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The best spectral conjugate gradient algorithm by (Birgin, E. and Martı́nez, J.M.,
2001, A spectral conjugate gradient method for unconstrained optimization.
Applied Mathematics and Optimization, 43, 117–128). which is mainly a scaled
variant of (Perry, J.M., 1977, A class of Conjugate gradient algorithms with a two
step varaiable metric memory, Discussion Paper 269, Center for Mathematical
Studies in Economics and Management Science, Northwestern University), is
modified in such a way as to overcome the lack of positive definiteness of the
matrix defining the search direction. This modification is based on the quasi-
Newton BFGS updating formula. The computational scheme is embedded into
the restart philosophy of Beale–Powell. The parameter scaling the gradient is
selected as spectral gradient or in an anticipative way by means of a formula using
the function values in two successive points. In very mild conditions it is shown
that, for strongly convex functions, the algorithm is global convergent.
Computational results and performance profiles for a set consisting of 700
unconstrained optimization problems show that this new scaled nonlinear
conjugate gradient algorithm substantially outperforms known conjugate
gradient methods including: the spectral conjugate gradient SCG by Birgin and
Martı́nez, the scaled Fletcher and Reeves, the Polak and Ribière algorithms and
the CONMIN by (Shanno, D.F. and Phua, K.H., 1976, Algorithm 500,
Minimization of unconstrained multivariate functions. ACM Transactions on
Mathematical Software, 2, 87–94).

Keywords: unconstrained optimization; conjugate gradient method; spectral
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1. Introduction

In a recent article, Birgin and Martı́nez [3] introduced a spectral conjugate gradient

method for solving large-scale unconstrained optimization problems

min f ðxÞ, ð1Þ
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where f : Rn! R is continuously differentiable and its gradient is available. This method

generates a sequence xk of approximations to the minimum x* of f, in which

xkþ1 ¼ xk þ �kdk, ð2Þ

dkþ1 ¼ ��kþ1gkþ1 þ �ksk, ð3Þ

where gk ¼ rf ðxkÞ, �k is selected to minimize f (x) along the search direction dk and �k is a
scalar parameter. The iterative process is initialized with an initial point x0 and d0¼�g0.

A geometric interpretation of the quadratic function minimization led Birgin and

Martı́nez [3] to the following expression for parameter �k:

�k ¼
ð�kþ1yk � skÞ

Tgkþ1

yTk sk
, ð4Þ

where sk ¼ xkþ1 � xk and yk ¼ gkþ1 � gk: Motivated by the spectral gradient

method introduced by Barzilai and Borwein [2] and analysed by Raydan [20] and

Fletcher [10], Birgin and Martı́nez consider a spectral gradient choice for the scaling factor

�kþ1 as:

�kþ1 ¼
sTk sk

yTk sk
: ð5Þ

Observe that the parameter �kþ1 given by (5) is the inverse of the Rayleigh quotient.

Numerical experiments with the algorithm (2)–(5), implementing the Wolfe line search in a

restart environment and using a special procedure for the initial choice of the step-length

on a set of 40 test problems, proved that this computational scheme outperforms the

classical Polak–Ribière and Fletcher–Reeves methods and is competitive with the

CONMIN of Shanno and Phua [23] and the SGM of Raydan [20].
In this article, we modify the best algorithm by Birgin and Martı́nez [3] in order to

overcome the lack of positive definiteness of the matrix defining the search direction. This

is done using the quasi-Newton BFGS updating philosophy, thus obtaining a new descent

direction. The basic idea of the proposed algorithm is to combine the scaled memoryless

BFGS method and the preconditioning technique. The preconditioned, which is also a

scaled memoryless BFGS matrix, is reset when a restart criterion holds. Therefore, we get a

preconditioned and scaled memoryless BFGS algorithm. The algorithm implements the

Wolfe line search conditions.
The article is organized as follows: in Section 2, we present the scaled conjugate gradient

method with restart. A complete description of the scaled conjugate gradient algorithm,

SCALCG, is given in Section 3. The algorithm performs two types of steps: a standard step

in which a double quasi-Newton updating scheme is used and a restart one where the

current information is used to define the search direction. The convergence analysis of the

algorithm for strongly convex functions is described in Section 4. In Section 5, we present

the computational results on a set of 700 unconstrained optimization problems and

compare the Dolan and Moré [9] performance profiles of the new scaled conjugate

gradient scheme SCALCG to the profiles for the Birgin and Martı́nez’s method SCG, the

scaled Polak–Ribière–Polyak, the scaled Fletcher–Reeves and the CONMIN of Shanno

and Phua.
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2. Scaled conjugate gradient method with restart

For solving (1) we consider the iterative process (2), where for k¼ 0, 1, . . . , the step size �k
is positive, and the directions dk are generated by (3), in which �kþ1 and �k are parameters.

Observe that if �kþ1 ¼ 1, then we get the classical conjugate gradient algorithms according

to the value of the scalar parameter �k. On the other hand, if �k¼ 0, then we get another

class of algorithms according to the selection of the parameter �kþ1. There are two

possibilities for �kþ1: a positive scalar or a positive definite matrix. If �kþ1 ¼ 1, then we get

the steepest descent algorithm (Cauchy [5]). If �kþ1 ¼ r
2f ðxkþ1Þ

�1, or an approximation of

it, then we get the Newton or the quasi-Newton algorithms, respectively. Therefore, we see

that when �kþ1 6¼ 0 is selected in a quasi-Newton way and �k 6¼ 0, then (3) represents a

combination between the quasi-Newton and the conjugate gradient methods.
The direction corresponding to �k given in (4) is as follows:

dkþ1 ¼ ��kþ1gkþ1 þ
ð�kþ1yk � skÞ

Tgkþ1

yTk sk
sk: ð6Þ

The following particularizations can be remarked. If �kþ1 ¼ 1, then (6) is the direction

considered by Perry [17]. At the same time we see that (6) is the direction given by Dai and

Liao [6] for t ¼ 1, obtained through an interpretation of the conjugacy condition.

