d g
y g
g g

sk k k
k k

T
k

k k k
T

k
k+ + +

+ += − +1 1 1
1 1θ

θ
α θ

,                                      (2.7) 

which is the direction corresponding to a generalization of the Polak and Ribière formula. Of 
course, if θ θk k+ = =1 1  in (2.7), we get the classical Polak and Ribière formula [29]. If 
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s gj
T

j+ =1 0,  j k= 0 1, , , ,… and additionally the successive gradients are orthogonal, then 
from (2.6) we get: 

                                             d g
g g

g g
sk k k

k k
T

k

k k k
T

k
k+ + +

+ + += − +1 1 1
1 1 1θ

θ
α θ

,                                      (2.8) 

which is the direction corresponding to a generalization of the Fletcher and Reeves formula 
[18]. Therefore, (2.6) is a general formula for direction computation in a conjugate gradient 
manner including the classical Fletcher and Reeves [18], and Polak-Ribière and Polyak [29, 
30] formulas. 
 There is a result by Shanno [34, 35] that says that the conjugate gradient method is 
precisely the BFGS quasi-Newton method for which the initial approximation to the inverse 
of the Hessian, at every step, is taken as the identity matrix. The extension to the scaled 
conjugate gradient is very simple. Using the same methodology as considered by Shanno [34] 
we get the following direction : dk+1

    d g
g s
y s

y
y y
y s

g s
y s

g y
y s

sk k k k
k
T

k

k
T

k
k k

k
T

k

k
T

k

k
T

k

k
T

k
k

k
T

k

k
T

k
k+ + + +

+
+

+
+

+= − +
⎛

⎝
⎜

⎞

⎠
⎟ − +

⎛

⎝
⎜

⎞

⎠
⎟ −

⎡

⎣
⎢

⎤

⎦
⎥1 1 1 1

1
1

1
1

11θ θ θ θ ,  (2.9) 

involving only 4 scalar products. Again observe that if g sk
T

k+ =1 0,  then (2.9) reduces to: 

                                              d g
g y
y s

sk k k k
k
T

k

k
T

k
k+ + + +

+= − +1 1 1 1
1θ θ .                                     (2.10) 

Thus, in this case, the effect is simply one of multiplying the Hestenes and Stiefel [22] search 
direction by a positive scalar. 
 In order to ensure the convergence of the algorithm (2.1), with given by (2.9), 
we need to constrain the choice of 

dk+1

α k .  We consider line searches that satisfy the Wolfe 
conditions [37, 38]: 
                                              ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                    (2.11) 

                                                    ( )T T
k k k k k k ,f x d d g dα σ∇ + ≥                                        (2.12) 

where 0 1.ρ σ< ≤ <   
 
Theorem 2.1. Suppose that α k in (2.1) satisfies the Wolfe conditions (2.11) and (2.12), then 
the direction given by (2.9) is a descent direction. dk+1

Proof: Since d g0 = 0− ,  we have g d gT
0 0 0

2
0= − ≤ .  Multiplying (2.9) by  we have gk

T
+1 ,

[g d
y s

g y s g y g s y sk
T

k
k
T

k
k k k

T
k k k

T
k k

T
k k

T
k+ + + + + + += − +1 1 2 1 1

2 2
1 1 1

1
2

( )
( ) ( )( )( )θ θ  

                                                ]− −+ +( ) ( ) ( )( )g s y s y y g sk
T

k k
T

k k k
T

k k
T

k1
2

1 1
2θ + .

Applying the inequality u v u vT ≤ +
1
2

2( 2 )  to the second term of the right hand side of 

the above equality, with  and u s y gk
T

k k= +( ) 1 v g s yk
T

k k= +( )1 we get: 

                                                      g d
g s

y sk
T

k
k
T

k

k
T

k
+ +

+≤ −1 1
1

2( )
.                                             (2.13) 

But, by Wolfe condition (2.12),  Therefore, y sk
T

k > 0. g dk
T

k+ + <1 1 0  for every k = 0 1, ,…  
 
Observe that the second Wolfe condition (2.12) is crucial for the descent character of 
direction (2.9). Besides, we see that the estimation (2.13) is independent of the parameter 
θ k+1 .  
 Usually, all conjugate gradient algorithms are periodically restarted. The Powell 
restarting procedure [31, 32] is to test if there is very little orthogonality left between the 
current gradient and the previous one. At step r when: 
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                                                        g g gr
T

r r+ ≥1

2
0 2. +1 ,                                                (2.14) 

we restart the algorithm using the direction given by (2.9). 
 At step r  we know  and sr , yr θ r+1 .  If (2.14) is satisfied, then a restart step is 
considered, i.e. the direction is computed as in (2.9). For k r≥ +1,  we consider the same 
philosophy used by Shanno [34, 35], where the gradient gk+1 is modified by a positive 
definite matrix which best estimates the inverse Hessian without any additional storage 
requirements, i.e. we compute: 
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and 

