Gradient Flow Method for Nonlinear Least Squares
Minimization

Neculai Andreil

Abstract

Solving the Nonlinear Least Squares Problem by means of integration of a first order
ordinary differential equation is considered in this paper. The corresponding gradient flow
algorithm and its variants, based on the approximation of the Hessian matrix associated to
the residual functions of the problem, are presented. The ordinary differential equation is
integrated by means of a two level implicit time discretization technique, with a splitting
parameter 6 € [0, 1]. The Hessian matrices of residual functions of the problem are ap-
proximated using the function values and its gradient in two successive points along the
trgjectory of the differential equation. The convergence of the algorithms is analysed and
itis shown that thisislinear when 0 < 6 < 1 and quadratical when 6 = 1 and the integra-
tion step is sufficiently large. The main result of the paper shows that the best agorithm
corresponds to the case when the approximations of the Hessian matrices of the residua
functions of the problem are not considered in the algorithm. The obtained algorithm is
quadratically convergent when the integration step is sufficiently large. In fact, this algo-
rithm, with no second order information about the residual functions of the problem, isa
new algebraic expression of the Levenberg-Marquardt agorithm in which the positive pa-
rameter isthereciprocal of thetime discretization step. Some numerical examplesillustrate
the algorithms.
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1. Introduction

The problem we consider in this paper is the nonlinear least squares minimization:

min O (z) 1)
where @(z) = 1 ||F() 1? and F(z) = [f1(2), ..., fm(x)] : R* — R™ is continuously
differentiable. Often, each f;(x) isreferred as aresidual, and in the most practical appli-
cations, especially arising in data-fitting, m > n.

The most important feature that distinguishes least squares problems from the general
unconstrained optimization problemsisthe structure of the Hessian matrix of ®. The Jaco-
bian and Hessian matrices of ® are asfollows:

V&(x) = VF(2)' F(z),
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V2®(z) = VF(z)"VF(x +Zfz )V fi(x)

To calculate the V& (z) and V2®(z) we must to cal culatethe Jacobian matrix of F(z),i.e
VF(zx). In many practical situations the first term from the Hessian, VF(2)T VF(z), is
more important that the second one, especialy when the residuals are small at the solution
point.

For solving the nonlinear least squares problems (1) an algorithm which isvery suitable
when theresiduals are smal, isthe Gauss-Newton algorithm. In thisalgorithm the Hessian
is approximated by its first term. At the current point z;, the searching direction dy, is
computed as solution of the following system of linear equations:

(VF(2)"'VF(x)) djy = =V F(a3,)" F(xy). 2
The next approximation of the solution z* of (1) is computed as xp 11 = z + dg. It is
very simple to see that any solution of (2) is a descent direction for ¢, since as well as
Ve (xx) # 0,
dEV® (1) = — ||V F(x1)di]* < 0.
In order to be convergent the Gauss-Newton method must be initialized in a point =g suf-
ficiently close to asolution =* of (1).
A modification of Gauss-Newton’s method, designed to overcome this limitation isthe

Levenberg-Marquardt method [25,26]. In this method the search direction dy, is computed
as a solution to the following system of linear equations:

where 1, isapositive parameter which controls both the magnitude and direction of dj,. A
closeinspection of (3) showsthat the Levenberg-Marquardt algorithmisablend of gradient
descent and Gauss-Newton iterations. Sincethe matrix VF (xy,)T VF (z) + pu., I isadways
positive definite, it follows that (3) has a unique solution. It is very easy to prove that if
V&(xy,) # 0, thenthesolution dj, of thelinear system (3) satisfy V& (x;,)7'd;, < 0, proving
that dy, isindeed adescent direction of ®. Thereforethe Levenberg-Marquardt method with,
let say, Armijo’s stepsize selection rule is globally convergent to a stationary point =* of &.
When p,, is zero, then the direction dj, isidentical to that of the Gauss-Newton algorithm.
As 1, tends to infinity, then dj, tends to a steepest descent direction. Therefore, for some
sufficiently large i, we have ®(xy, + di) < ®(xp).

For many problemsthe L evenberg-Marquardt algorithmis preferableto damped Gauss-
Newton algorithm. This is because the Levenberg-Marquardt agorithm is well defined
even when VF'(z;,) at the current point z;, doesn’t have full column rank. On the other
hand, when the Gauss-Newton stepismuch too long, the Levenberg-Marquardt stepisclose
to the steepest-descent direction —V F(z) T F(x4,), which often is superior to the damped
Gauss-Newton step [14, pp.228], [28], [29], [30].

The main difficulty of the Levenberg-Marquardt algorithm is the lack of an effective
strategy for controlling the magnitude of 1, at each iteration, in such away that the corre-
sponding algorithm to be efficient for a large spectrum of problems. Recently, Yamashita



and Fukushima [38] proved that if ||[V®(x)|| providesa,loca error bound“ for the prob-
lem V& (z) = 0 and the parameter . ischosen as i, = || V() ||, then the Levenberg-
Marquardt algorithm retai ns the quadratic convergence property. Fan and Yuan [20] discuss
some possible limitations of the choice 11, = ||[V®(x,)||? in (3). If z, isvery closeto the
solution, then ;. can be very small. Therefore, 1, has no influencein (3). On the other
hand, if x;, isfar away from the solution, then u,, would be very large and the solution
of (3) may be very small. Taking this analysis into account, Fan and Yuan propose to use
e = [[V®(z)| in (3), thus proving the local quadratic convergence of the correspond-
ing algorithm. Some other improvements and convergence properties of the Levenberg-
Marquardt algorithm and its inexact variant has been considered in [13,38].