Additionally, if sTj gjþ1 ¼ 0, j¼ 0, 1, . . . , k, then from (6) we get:

dkþ1 ¼ ��kþ1gkþ1 þ
�kþ1y

T
k gkþ1

�k�kgTk gk
sk, ð7Þ

which is the direction corresponding to a generalization of the Polak and Ribière formula.

Obviously, if �kþ1 ¼ �k ¼ 1 in (7), we get the classical Polak and Ribière formula [18]. If

sTj gjþ1 ¼ 0, j¼ 0, 1, . . . , k, and additionally the successive gradients are orthogonal, then

from (6)

dkþ1 ¼ ��kþ1gkþ1 þ
�kþ1g

T
kþ1gkþ1

�k�kgTk gk
sk, ð8Þ

which is the direction corresponding to a generalization of the Fletcher and Reeves

formula. Therefore, (6) is a general formula for the direction computation in a conjugate

gradient manner including the classical Fletcher and Reeves [11] and the Polak and Ribière

[18] formulas.
Shanno [21,22] proved that the conjugate gradient methods are exactly the BFGS

quasi-Newton method, where at every step the approximation to the inverse Hessian is

restarted as the identity matrix. Now we extend this result for the scaled conjugate

gradient. We see that the direction given by (6) can be written as:

dkþ1 ¼ � �kþ1I� �kþ1
sky

T
k

yTk sk
þ

sks
T
k

yTk sk

� �
gkþ1 � �Qkþ1gkþ1, ð9Þ

where

Qkþ1 ¼ �kþ1I� �kþ1
sky

T
k

yTk sk
þ

sks
T
k

yTk sk
: ð10Þ

Optimization 551
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If �kþ1 ¼ 1, we have

dkþ1 ¼ � I�
sky

T
k

yTk sk
þ

sks
T
k

yTk sk

� �
gkþ1, ð11Þ

which is exactly the Perry formula. By direct computation we can prove

PROPOSITION 1

yTkQkþ1 ¼ sTk : ð12Þ

Observe that (12) is similar but not identical to the quasi-Newton equation, which

requires an update to the inverse Hessian Hkþ1 as to satisfy:

Hkþ1yk ¼ sk: ð13Þ

A major difficulty with (9) is that the matrix Qkþ1, defined by (10) is not symmetric

and therefore not positive definite. Thus, the direction dkþ1 from (9) is not necessarily

a descent one and so numerical instability can appear. Besides, another difficulty arising

from this lack of symmetry is that the true quasi-Newton Equation (13) is not satisfied.
In order to overcome this difficulty and to get a true quasi-Newton updating we first

make the matrix Qkþ1 from (10) symmetric as follows:

Qkþ1 ¼ �kþ1I� �kþ1
sky

T
k þ yks

T
k

yTk sk
þ

sks
T
k

yTk sk
: ð14Þ

Now, we force Qkþ1 to satisfy the quasi-Newton Equation (13) yielding the following

symmetric update:

Q�kþ1 ¼ �kþ1I� �kþ1
yks

T
k þ sky

T
k

yTk sk
þ 1þ �kþ1

yTk yk

yTk sk

� �
sks

T
k

yTk sk
: ð15Þ

By direct computation it is very easy to prove that Q�kþ1 satisfies the quasi-Newton

equation, i.e.

PROPOSITION 2

Q�kþ1yk ¼ sk: ð16Þ

Notice that

dkþ1 ¼ �Q
�
kþ1gkþ1 ð17Þ

does not actually require the matrix Q�kþ1, i.e. the direction dkþ1 can be computed as:

dkþ1 ¼ ��kþ1gkþ1 þ �kþ1
gTkþ1sk

yTk sk

� �
yk � 1þ �kþ1

yTk yk

yTk sk

� �
gTkþ1sk

yTk sk
� �kþ1

gTkþ1yk

yTk sk

� �
sk: ð18Þ

Again observe that if gTkþ1sk ¼ 0, then (18) is reduced to:

dkþ1 ¼ ��kþ1gkþ1 þ �kþ1
gTkþ1yk

yTk sk
sk: ð19Þ

552 N. Andrei
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Thus, the effect is simply one of multiplying the Hestenes and Stiefel [13] search direction

by a positive scalar.
As we know, the BFGS update to the inverse Hessian, which currently is the best

update of the Broyden class, is defined by:

Hkþ1 ¼ Hk �
Hkyks

T
k þ sky

T
kHk

yTk sk
þ 1þ

yTkHkyk

yTk sk

� �
sks

T
k

yTk sk
: ð20Þ

We can see that the conjugate gradient method (17), where Q�kþ1 is given by (15), is exactly

the BFGS quasi-Newton method, where at every step the approximation of the inverse

Hessian is restarted as the identity matrix multiplied by the scalar �kþ1:
In order to ensure the convergence of the algorithm (2) with dkþ1 given by (18), we need

to constrain the choice of �k: We consider the line searches that satisfy the Wolfe

conditions [24,25]:

f ðxk þ �kdkÞ � f ðxkÞ � �1�kg
T
k dk, ð21Þ

rf ðxk þ �kdkÞ
Tdk � �2g

T
k dk, ð22Þ

where 0 < �1 � �2 < 1:

THEOREM 1 Suppose that �k in (2) satisfies the Wolfe conditions (21) and (22), then the

direction dkþ1 given by (18) is a descent direction.