                         w y
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s ,                         (2.16) 

 
involving 6 scalar products. With these, at any nonrestart step, the direction for dk+1

k r≥ +1,  is computed using a double update scheme as in Shanno [34]: 
 

                        d v
g s w g w s

y s
y w
y s

g s
y s

sk
k
T

k k
T

k

k
T

k

k
T

k
T

k

k
T

k

k
T

k
k+

+ + += − +
+

− +
⎛

⎝
⎜

⎞

⎠
⎟1

1 1 11
( ) ( )

,               (2.17) 

 
involving only 4 scalar products. Observe that  is sufficient to ensure that the 
direction given by (2.17) is well defined and it is always a descent direction. 

y sk
T

k > 0
dk+1

 Motivated by the efficiency of the spectral gradient method introduced by Raydan 
[33] and used by Birgin and Martínez [11] in their spectral conjugate gradient method for 
unconstrained optimization, in our algorithm θ k+1 is defined as a scalar approximation to the 
inverse Hessian. This is given as the inverse of the Rayleigh quotient: 

s f x ts dt s sk
T

k k k k
T

k∇ +
⎡

⎣
⎢

⎤

⎦
⎥∫ 2

0

1

( ) / s ,  

i.e. 

                                                            θ k
k
T

k

k
T

k

s s
y s+ =1 .                                                         (2.18) 

The inverse of Rayleigh quotient lies between the smallest and the largest eigenvalue of the 

Hessian average . Again observe   is sufficient to ensure that ∇ +∫ 2

0

1

f x ts dtk k( ) y sk
T

k > 0

θ k+1  in (2.18) is well defined. 

 
3. Convergence Analysis for Strongly Convex Functions 
Throughout this section we assume that f is strongly convex and Lipschitz continuous on the 
level set 
                                                  { }0: ( ) ( ) .nS x R f x f x= ∈ ≤                                            (3.1) 
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That is, there exists constants µ > 0  and  such that L

                                         ( ( ) ( )) ( )∇ − ∇ − ≥ −f x f y x y x yT µ
2

                                   (3.2) 
and 
                                                   ∇ −∇ ≤ −f x f y L x y( ) ( ) ,                                           (3.3) 
for all x  and y  from  For the convenience of the reader we include here the following 
lemma (see [20]). 

.S

 
Lemma 3.1. Assume that is a descent direction and dk ∇f satisfies the Lipschitz condition 

                                                 ∇ −∇ ≤ −f x f x L x xk( ) ( ) ,k                                         (3.4) 
for every x  on the line segment connecting xk and xk+1 ,  where L  is a constant. If the line 
search satisfies the second Wolfe condition (2.12), then 

                                                          2
1 .

T
k k

k
k

g d
L d
σα −

≥                                                    (3.5) 

Proof: Subtracting from both sides of (2.12) and using the Lipschitz condition we have g dk
T

k

                                       2
1( 1) ( )T T

k k k k k k kg d g g d L dσ +− ≤ − ≤ .α                               (3.6) 

Since is a descent direction and dk 1,σ <  (3.5) follows immediately from (3.6).  
 
Therefore, satisfying the Wolfe line search conditions α is bounded away from zero, i.e. there 
exists a positive constant ω , such that .α ω≥  
 
Lemma 3.2. Assume that ∇f is strongly convex and Lipschitz continuous on  If .S θ k+1 is 
selected by spectral gradient, then the direction given by (2.9) satisfies: dk+1

                                                d
L L

gk+ ≤ + + k+

⎛
⎝
⎜

⎞
⎠
⎟1 2

2

3 1

2 2
µ µ µ

.                                         (3.7) 

 
Proof: By Lipschitz continuity (3.3) we have 
                 y g g f x d f x L d L sk k k k k k k k k k= − = ∇ + − ∇ ≤ =+1 ( ) ( )α α .          (3.8) 
On the other hand, by strong convexity (3.2) 
                                                             y s sk

T
k k≥ µ

2
.                                                      (3.9) 

Selecting θ k+1  as in (2.18), it follows that 

                                                   θ
µ µk

k
T

k

k
T

k

k

k

s s
y s

s

s
+ = ≤ =1

2

2
1

.                                        (3.10) 

Now, using the triangle inequality and the above estimates (3.8)-(3.10), after some algebra on 
dk+1 , where is given by (2.9), we get (3.7).  dk+1

 
 The convergence of the scaled conjugate gradient algorithm when f is strongly 
convex is given by 
 
Theorem 3.1. Assume that f is strongly convex and Lipschitz continuous on the level set  
If at every step of the conjugate gradient (2.1) with given by (2.9) and the step length 

.S
dk+1

α k selected to satisfy the Wolfe conditions (2.11) and (2.12), then either gk = 0  for some 
k,  or lim .

k
gk→∞

= 0  

Proof: Suppose gk ≠ 0  for all k.  By strong convexity we have 
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                                           y d g g d dk
T

k k k
T

k k k= − ≥+( )1

2
µα .                                  (3.11) 

By theorem 2.1,  Therefore, the assumption g dk
T

k < 0. gk ≠ 0 implies  Since dk ≠ 0.
α k > 0,  from (3.11) it follows that  But y dk

T
k > 0. f is strongly convex over  therefore ,S

f  is bounded from below. Now, summing over k  the first Wolfe condition (2.11) we have 

α k k
T

k
k

g d
=

∞

∑ > −∞
0

.  

Considering the lower bound for α k given by (3.5) in Lemma 3.1 and having in view that 
is a descent direction it follows that dk

                                                             
g d

d
k
T

k

kk

2

2
1=

∞

∑ < ∞.                                                    (3.12) 

Now, from (2.13), using the inequality of Cauchy and (3.9) we get 

g d
g s

y s
g s

s

g
k
T

k
k
T

k

k
T

k

k k

k

k
+ +

+ + +≤ − ≤ − = −1 1
1

2
1

2 2

2
1

2
( )

.
µ µ

 

Therefore, from (3.12) it follows that 

                                                             
g

d
k

kk

4

2
0

< ∞
=

∞

∑ .                                                    (3.13) 

Now, inserting the upperbound (3.7), for  in (3.13) yields dk

gk
k

2

0
< ∞

=

∞

∑ ,  

which completes the proof.  
 
 For general functions the convergence of the algorithm is coming from theorem 2.1 
and the restart procedure. Therefore, for strongly convex functions and under inexact line 
search it is global convergent. To a great extent, however, the algorithm is very close to the 
Perry/Shanno computational scheme [34, 35] which is a scaled memoryless BFGS 
preconditioned algorithm where the scaling factor is the inverse of a scalar approximation of 
the Hessian. If the Powell restart criterion (2.14) is used, for general functions f bounded 
from below with bounded second partial derivatives and bounded level set, using the same 
arguments considered by Shanno in [34] it is possible to prove that the iterates either 
converge to a point satisfying x * g x( ) ,* = 0 or the iterates cycle. It remains for further 
study to determine a complete global convergence result and whether cycling can occur for 
general functions with bounded second partial derivatives and bounded level set. 
 More sophisticated reasons for restarting the algorithms have been proposed in the 
literature, but we are interested in the performance of an algorithm that uses the Powell restart 
criterion, associated with the scaled memoryless BFGS preconditioned direction choice for 
restart. Additionally, some convergence analysis with Powell restart criterion was given by 
Dai and Yuan [14] and can be used in this context of the preconditioned and scaled 
memoryless BFGS algorithm. 
 
4. Acceleration of the algorithm 
It is common to see that in conjugate gradient algorithms the search directions tend to be 
poorly scaled and as a consequence the line search must perform more function evaluations in 
order to obtain a suitable steplength .kα  In order to improve the performances of the 
conjugate gradient algorithms the efforts were directed to design procedures for direction 
computation based on the second order information. For example, CONMIN [36], and 
SCALCG [3,4,5,6] take this idea of BFGS preconditioning. In this section we focus on the 
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step length modification. In the context of gradient descent algorithm with backtracking the 
step length modification has been considered for the first time in [2]. 

Jorge Nocedal [25] pointed out that in conjugate gradient methods the step lengths 
may differ from 1 in a very unpredictable manner. They can be larger or smaller than 1 
depending on how the problem is scaled. Numerical comparisons between conjugate gradient 
methods and the limited memory quasi Newton method, by Liu and Nocedal [23], show that 
the latter is more successful [8]. One explanation of the efficiency of the limited memory 
quasi-Newton method is given by its ability to accept unity step lengths along the iterations. 
In this section we take advantage of this behavior of conjugate gradient algorithms and 
present an acceleration scheme. Basically, this modifies the step length in a multiplicative 
manner to improve the reduction of the function values along the iterations [9].  