Proof Since d0 ¼ �g0, we have gT0 d0 ¼ � g0
�� ��2� 0: Multiplying (18) by gTkþ1, we have

gTkþ1dkþ1 ¼
1

ðyTk skÞ
2

h
��kþ1 gkþ1

�� ��2 yTk sk
� �2

þ2�kþ1 gTkþ1yk
� �

gTkþ1sk
� �

yTk sk
� �

� gTkþ1sk
� �2

yTk sk
� �

� �kþ1 yTk yk
� �

gTkþ1sk
� �2i

:

Applying the inequality uTv � ð1=2Þð uk k2þ vk k2Þ to the second term of the right hand side

of the above equality, with u ¼ ðsTk ykÞgkþ1 and v ¼ ðgTkþ1skÞyk we get:

gTkþ1dkþ1 � �
gTkþ1sk
� �2
yTk sk

: ð23Þ

But, by Wolfe condition (22), yTk sk > 0: Therefore, gTkþ1dkþ1 < 0 for every k¼ 0, 1, . . . g

Observe that the second Wolfe condition (22) is crucial for the descent character of

direction (18). Moreover, we see that the estimation (23) is independent of the parameter

�kþ1:
Usually, all conjugate gradient algorithms are periodically restarted. The standard

restarting point occurs when the number of iterations is equal to the number of variables,

but some other restarting methods can be considered as well. The Powell restarting

procedure [19] is to test if there is very little orthogonality left between the current gradient

and the previous one. At step r when:

gTrþ1gr
�� �� � 0:2 grþ1

�� ��2, ð24Þ

we restart the algorithm using the direction given by (18). The convergence analysis with

this restart criterion can be found in [7]. Another restarting procedure considered by Birgin

Optimization 553
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and Martı́nez [3], consists of testing if the angle between the current direction and �gkþ1 is

not very acute. Therefore, at step r when:

dTr grþ1 > �10
�3 drk k2 grþ1

�� ��
2

ð25Þ

the algorithm is restarted using the direction given by (18).
At step r, when one of the two criteria (24) or (25) is satisfied, the direction is computed

as in (18). For k � rþ 1, we follow the same philosophy used to get (15), i.e. that of

modifying the gradient gkþ1 with a positive definite matrix which best estimates the inverse

Hessian without any additional storage requirements. Therefore, the direction dkþ1, for

k � rþ 1 is computed using a double update scheme as:

dkþ1 ¼ �Hkþ1gkþ1, ð26Þ

where

Hkþ1 ¼ Hrþ1 �
Hrþ1yks

T
k þ sky

T
kHrþ1

yTk sk
þ 1þ

yTkHrþ1yk

yTk sk

� �
sks

T
k

yTk sk
: ð27Þ

and

Hrþ1 ¼ �rþ1I� �rþ1
yrs

T
r þ sry

T
r

yTr sr
þ 1þ �rþ1

yTr yr
yTr sr

� �
srs

T
r

yTr sr
: ð28Þ

As above, observe that this computational scheme does not involve any matrix. Indeed,

Hrþ1gkþ1 and Hrþ1yk can be computed as:

v � Hrþ1gkþ1 ¼ �rþ1gkþ1 � �rþ1
gTkþ1sr

yTr sr

� �
yr

þ 1þ �rþ1
yTr yr
yTr sr

� �
gTkþ1sr

yTr sr
� �rþ1

gTkþ1yr

yTr sr

� �
sr, ð29Þ

and

w � Hrþ1yk ¼ �rþ1yk � �rþ1
yTk sr
yTr sr

� �
yr

þ 1þ �rþ1
yTr yr
yTr sr

� �
yTk sr

yTr sr
� �rþ1

yTk yr

yTr sr

� �
sr: ð30Þ

With these the direction (26), at any non-restart step, can be computed as:

dkþ1 ¼ �vþ
gTkþ1sk
� �

wþ gTkþ1w
� �

sk

yTk sk
� 1þ

yTkw

yTk sk

� �
gTkþ1sk

yTk sk
sk ð31Þ

We can see that dkþ1 from (31) is defined as a double quasi-Newton update scheme.

It is useful to note that yTk sk > 0 is sufficient to ensure that the direction dkþ1 given by (31)

is well defined and it is always a descent direction.
In the following we shall refer to the computation of �kþ1. As we have already seen,

in our algorithm �kþ1 is defined as a scalar approximation to the inverse Hessian.

According to the procedures for a scalar estimation of the inverse Hessian we get a family

of scaled conjugate gradient algorithms. The following procedures can be used.

554 N. Andrei
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�kþ1 spectral. This is given by (5) as the inverse of the Rayleigh quotient. Notice that

yTk sk > 0 is sufficient to ensure that �kþ1 in (5) is well defined.
�kþ1 anticipative. Recently, Andrei [1], using the information in two successive points of

the iterative process, proposed another scalar approximation to the Hessian of function f,

thus obtaining a new algorithm which favorably compares with the Barzilai and

Borwein’s. This is only a half step of the spectral procedure. Indeed, in point

xkþ1 ¼ xk þ �kdk we can write

f ðxkþ1Þ ¼ f ðxkÞ þ �kg
T
k dk þ

1

2
�2kd

T
kr

2fðzÞdk, ð32Þ

where z is on the line segment connecting xk and xkþ1: Having in view the local character

of the searching procedure and that the distance between xk and xkþ1 is small enough, we

can choose z ¼ xkþ1 and consider �kþ1 2 R as a scalar approximation of r2f ðxkþ1Þ. This is

an anticipative viewpoint, in which a scalar approximation of the Hessian at point xkþ1 is

computed using only the local information from two successive points: xk and xkþ1.