Given the initial point 0x  we can compute 0 0( ),f f x=  0 ( )g f x0= ∇  and by Wolfe 
line search conditions (2.11) and (2.12) the steplength 0α  is determined. With these, the next 
iteration is computed as: 1 0 0 0x x dα= + ,  ( 0d g0= − ) where 1f  and  are immediately 
determined and the direction  can be computed as in (2.9). Therefore, at the iteration 

 we know 

1g

1d
1,2,...k = ,kx  ,kf   and  Suppose that  is a descent direction. By the 

Wolfe line search (2.11) and (2.12) we can compute 
kg .kd kd

kα  with which the following point 

k kz x dkα= +  is determined. The first Wolfe condition (2.11) shows that the steplength 
0kα >  satisfies: 

( ) ( ) ( ) .T
k k k k k k kf z f x d f x g dα ρα= + ≤ +  

With these, let us introduce the accelerated conjugate gradient algorithm by means of the 
following iterative scheme: 
                                                          1k k k k kx x dγ α+ = + ,                                                    (4.1) 
where 0kγ >  is a parameter which follows to be determined in such a manner as to improve 
the behavior of the algorithm. Now, we have: 

                  ( )22 21( ) ( ) ( ) .
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dα α α α+ = + + ∇ +           (4.2) 

On the other hand, for 0γ >  we have: 

            ( )22 2 21( ) ( ) ( )
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dγα γα γ α γα+ = + + ∇ + .

( ),

      (4.3) 

With these we can write: 
                                         ( ) ( )k k k k k k kf x d f x dγα α+ = + +Ψ γ                                  (4.4) 
where 

2 2 21( ) ( 1) ( ) ( 1)
2

T T
k k k k kd f x d g dγ γ α γ αΨ = − ∇ + − k k k  

                                              ( ) ( )22 .k k k k k ko d o dγ α α α α+ − 2                                     (4.5) 

Let us denote: 
                                                        0,T

k k k ka g dα= ≤  
2 2 ( ) ,T

k k k k kb d f x dα= ∇  

                                                        ( )2 .k k ko dε α=  

Observe that , since  is a descent direction, and for convex functions  0ka ≤ kd 0.kb ≥
Therefore, 

                                 2 21( ) ( 1) ( 1) .
2k k k k kb a k kγ γ γ γ α ε αΨ = − + − + − ε                           (4.6) 
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Now, we see that ( ) ( 2 )k k k kb akγ α ε γ′Ψ = + +  and ( ) 0k mγ′Ψ = , where 

                                                           .
2

k
m

k k

a
b

γ
kα ε

= −
+

                                                   (4.7) 

Observe that  Therefore, assuming that (0) 0.k ka′Ψ = < 2k k kb 0,α ε+ >  then ( )k γΨ  is a 
convex quadratic function with minimum value in point mγ  and 

2( ( 2 ))( ) 0
2( 2 )

k k k k
k m

k k k

a b
b

α εγ
α ε

+ +
Ψ = − ≤

+
.  

Considering mγ γ=  in (4.4) and since , we see that for every k  0kb ≥
2( ( 2 ))( ) ( ) ( )

2( 2 )
k k k k

k m k k k k k k k k
k k k

a b ,f x d f x d f x d
b

α εγ α α α
α ε

+ +
+ = + − ≤ +

+
 

which is a possible improvement of the values of function f  (when ( 2 )k k k ka b 0α ε+ + ≠ ). 
Therefore, using this simple multiplicative modification of the stepsize kα  as k kγ α  where 

/( 2 )k m k k k ka bγ γ α= = − + ε  we get: 
2

1
( ( 2 ))( ) ( ) ( )

2( 2 )
T k k k k

k k k k k k k k k
k k k

a bf x f x d f x g d
b

α εγ α ρα
α ε+

+ +
= + ≤ + −

+
 

                              
2( ( 2 ))( ) ( ),

2( 2 )
k k k k

k
k k k

a b
k kf x

b
α ε ρ
α ε

⎡ ⎤+ +
= − − ≤⎢ +⎣ ⎦

a f x⎥                               (4.8) 

since  (  is a descent direction). 0,ka ≤ kd
Observe that if  is a descent direction, then kd

2 2( ( 2 )) ( )
2( 2 ) 2

k k k k k k

k k k k

a b a b
b b

α ε
α ε

+ + +
>

+
 

and from (4.8) we get: 
2

1
( ( 2 ))( ) ( )

2( 2 )
k k k k

k k
k k k

a b
kf x f x a

b
α ε ρ
α ε+

⎡ ⎤+ +
≤ − −⎢ ⎥+⎣ ⎦

 

                                                
2( )( ) ( ).