Therefore, we can write:

�kþ1 ¼
2

dTk dk

1

�2k
f ðxkþ1Þ � f ðxkÞ � �kg

T
k dk

	 

: ð33Þ

This formula can also be found in Dai et al. [8]. Observe that �kþ1 > 0 for convex

functions. If f ðxkþ1Þ � f ðxkÞ � �kg
T
k dk < 0, then the reduction f ðxkþ1Þ � f ðxkÞ in function

value is smaller than �kg
T
k dk: In these cases the idea is to reduce a little the step size �k as

�k � �k, maintaining the other quantities at their values in such a way so that �kþ1 is

positive. To get a value for �k let us select a real � > 0, ‘‘small enough’’ but comparable

with the value of the function, and have

�k ¼
1

gTk dk
f ðxkÞ � f ðxkþ1Þ þ �kg

T
k dk þ �

	 

, ð34Þ

with which a new value for �kþ1 can be computed as:

�kþ1 ¼
2

dTk dk

1

ð�k � �kÞ
2
f ðxkþ1Þ � f ðxkÞ � ð�k � �kÞg

T
k dk

	 

: ð35Þ

With these, the value for parameter �kþ1 is selected as:

�kþ1 ¼
1

�kþ1
, ð36Þ

where �kþ1 is given by (33) or (35).

PROPOSITION 3 Assume that f (x) is continuously differentiable and rf ðxÞ is Lipschitz

continuous, with a positive constant L. Then, at point xkþ1,

�kþ1 � 2L: ð37Þ

Proof From (33) we have:

�kþ1 ¼
2 f ðxkÞ þ �krf ð�kÞ

Tdk � f ðxkÞ � �krf ðxkÞ
Tdk

	 

dkk k

2�2k
,

Optimization 555
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where �k is on the line segment connecting xk and xkþ1: Therefore,

�kþ1 ¼
2 rf ð�kÞ � rf ðxkÞ½ �

Tdk

dkk k
2�k

:

Using the inequality of Cauchy and the Lipschitz continuity it follows that

�kþ1 �
2 rf ð�kÞ � rf ðxkÞ
�� ��

dkk k�k
�

2L �k � xkk k

dkk k�k
�

2L xkþ1 � xk
�� ��

dkk k�k
¼ 2L: g

Therefore, from (36) we get a lower bound for �kþ1 as:

�kþ1 �
1

2L
,

i.e. it is bounded away from zero.

3. The algorithm

Having in view the above developments and the definitions of gk, sk and yk, as well as the

selection procedures for �kþ1, the following family of scaled conjugate gradient algorithms

can be presented.

Algorithm SCALCG

Step 1 Initialization. Select x0 2 Rn, and the parameters 0 < �1 � �2 < 1: Compute f ðx0Þ

and g0 ¼ rf ðx0Þ: Set d0 ¼ �g0 and �0 ¼ 1=kg0k: Set k ¼ 0:

Step 2 Line search. Compute �k satisfying the Wolfe conditions (21) and (22). Update the

variables xkþ1 ¼ xk þ �kdk: Compute f ðxkþ1Þ, gkþ1 and sk ¼ xkþ1 � xk, yk ¼ gkþ1 � gk:

Step 3 Test for the continuation of iterations. If this test is satisfied, then the iterations are

stopped, else set k ¼ kþ 1:

Step 4 Scaling factor computation. Compute �k using a spectral (5) or an anticipative (36)

approach.

Step 5 Restart direction. Compute the (restart) direction dk as in (18).

Step 6 Line search. Compute the initial guess of the step-length as:

�k ¼
�k�1 dk�1k k2

dkk k2
:

With this initialization compute �k satisfying the Wolfe conditions (21) and (22). Update

the variables xkþ1 ¼ xk þ �kdk: Compute f ðxkþ1Þ, gkþ1 and sk ¼ xkþ1 � xk, yk ¼ gkþ1 � gk:

Step 7 Store. � ¼ �k, s ¼ sk and y ¼ yk:

Step 8 Test for the continuation of iterations. If this test is satisfied, then the iterations are

stopped, else set k ¼ kþ 1:

556 N. Andrei
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Step 9 Restart. If the Powell restart criterion (24) or the angle restart criterion (25)

is satisfied, then go to step 4 (a restart step); otherwise continue with step 10

(a standard step).

Step 10 Standard direction. Compute:

v ¼ �gk � �
gTk s

yTs

� �
yþ 1þ �

yTy

yTs

� �
gTk s

yTs
� �

gTk y

yTs

� �
s,

w ¼ �yk � �
yTk�1s

yTs

� �
yþ 1þ �

yTy

yTs

� �
yTk�1s

yTs
� �

yTk�1y

yTs

� �
s,

and

dk ¼ �vþ
ðgTk sk�1Þwþ ðg

T
kwÞsk�1

yTk�1sk�1
� 1þ

yTk�1w

yTk�1sk�1

� �
gTk sk�1

yTk�1sk�1
sk�1:

Step 11 Line search. Compute the initial guess of the step-length as:

�k ¼
�k�1 dk�1k k2

dkk k2
:

With this initialization compute �k as to satisfy the Wolfe conditions (21) and (22). Update

the variables xkþ1 ¼ xk þ �kdk: Compute f ðxkþ1Þ, gkþ1 and sk ¼ xkþ1 � xk, yk ¼ gkþ1 � gk:

Step 12 Test for the continuation of iterations. If this test is satisfied, then the iterations

are stopped, else set k ¼ kþ 1 and go to step 9. g

It is well known that if f is bounded below along the direction dk, then there is a

step-length �k satisfying the Wolfe conditions. The initial selection of the step-length

crucially affects the practical behavior of the algorithm. At every iteration k � 1, the

starting guess for step �k in the line search is computed as �k�1 dk�1k k2= dkk k2:
This initialization, considered for the first time by Shanno and Phua in CONMIN,

proves to be one of the best. Concerning the stopping criterion used in steps 3, 8 and 12

we take the following tests:

gk
�� ��

1
� "g or �k gTk dk

�� �� � "f f ðxkþ1Þ
�� ��, ð38Þ

where "f and "g are tolerances specified by the user. The second criterion in (38) says that

the estimated change in the function value is insignificant compared to the function

value itself.

4. Convergence analysis for strongly convex functions

Throughout this section, we assume that f is strongly convex and Lipschitz continuous on

the level set

L0 ¼ x 2 Rn : f ðxÞ � f ðx0Þ
� �

:
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That is, there exist constants 	 > 0 and L such that

ðrf ðxÞ � rf ðyÞÞTðx� yÞ � 	kx� yk2 ð39Þ

and

rf ðxÞ � rf ðyÞ
�� �� � Lkx� yk, ð40Þ

for all x and y from L0. For the convenience of the reader we include the following

Lemma [12].

LEMMA 1 Assume that dk is a descent direction and rf satisfies the Lipschitz condition

rf ðxÞ � rf ðxkÞ
�� �� � L x� xkk k ð41Þ

for every x on the line segment connecting xk and xkþ1, where L is a constant. If the line

search satisfies the second Wolfe condition (22), then

�k �
1� �2
L

gTk dk
�� ��
dkk k

2
: ð42Þ

Proof Subtracting gTk dk from both sides of (22) and using the Lipschitz condition we have

ð�2 � 1ÞgTk dk � ðgkþ1 � gkÞ
Tdk � L�k dkk k

2: ð43Þ

Since dk is a descent direction and �2 < 1, (42) follows immediately from (43). g

LEMMA 2 Assume that rf is strongly convex and Lipschitz continuous on L0: If �kþ1 is

selected by the spectral gradient, then the direction dkþ1 given by (18) satisfies:

dkþ1
�� �� � 2

	
þ
2L

	2
þ

L2

	3

� �
gkþ1
�� ��: ð44Þ

Proof By Lipschitz continuity (40) we have

yk
�� �� ¼ gkþ1 � gk

�� �� ¼ rf ðxk þ �kdkÞ � rf ðxkÞ�� �� � L�k dkk k ¼ L skk k: ð45Þ

On the other hand, by the strong convexity (39)

yTk sk � 	 skk k
2: ð46Þ

Selecting �kþ1 as in (5), it follows that

�kþ1 ¼
sTk sk

yTk sk
�

skk k
2

	 skk k
2
¼

1

	
: ð47Þ

Now, using the triangle inequality and the above estimates (45)–(47), after some algebra on

dkþ1
�� ��, where dkþ1 is given by (18), we get (44). g
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LEMMA 3 Assume that rf is strongly convex and Lipschitz continuous on L0: If �kþ1 is
selected by the anticipative procedure, then the direction dkþ1 given by (18) satisfies:

dkþ1
�� �� � 1

m
þ

2L

m	
þ

1

	
þ

L2

m	2

� �
gkþ1
�� ��: ð48Þ

Proof By strong convexity on L0, there exists the constant m > 0, so that r2f ðxÞ � mI,
for all x 2 L0: Therefore, �kþ1 � m for every k. Now, from (36) we see that, for all k,

�kþ1 �
1

m
: ð49Þ

With this, like in Lemma 2, we get (48). g

The convergence of the scaled conjugate gradient algorithm (SCALCG) when f is
strongly convex is given by

THEOREM 2 Assume that f is strongly convex and Lipschitz continuous on the level set L0: If
at every step of the conjugate gradient (2) with dkþ1 given by (18) and the step-length �k
selected to satisfy the Wolfe conditions (21) and (22), then either gk ¼ 0 for some k, or
limk!1 gk ¼ 0:

Proof Suppose gk 6¼ 0 for all k. By strong convexity we have

yTk dk ¼ ðgkþ1 � gkÞ
Tdk � 	�k dkk k

2: ð50Þ

By Theorem 1, gTk dk < 0: Therefore, the assumption gk 6¼ 0 implies dk 6¼ 0. Since �k4 0,
from (50) it follows that yTk dk > 0: But f is strongly convex over L0, therefore f is bounded
from below. Now, summing over k the first Wolfe condition (21) we have

X1
k¼0

�kg
T
k dk > �1:

Considering the lower bound for �k given by (42) in Lemma 1 and having in view that dk is
a descent direction, it follows that

X1
k¼1

gTk dk
�� ��2
dkk k

2
<1: ð51Þ

Now, from (23), using the inequality of Cauchy and (46) we get

gTkþ1dkþ1 � �
ðgTkþ1skÞ

2

yTk sk
� �

gkþ1
�� ��2 skk k

2

	 skk k
2
¼ �

gkþ1
�� ��2
	

:

Therefore, from (51) it follows that

X1
k¼0

gk
�� ��4
dkk k

2
<1: ð52Þ

Inserting in (52) the upperbound of dk given by (44) or (48) we get

X1
k¼0

gk
�� ��2<1,

which completes the proof. g
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For general functions the convergence of the algorithm is coming from Theorem 1 and

the restart procedure. Our algorithm is very close to the Perry/Shanno computational

scheme. Therefore, for convex functions and under inexact line search it is global

convergent. If restarts are employed, then the algorithm is convergent, but the speed of

convergence can decrease. To a great extent, however, SCALCG algorithm is very close to

Perry/Shanno computational scheme [21,22]. In fact SCALCG is a scaled memoryless

BFGS preconditioned algorithm where the scaling factor is the inverse of a scalar

approximation of the Hessian. For general functions that are bounded from below with

bounded level sets and bounded second partial derivatives, the convergence of the

proposed algorithm can be established using exactly the same analysis given by Shanno in

[22]. Although a global convergence result has not been established for SCALCG, recall

that for the Perry/Shanno scheme, the iterates either converge to a stationary point or the

iterates cycle.

5. Computational results and comparisons

This section presents the performance of a Fortran implementation of the

SCALCG – scaled conjugate gradient algorithms on a set of 700 unconstrained

optimization problems. We compare the performance of SCALCG versus SCG – the

best spectral conjugate gradient algorithm by Birgin and Martı́nez [3] (Perry-M1) given by

(6), versus sPRP – scaled Polak–Ribière–Polyak given by (7), versus sFR – scaled Fletcher–

Reeves given by (8), as well as versus CONMIN – conjugate gradient package by Shanno

and Phua [23].
The SCALCG code is authored by Andrei, while the SCG, sPRP and sFR are

co-authored by Birgin and Martı́nez. The CONMIN is co-authored by Shanno and Phua.

All codes are written in Fortran using the same style of programming and compiled with

f 77 (default compiler settings) on a workstation 1.8GHz. The SCALCG code implements

the scaled conjugate gradient both with the spectral choice of scaling parameter �kþ1 and
with the anticipative choice of this parameter. In order to compare SCALCG with SCG,

we manufactured a new SCG code of Birgin and Martı́nez by introducing a sequence of

code to compute �kþ1 in an anticipative manner, according to (36), and a sequence of code

implementing the Powell restart criterion as in (24). At the same time, in CONMIN we

introduced a sequence of code implementing the stopping criteria (38). The SCALCG code

needs 11� n vectors, the SCG, sPRP and sFR needs only 6� n vectors, while CONMIN

7� n vectors of memory.
The test problems are the unconstrained problems in CUTE [4] library, along with

other large-scale optimization test problems. We selected 70 large-scale unconstrained

optimization test problems (29 from CUTE library) in extended or generalized form. For

each test function we considered ten numerical experiments with the number of variables

n¼ 1000, 2000, . . . , 10,000.
Concerning the restart criterion, we implemented both the Powell and the

angle criterion. Both these criteria have a crucial role in the practical efficiency of

the algorithms. We compare the SCALCG algorithm with Powell restart criterion to the

SCG algorithm with Powell and angle restart criterion, each of them in two variants: �kþ1
spectral and �kþ1 anticipative, respectively. Finally, we compare all these algorithms

subject to Powell restart criterion.
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In all algorithms the Wolfe line search conditions are implemented with �1¼ 0.0001
and �2¼ 0.9 SCALCG, SCG, sPRP and sFR use exactly the same implementation of
Wolfe conditions. In CONMIN we consider the implementation given by Shanno and
Phua which is very close to the one used in the algorithms of this study. The initial guess of
the step-length at the first iteration is �0 ¼ 1=kg0k. At the following iterations, in all
algorithms, the starting guess for step �k is computed as �k�1kdk�1k2=kdkk2. This strategy
proved to be one of the best selection of the initial guess of the step-length.

In all experiments we stopped the iterations whenever (38) was satisfied, where �k k1
denotes the maximum absolute component of a vector and "g¼ 10�6 and "f¼ 10�20.
It is worth saying that (38) is a gradient-based criterion, the second criterion in (38)
is based on the function values, testing if the change in the function value is insignificant
subject to the function value itself. In our numerical experiments, we noticed that the
second criterion in (38) was not very much involved in stopping the iterations.

In the following we present the numerical performances of all these codes, including the
performance profiles of Dolan and Moré [9] subject to: the number of iterations,
the number of function evaluations and the CPU time metrics. Finally, we show a
comparison of all these codes.

In the first set of numerical experiments we compare SCALCG with �kþ1 spectral (�
s)

and �kþ1 anticipative (�a) using the Powell restart criterion. Table 1 shows the global
characteristics referring to the total number of iterations, the total number of function
evaluations and the total CPU time for these algorithms.

Out of 700 problems solved in this set of experiments the criterion kgkk1 < "g stopped
the iterations for 605 problems, i.e. 86.4%, in case of SCALCG with �s, and for 577
problems, i.e. 82.4%, in case of SCALCG with �a.

Table 2 shows the number of problems, out of 700, for which SCALCG with �s and
SCALCG with �a achieved the minimum number of iterations, the minimum number of
function evaluations and the minimum CPU time, respectively.

Observe that the total number in Table 2 exceeds 700 due to ties for some problems.
The performances of these algorithms were evaluated using the profiles of Dolan and

Moré [9]. That is, for each algorithm, we plot the fraction of problems for which the
algorithm is within a factor of the best number of iterations and CPU time, respectively.
The left side of these figures gives the percentage of the test problems, out of 700, for which
an algorithm is more efficient; the right side gives the percentage of the test problems that
were successfully solved by each of the algorithms. Mainly, the right side represents a
measure of an algorithm’s robustness. In Figures 1 and 2, we compare the performance
profiles of SCALCG with �s and SCALCG with �a referring to the number of function
evaluations and CPU time metrics, respectively.

The top curve corresponds to the algorithm that solved most problems in a number of
function evaluations (Figure 1) or in a CPU time (Figure 2) that was within a given factor

Table 1. Global characteristics of SCALCG with � s vs. SCALCG with �a.
Powell restart. 700 problems.

Global characteristics �s �a

Total number of iterations 688,274 689,774
Total number of function evaluations 1,061,853 922,317
Total CPU time (s) 7257.47 6352.70
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 of the best number of function evaluations or CPU time, respectively. Since the top curve
in Figures 1 and 2 corresponds to SCALCG �a with, this algorithm is clearly better than
SCALCG with �s. However, both codes have similar performances, SCALCG with �a

being slightly more robust.
The second set of numerical experiments refers to the performances of the

SCG algorithm. Tables 3 and 4 show the global characteristics for SCG with �s versus
SCG with �a using the Powell or angle restart criterion, respectively.

Observe that both codes have similar performances. Since the codes only differ in
the procedure for �kþ1 computation, we see that �kþ1 computed in an anticipative way is
competitive with the spectral formula. It is worth saying that out of 700 problems solved
by SCG with �a in this numerical experiment, only for 204 (i.e. 29%) �kþ1 in (33) was
negative in the case of Powell restart, and for only 176 (i.e. 25%) �kþ1 in (33) was negative
in the case of angle restart. From Tables 3 and 4, we see that SCG with Powell restart

Table 2. Performance of SCALCG algorithms. Powell restart. 700 problems.

Performance criterion No. of problems

SCALCG with �s achieved minimum no. of iterations in 392
SCALCG with �a achieved minimum no. of iterations in 475
Both algorithms achieved the same no. of iterations in 167
SCALCG with �s achieved minimum no. of function evaluations in 375
SCALCG with �a achieved minimum no. of function evaluations in 472
Both algorithms achieved the same no. of function evaluations in 147
SCALCG with �s achieved minimum CPU time in 322
SCALCG with �a achieved minimum CPU time in 512
SCALCG with �s and SCALCG with �a achieved the same CPU time in 134

Figure 1. SCALCG with Powell restart. Function evaluations metric.
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criterion in both implementations using �s and �a is slightly better than SCG with angle
criterion. For example, for solving this set of 700 problems SCG with Powell restart and �a

is with 421.78 s faster than SCG with angle restart.
Table 5 shows the global characteristics for SCALCG with �a versus SCG with �a using

Powell restart criterion.
Table 6 shows the number of problems out of 700, for which SCALCG with �a and

SCG with �a, both using Powell restart criterion, achieved the minimum number of

Figure 2. SCALCG with Powell restart. CPU time metric.

Table 3. Global characteristics of SCG with �s vs. SCG with �a. Powell restart.
700 problems.

Global characteristics �s �a

Total number of iterations 627,822 621,177
Total number of function evaluations 1,343,920 1,024,925
Total CPU time (s) 7780.47 7418.26

Table 4. Global characteristics of SCG with �s vs. SCG with �a. Angle restart.
700 problems.

Global characteristics �s �a

Total number of iterations 1,018,435 1,018,389
Total number of function evaluations 1,354,309 1,675,017
Total CPU time (s) 7702.57 7840.04
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iterations, the minimum number of function evaluations and the minimum CPU time,
respectively.

In Figures 3–5 we compare the performance profiles of SCALCG and SCG subject to
the number of iterations, the number of function evaluations and the CPU time metrics,
respectively. From these figures it follows that SCALCG is the top performer for all values

Table 5. Global characteristics of SCALCG with �a vs. SCG with �a. Powell restart.
700 problems.

Global characteristics SCALCG SCG

Total number of iterations 689, 774 621, 177
Total number of function evaluations 922, 317 1,024,925
Total CPU time (s) 6352.70 7418.26

Table 6. Performance of SCALCG (�a) vs. SCG (�a) algorithms. Powell restart.
700 problems.

Performance criterion No. of problems

SCALCG achieved minimum no. of iterations in 572
SCG achieved minimum no. of iterations in 151
SCALCG and SCG achieved the same no. of iterations in 23
SCALCG achieved minimum no. of function evaluations in 573
SCG achieved minimum no. of function evaluations in 228
SCALCG and SCG achieved the same no. of function evaluations in 101
SCALCG achieved minimum CPU time in 324
SCG achieved minimum CPU time in 415
SCALCG and SCG achieved the same CPU time in 39

Figure 3. SCALCG vs. SCG. Powell restart. � anticipative. Iterations metric.
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of 
. Now, since both SCALCG and SCG use the same Wolfe line search, (with the same
values for �1 and �2 parameters), the same restart criterion (Powell) and the same stopping
criteria, these codes mainly differ in their choice of the search direction. SCALCG appears
to generate a better search direction. The direction dkþ1 used in SCALCG is more
elaborate, its corresponding matrix is symmetric and positive definite and, more
importantly, it satisfies the quasi-Newton equation in a restart environment. Although

Figure 4. SCALCG vs. SCG. Powell restart. � anticipative. Function evaluations metric.

Figure 5. SCALCG vs. SCG. Powell restart. � anticipative. CPU time metric.
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the update formulas (18) and (29)–(31) are more complicated than the
computational scheme (6) used in SCG, the scheme used in SCALCG proved to be
more efficient and more robust in numerical experiments.