2
k k

k k
k

a b
kf x a

b
ρ

⎡ ⎤+
< − − ≤⎢ ⎥

⎣ ⎦
f x  

Therefore, neglecting the contribution of kε , we still get an improvement on the function 
values. 
Now, in order to get the algorithm we have to determine a way for  computation. For this, 
at point 

kb

k kz x dkα= +  we have: 

2 21( ) ( ) ( ) ( ) ,
2

T T
k k k k k k k k k k kf z f x d f x g d d f x dα α α= + = + + ∇  

where kx  is a point on the line segment connecting kx  and  On the other hand, at point .z

k k kx z dα= −  we have: 

2 21( ) ( ) ( ) ( ) ,
2

T T
k k k k z k k k k kf x f z d f z g d d f x dα α α= − = − + ∇  

where  and ( )zg f= ∇ z kx  is a point on the line segment connecting kx  and  Having in 
view the local character of searching and that the distance between 

.z

kx  and is small enough, 
we can consider 

z
.k k kx x x= =  So, adding the above equalities we get: 
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                                                                                                                     (4.9) ,T
k k kb yα= − kd

zwhere   .k ky g g= −

Observe that if ka b> k , then 1.kγ >  In this case k k kγ α α> and it is also possible 

that 1k kγ α ≤  or 1.k kγ α >  Hence, the steplength k kγ α  can be greater than 1. On the other 

hand, if ,k ka b≤  then 1.kγ ≤  In this case ,k k kγ α α≤  so the steplength k kγ α  is reduced. 

Therefore, if ka b≠ k , then 1kγ ≠  and the steplength kα  computed by Wolfe conditions will 

be modified by its increasing or its reducing through factor .kγ  

 Neglecting kε  in (4.6), we see that (1) 0kΨ =  and if / 2,k ka b≤  then 

 and (0) / 2k 0k ka bΨ = − − ≤ 1.kγ <  Therefore, for any [0,1]γ ∈ , ( ) 0.k γΨ ≤  As a 
consequence for any (0,1),γ ∈  it follows that ( )k k k k( ).f x d f xγα+ <  In this case, for any 

[0,1]γ ∈ , .k k kγ α α≤  However, in our algorithm we selected k mγ γ=  as the point achieving 
the minimum value of ( ).k γΨ   
 
5. ASCALCG Algorithm 
Having in view the above developments and the definitions of gk ,   and as well as the 
selection procedure for 

sk yk ,
θ k+1 computation, the following accelerated scaled conjugate gradient 

algorithm can be presented. 
 
Step 1. Initialization. Select  and the parameters x R n

0∈ , 0 1.ρ σ< ≤ <  Compute f x( )0  

and g f x0 0= ∇ ( ).  Set d g0 0= −  and α 0 01= / g .  Set k = 0.  
Step 2. Line search. Compute α k satisfying the Wolfe conditions (2.11) and (2.12). Update 
the variables x x dk k k+ = +1 kα .  Compute f x gk k( ),+1 1+ and s x xk k k= −+1 ,  
y g gk k k= −+1 .   

Step 3. Test for continuation of iterations. If this test is satisfied the iterations are stopped, 
else set k k= +1.  
Step 4. Scaling factor computation. Compute θ k using (2.18). 
Step 5. Restart direction. Compute the (restart) direction d  as in (2.9). k

Step 6. Line search. Compute the initial guess:α αk k k kd d= − −1 1 2
/

2
.  Using this 

initialization compute α k satisfying the Wolfe conditions. Update the variables 
x x dk k k+ = +1 kα .  Compute 1( k )f x +  and gk+1 .  

Step 7. Acceleration scheme. Compute  and  If b  then 
compute 

T
k ka g d= k

T
k k k kb g g d+= − 0,k ≠

k

1( ) .
/k ka bγ =  and update the variables as: 1 .k k k k kx x dγ α+ = +  Compute f xk( )+1 ,  

gk+1  and s x xk k k= −+1 ,  y g gk k k= −+1 .  Otherwise (if 0kb = ), then compute 
s x xk k k= −+1 ,  y g gk k k= −+1 .  
Step 8. Store: θ θ= k ,   and s sk= y yk= .  
Step 9. Test for continuation of iterations. If this test is satisfied the iterations are stopped, 
else set k k= +1.  
Step 10. Restart. If the Powell restart criterion (2.14) is satisfied, then go to step 4 (a restart 
step); otherwise continue with step 11 (a standard step). 
Step 11. Standard direction. Compute the direction as in (2.17), where  and w  are 
computed as in (2.15) and (2.16) with saved values 

dk v
θ ,   and  s y.
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Step 12. Line search. Compute the initial guess: α αk k k kd d= − −1 1 2
/

2
.  Using this 

initialization compute α k satisfying the Wolfe conditions. Update the variables 
x x dk k k+ = +1 kα .  Compute 1( k )f x +  and gk+1 .  