In the third set of experiments we compare SCALCG with: the SCG given by (6), the
scaled Polak–Ribière–Polyak (sPRP) given by (7), the scaled Fletcher–Reeves (sFR) given
by (8), all these algorithms with �a, and the CONMIN by Shanno and Phua, all of them
using Powell restart criterion. Table 7 shows the global characteristics, i.e. the total
number of iterations, the total number of function evaluations and the total CPU time
(seconds), of SCALCG versus SCG, sPRP, sFR and CONMIN, for the 700 unconstrained
optimization test problems considered in this numerical study.

The CPU time shows that SCALCG is twice faster than CONMIN. As for the number
of function evaluations, SCALCG is about 1.8 times more efficient than CONMIN. The
performance of SCG, sPRP and sFR algorithms in this implementation that uses the
stopping criterion (38) is close to SCALCG. However, SCALCG is top performer among
these algorithms.

Table 7. Global characteristics of SCALCG vs. SCG, sPRP, sFR and
CONMIN. Powell restart (�a). 700 problems.

Algorithms Iterations Function evaluations CPU time

SCALCG 689,774 922,317 6352.70
SCG 621,177 1,024,925 7418.26
sPRP 571,002 952,556 7245.89
sFR 625,641 1,034,764 7953.19
CONMIN 338,625 1,668,183 13278.64

Figure 6. SCALCG vs. SCG, sPRP, sFR and CONMIN. � anticipative, Powell restart, iterations
metric.
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In Figures 6–8 we compare the performance profiles of these algorithms subject to the
number of iterations, the number of function evaluations and the CPU time, respectively.

Referring to the iteration metric, from Figure 6 we see that CONMIN is better than
SCALCG and the rest of algorithms. The algorithms SCG, sPRP and sFR have similar
performances, sPRP being slightly better.

Figure 7. SCALCG vs. SCG, sPRP, sFR and CONMIN. � anticipative, Powell restart, function
evaluations metric.

Figure 8. SCALCG vs. SCG, sPRP, sFR and CONMIN. � anticipative, Powell restart, CPU time
metric.
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Referring to the function evaluation metric, from Figure 7 we see that for all values

of 
, SCALCG (�a) is better than SCG (�a), sPRP, sFR and CONMIN, at least for

this set of 700 test unconstrained optimization problems, with dimensions ranging from

103 to 104. The figures show that SCALCG (�a) appears to be the best, followed by:

the scaled Polak–Ribiere–Polyak, the scaled Fletcher–Reeves, the SCG and finally

followed by CONMIN. However, the SCG and the scaled variants of Polak–Ribiere–

Polyak and Fletcher–Reeves have very similar performances for all values of 
.
Referring to the CPU time metric, from Figure 8 we see that for 
¼ 1. All these

algorithms have similar performances. However, SCALCG (�a) is the top performer for

almost all values of 
. As for robustness, we see that SCALCG (�a) is more robust,

followed by the scaled Polak–Ribiere–Polyak, the scaled Fletcher–Reeves, the SCG (�a)
and CONMIN. Since all these algorithms use the same scaling parameter (�a), the same

Wolfe line search (with the same values for �1 and �2 parameters), the same restart

criterion (Powell), and the same stopping criterion, these algorithms mainly differ in their

procedures for search direction computation. The Figures 6–8 gives computational

evidence that SCALCG generates a better direction.
The comparison between SCALCG and CONMIN subject to function evaluations

and CPU time metrics reveals that SCALCG is much more efficient than CONMIN.

An explanation of this behavior seems to be as follows. As we know Oren [14],

Oren and Luenberger [15] and Oren and Spedicato [16] modified the Broyden class of

quasi-Newton methods by introducing a scalar parameter in order to make the

sequence of inverse Hessian invariant under multiplication of function f by a scalar
constant. For this scaling parameter, Shanno [21] suggests the value sTk yk=y

T
k yk as the

value minimizing the condition number of H�1k Hkþ1. This scaling factor is used in

CONMIN. On the other hand, in SCALCG we use another value for the scaling

parameter �kþ1, as a scalar approximation of the inverse Hessian given by (5) or (36)

yielding to a more efficient direction. This factor greatly increases both the

computational stability and the efficiency as the problem size increases, explaining

the numerical behavior of SCALCG in comparison with CONMIN subject to function

evaluations and CPU time metrics.
On the other hand, when we compare SCG (�a) with CONMIN (both of them using the

Powell restart), from Table 7 we see that subject to the CPU time, SCG is about 1.8 times

faster. From Tables 4 and 7 we see that SCG (�a) with angle restart criterion is about 1.69

times faster than CONMIN. Therefore, SCG (Perry-M1) by Birgin and Martı́nez with

Powell restart procedure compares even better against CONMIN, at least for this set of
700 large-scale test problems.

6. Conclusion

The algorithm of Birgin and Martı́nez, which is mainly a scaled variant of Perry’s, was

modified in order to overcome the lack of positive definiteness of the matrix defining the

search direction. This modification takes the advantage of the quasi-Newton BFGS

updating formula. Using the restart technology of Beale–Powell, we get a scaled conjugate
gradient algorithm in which the parameter scaling the gradient was selected as spectral

gradient or in an anticipative way by means of a formula using the function values in two

successive points. Although the update formulas (18) and (29)–(31) are more complicated,

the scheme proves to be efficient and robust in numerical experiments. The algorithm
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implements the Wolfe conditions, and we proved that the steps were along the descent

directions.
For the stopping criterion considered, the performance profiles for our scaled

conjugate gradient algorithm was higher than those of the spectral conjugate gradient
method of Birgin and Martı́nez, the scaled version of Polak–Ribière–Polyak and Fletcher–

Reeves, as well as of CONMIN by Shanno and Phua, for a set consisting of 700

unconstrained optimization problems.
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