Step 13. Acceleration scheme. Compute  and b g  If  then 
compute 

T
k ka g d= k

T
k k k kg d+= − 0,kb ≠

k

1( ) .
/k ka bγ =  and update the variables as: 1 .k k k k kx x dγ α+ = +  Compute f xk( )+1 ,  

gk+1  and s x xk k k= −+1 ,  y g gk k k= −+1 .  Otherwise (if 0kb = ), then compute 
s x xk k k= −+1 ,  y g gk k k= −+1 .  
Step 14. Test for continuation of iterations. If this test is satisfied the iterations are stopped, 
else set k k= +1  and go to step 10.  

 It is well known that if f is bounded below along the direction then there exists 
a step length 

dk ,
α k satisfying the Wolfe conditions. The initial selection of the step length 

crucially affects the practical behavior of the algorithm. At every iteration k ≥ 1 the starting 

guess for the step α k in line search is computed as α k k kd d− −1 1 2
/

2
.  This procedure was 

considered for the first time by Shanno and Phua in CONMIN [36].  The same one is taken by 
Birgin and Martínez in SCG [11] and in the SCALCG algorithm [3,4,5,6]. In steps 3, 9 and 14 
we can consider, for example, the following test: 6( ) 10 .kf x −

∞
∇ ≤  

 
Proposition 5.1. Suppose that f  is an uniformly convex function on the level set 

{ }0: ( ) ( )S x f x f x= ≤ , and  satisfies the sufficient descent condition kd 2
1 ,T

k k kg d c g< −  

where , and 1 0c > 2
2kd c g≤ 2

k , where  Then the sequence generated by 

ASCALCG converges linearly to 
2 0.c >

*,x  solution to the problem (1.1). 
 
Proof. From (4.8) we have that 1( ) (k )kf x f x+ ≤  for all  Since .k f  is bounded below, it 
follows that 

1lim( ( ) ( )) 0.k kk
f x f x +→∞

− =  

Now, since f  is uniformly convex there exist positive constants  and m ,M  such that 
 on  Suppose that 2 ( )mI f x MI≤ ∇ ≤ .S k kx d Sα+ ∈  and k m kx d Sγ α+ ∈  for all 0.α >  

We have: 
2( )( ) ( )

2
k k

k m k k k
k

a bf x d f x d
b

γ α α +
+ ≤ + − .  

But, from uniform convexity we have the following quadratic upper bound on ( )k kf x dα+ : 
221( ) ( )

2
T

k k k k k kf x d f x g d M dα α α+ ≤ + + .  

Therefore, 
2 22

1 2
1( ) ( )
2k k k k kf x d f x c g Mc gα α α+ ≤ − +  

                                                       
22

1 2
1( ) .
2k kf x c Mc gα α⎡ ⎤= + − +⎢ ⎥⎣ ⎦

 

Observe that for 1 20 /( ),c Mcα≤ ≤  2 1
1 2

1
2 2

cc Mcα α α− + ≤ −

.

 which follows from the 

convexity of  2
1 2( / 2)c Mcα α− +  Using this result we get: 
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2 2
1 1

1( ) ( ) ( )
2k k k k k kf x d f x c g f x c gα α ρ+ ≤ − ≤ − α , 

since 1/ 2.ρ <   
From Lemma 3.1 the Wolfe line search terminates with a value 0.α ω≥ >  

Therefore, for 1 20 /(c Mc ),α≤ ≤  this provides a lower bound on the decrease in the function 
,f  i.e.  

                                              
2

1( ) ( )k k k kf x d f x c gα ρ ω+ ≤ − .                                      (5.1) 
On the other hand, 

                           
42 22 2

22 1 2 1
22

22

( )( ) ( ) .
2 22

kk k
k

k k

Mc c ga b Mc c g
b MMc g

α α ω
α

−+ −
≥ ≥

c
                   (5.2) 

Considering (5.1) and (5.2) we get: 

                         
2

2 22 1
1

2

( )( ) ( )
2k m k k k k

Mc cf x d f x c g g
Mc

ωγ α ρ ω −
+ ≤ − − .                   (5.3) 

Therefore, 
2

22 1
1

2

( )( ) ( )
2k k m k k

Mc cf x f x d c g
Mc

ωγ α ρ ω
⎡ ⎤−

− + ≥ +⎢ ⎥
⎣ ⎦

.

→

 

But,  and as a consequence  goes to zero, i.e. 1( ) ( ) 0k kf x f x +− kg kx  converges to *.x  

Having in view that ( )kf x  is a nonincreasing sequence, it follows that ( )kf x  converges to 
*( ).f x  From (5.3) we see that 

                                  
2

22 1
1 1

2

( )( ) ( )
2k k

Mc cf x f x c g
Mc

ωρ ω+

⎡ ⎤−
≤ − +⎢

⎣ ⎦
.k⎥                            (5.4) 

Combining this with 2 *2 ( ( ) )k kg m f x f≥ −  and subtracting *f  from both sides of (5.4) 
we conclude: 

* *
1( ) ( ( ) )k k ,f x f c f x f+ − ≤ −  

where  
2

2 1
1

2

( )1 2 1.
2

Mc cc m c
Mc

ωρ ω
⎡ ⎤−

= − + <⎢ ⎥
⎣ ⎦

 

Therefore, ( )kf x  converges to *f  at least as fast as a geometric series with a factor that 
depends on the parameter ρ  in the first Wolfe condition and the bounds m  and .M  So, the 
convergence of the acceleration scheme is at least linear. ■ 
 
6. Computational results and comparisons 
In this section we present the performance of a Fortran implementation of the ASCALCG – 
accelerated scaled conjugate gradient algorithm on a set of 750 unconstrained optimization 
test problems. At the same time, we compare the performance of ASCALCG with some 
conjugate gradient algorithms including SCALCG [3,4,5,6], Hestenes-Stiefel (HS) [22], 
Polak-Ribière-Polyak (PRP) [29,30], Dai-Yuan (DY) [15], Dai-Liao (DL) [13], conjugate 
gradient with sufficient descent CGSD [7], hybrid Dai-Yuan (hDY) [15], hybrid Dai-Yuan 
zero (hDYz) [15], CG_DESCENT [20,21], LBFGS (m=3, m=5) [23], truncated Newton TN 
by Nash [24] and accelerated conjugate gradient with modified secant condition ACGMSEC 
[10]. 

All codes are written in Fortran and compiled with f77 (default compiler settings) on 
an Intel  Pentium 4, 1.5Ghz. The CG_DESCENT code by Hager and Zhang [20,21] contains 
the variant implementing the Wolfe line search (W) and the variant corresponding to the 
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approximate Wolfe conditions (aW). All algorithms implements the same stopping criteria 
gk ∞

≤ ε g , where . ∞ denotes the maximum absolute component of a vector and 

ε g =
−10 6 .  
The test problems are the unconstrained problems in the CUTE [12] collection, along 

with other large-scale optimization problems [1]. We selected 75 large-scale unconstrained 
optimization problems in extended or generalized form. For each function we have considered 
10 numerical experiments with number of variables n = 1000 2000 10000, , ,… .

,

 
The comparisons of algorithms are given in the following context. Let and 

be the optimal value found by ALG1 and ALG2, for problem  
respectively. We say that, in the particular problem  the performance of ALG1 was better 
than the performance of ALG2 if:  

f i
ALG1

f i
ALG2 i = 1 750, ,…

i,

                                                       f fi
ALG

i
ALG1 2 10− < −3                                                 (6.1) 

and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. 
In the first set of numerical experiments we compare ASCALCG with SCALCG. Basically, 
SCALCG [3,4,5,6] is the unaccelerated variant of ASCALCG. Figure 1 presents the Dolan-
Moré [17] CPU performance profiles of these algorithms, i.e. we plot the fraction of problems 
for which the given method is within a factor τ  of the best time. 

 
Fig. 1. ASCALCG versus SCALCG. 

 
We see that the best performance, relative to the CPU time metric, was obtained by 
ASCALCG, the top curve in Figure 1. Hence, ASCALCG appears to generate the best 
steplength, on average. 
In the second set of numerical experiments we compare ASCALCG to HS, PRP, DY, DL 
(t=1), CGSD, hDy and hDYz. Figures 2-8 present the Dolan-Moré CPU performance profiles 
of these classical conjugate gradient algorithms. 
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Fig. 2. ASCALCG versus Hestenes – Stiefel (HS). 

 
 

 
Fig. 3. ASCALCG versus Polak-Ribière-Polyak (PRP). 
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Fig. 4. ASCALCG versus Dai-Yuan (DY). 

 
 
 

 
Fig. 5. ASCALCG versus Dai-Liao (t=1) (DL). 
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Fig. 6. ASCALCG versus CG with Sufficient Descent Condition (CGSD). 

 

 
Fig. 7. ASCALCG versus Hybrid Dai-Yuan (hDY). 
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Fig. 8. ASCALCG versus Hybrid Dai-Yuan zero (hDYz). 

 
In the third set of numerical experiments we compare ASCALCG to CG_DESCENT. In 
Figures 9 and 10 the Dolan-Moré CPU performance profiles are presented. 

 
Fig. 9. ASCALCG versus CG_DESCENT (Wolfe conditions). 
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Fig. 10. ASCALCG versus CG_DESCENT (approximate Wolfe conditions). 

 
In the fourth set of numerical experiments in Figures 11 and 12 the Dolan-Moré performance 
profiles of ASCALCG versus LBFGS (m=3) and LBFGS (m=5) are presented. 

 
Fig. 11. ASCALCG versus LBFGS (m=3). 
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Fig. 12. ASCALCG versus LBFGS (m=5). 

 
Finally, Figures 13 and 14 illustrate the performance profiles of ASCALCG versus the 
truncated Newton TN algorithm by Nash and accelerated conjugate gradient with modified 
secant condition ACGMSEC [10], respectively. 

 
Fig. 13. ASCALCG versus truncated Newton TN (Nash). 
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Fig. 14. ASCALCG versus ACGMSEC ( 0τ = ). 

 
The percentage of the test problems for which a method is the fastest is given on the left axis 
of the plot. The right side of the plot gives the percentage of the test problems that were 
successfully solved by these algorithms, respectively.   
When comparing ASCALCG with SCALCG (Figure 1), subject to the number of iterations, 
we see that ASCALCG was better in 476 problems (i.e. it achieved the minimum number of 
iterations in 476 problems). SCALCG was better in 58 problems and they achieved the same 
number of iterations in 125 problems, etc. Out of 750 problems, only for 650 problems does 
the criterion (6.1) hold. Clearly, introducing the acceleration scheme represents an important 
ingredient in getting an efficient conjugate gradient algorithm. Numerical experiments proved 
that for the majority of iterations /k k ka b 1γ = < , i.e. the acceleration scheme has the 
propensity to reduce the values of the step lengths. From Figures 2-8 we see that the 
accelerated conjugate gradient algorithm ASCALCG is more successful and more robust than 
the considered classical and hybrid conjugate gradient algorithms considered in this numerical 
study. Hence, ASCALCG appears to generate the best search direction and the best 
steplength, on average. Not only ASCALCG is the fastest among these algorithms, but it is 
also more robust in solving a large variety of unconstrained optimization problems. 
In Figures 9 and 10 we present the performance profiles of ASCALCG and CG_DESCENT 
by Hager and Zhang [20, 21]. The top solid curve in these Figures corresponds to ASCALCG. 
Observe that subject to the CPU time metric, ASCALCG is more robust. Also, it is interesting 
to observe in Figure 9 that for 1τ = , relative to the CPU time metric, CG_DESCENT is 
slighter better. However, for 1τ > , ASCALCG turn out to be faster than CG_DESCENT. 
Even that CG_DESCENT with approximate Wolfe conditions computes a more accurate 
steplength, the acceleration scheme introduced in scaled BFGS preconditioned conjugate 
gradient algorithm, as implemented in ASCALCG, is way more robust (Figure 10).  
From Figures 11 and 12 again we see that the best performance is obtained by ASCALCG. 
LBFGS is a professional implementation of the limited memory quasi-Newton method [23], 
where  is the number of the stored pairs ( , . Even that LBFGS admits unit step m )k ks y
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lengths for the most of the iterations, thus requiring only few function and gradient 
evaluations for steplength determination, ASCALCG combines in a more adequate way the 
direction determination and step length to be the top performer. 
It is interesting to observe in Figure 13 that TN by Nash [24] is completely outperformed by 
ASCALCG. Finally, in Figure 14 again we see that the best performance is obtained by 
ASCALCG. In ACGMSEC [10], which is the accelerated conjugate gradient algorithm with 
modified secant condition,  in (2.4) is approximated by the modified secant 

condition 

2
1( )T

k ks f x s+∇ k

1 ˆ ,k k kB s y+ =   , where ˆ /( )T
k k k k k ky y u s uη= + 1 16( ) 3( )T

k k k k k kf f g gη + += − + + s  

and  is any vector such that n
ku R∈ 0T

k ks u ≠ .  
 
7. Conclusion 
We have presented a new conjugate gradient algorithm which mainly is an acceleration of 
SCALCG – scaled BFGS preconditioned conjugate gradient algorithm [3,4,5,6]. The 
acceleration scheme is simple and proved to be robust in numerical experiments. In very mild 
conditions we proved that the algorithm is globally convergent. For uniformly convex 
functions the convergence of the accelerated algorithm is still linear, but the reduction in the 
function values is significantly improved. For a set of 750 test unconstrained optimization 
problems (some from CUTE library) with dimensions ranging between 1000 and 10000 
variables, the CPU time performance profile for ASCALCG was higher than those of 
SCALCG, HS, PRP, DY, DL (t=1), CGSD, hDY, hDYz, CG_DESCENT, LBFGS, TN and 
ACGMSEC. 
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