In this paper we propose a gradient flow algorithm for solving the nonlinear least
squares problem based on the integration of a first order ordinary differential equation.
Section 2 presentsthe general flow algorithm, together with its properties, for solving non-
linear least squares problems. The main result of this paper is givenin section 3. We show
that a very simple modification of the gradient flow agorithm, consisting of rejection the
second order terms, give the best agorithm of this approach. In this respect we consider
some variants of the gradient flow algorithm in which the Hessian matrices of functions
f; are approximated by scalars, for which different formula are suggested. It is shown
that the convergence of the resulting a gorithms is quadratical when the splitting parameter
has a unitar value and the integration step is sufficienly large. Rejecting the second order
term, the corresponding algorithm is an equivalent algebraic expression of the Levenberg-
Marquardt algorithm for which we prove its quadratic convergence. Thus, the gradient
flow approach for solving least squares minimization problems gives a strong theoretical
basis for the Levenberg-Marquardt algorithm. Section 4 gives some numerical experience
with this approach of nonlinear least squares problems.

2. Gradient flow algorithm for nonlinear least squares
minimization
As we know, a hecessary condition for the point 2* be an optimal solution for (1) is:
Vo(z*) = 0. 4

In order to fulfill this optimality condition the following continuous gradient flow refor-
mulation of the problem is considered: solve the ordinary differential equation:

dx(t)
dt

= —Vo(x(t)) ©)
with theinitial condition

x(0) = xo. (6)
Therefore, the minimization problem (1) has been reduced to theintegration of the differen-
tid equation (5) withinitial condition (6). Methods of thistype, using theideaof following
the trajectory of a system of ordinary differential equations, are not new and a number of



authors have been proposed numerous ordinary differential equations and computational
schemesfor their integration. To have an idea about this subject | et us shortly review them.

Let y(¢) bethe displacement from the current point . Theinitial condition for all equa-
tionsistherefore y(0) = 0. The Courant’s method [12], based on idea of Hadamard [21] is
to solve the differential equation:

y'(t) = =V(xo +y(t)). )
Boggs [5] extended this idea of Courant by using a predictor-corrector method for solving
(7) in connection with a quasi-Newton approximation of the Hessian.
Considering the local approximation of (7) along a sequence of points we get:

Yi(t) = V(i) — V2D()yi(1). ()

When the Hessian is nonsingular, Botsaris and Jacobson [9] use (8) for solving (1). Oth-

erwise, in order to bound the solution, they replace the Hessian by a matrix with the same

eigenvectors, but with the absol ute values of the eigenvalues. Vial and Zang [36], and Zang

[39], use aquasi-Newton approximation of the Hessian in (8). Botsaris dedicated anumber

of paper for integration of (8) [6,7]. He considers an approximation of the Hessian which
is updated at each step by means of the Sherman-Morrison formula.
Another equation, known as the continuous Newton equation is

Y (t) = =V2®(zo + y(t)) V(w0 + y(t)). ©)
This equation has been considered by Botsaris [8], where he considers an implicit ordinary
differential equation solver with an approximation of the inverse of the Hessian matrix
which is updated by means of Sherman-Morrison formula
Finally, considering a mechanical interpretation of the problem, by following the tra-
jectory of apoint massin the force field —V® with dissipation, Aluffi-Pentini, Parisi and
Zirilli [1,2], use the second order differential equation:

a(t)y”(t) +b(t)y'(t) + V@(zo + y(t)) = 0, (10)
where a(t) and b(t) are positive, real-valued functions. For solving (10) they consider
an implicit ordinary differential equation solver and a quasi-Newton approximation of the
Hessian. Zirilli et al, [40,41] describe different practical procedures for choosing a(t) and
b(t) during the integration of (10), proving that ast — oo, the solution trajectory is very
closeto that of Newton's method. They show that using the second order differential equa-
tionsgivesalarger domain of convergencethan that corresponding to thefirst order system.
Morethan this, (10) permitsagreater control of thetrajectory sinceat ¢ = 0 we must spec-
ify not only the initial point y(0) but also y’(0). Different choices for y’(0) may lead to
different solution. A similar approach, based on second order differential equations, was
considered by Snyman [34] by solving the differential equation y”’(t) = —V®(y(t)).

Brown and Bartholomew-Biggs [10,11] experiment a number of methods based on
al these differential equations (8)-(10) using specidized ordinary differential equations
solvers. Their conclusion is that the most successful method is that based on (8) using the
Hessian or a quasi-Newton approxination of it.

Behrman [4] in his Dissertation solves the problem (1) by an agorithm which basically



calculatesacurvethat isan approximation to the integral curve of the vector field -V ®. A
searching procedure along this curveisinitiated, determining a point that reduces the value
of the objective function @.

For unconstrained optimization, the gradient flow method is presented by Andrei [3],
wheretheordinary differential equation (5) isintegrated by means of adiscretization scheme
based on a two level implicit time discretization technique, with a splitting parameter
6 € [0,1]. The convergence of the algorithm is linear when 0 < 6 < 1 and quadratic
when 6§ = 1 and the integration step is sufficiently large.

In amore general context refering to the constrained optimization, the gradient flow
methods, known as stable barrier-projection and barrier-Newton methods have been con-
sidered by Evtushenko[15,16], and Evtushenko and Zhadan [17-19]. Convergence of these
methods via Lyapunov functions has been considered by Smirnov [33]. Recently, for solv-
ing constrained optimization problems, improvements and some computational experience
with these methods have been considered by Wang, Yang and Teo [37]. Basicdly, in this
approach a constrained optimization problem is reformulated as an ordinary differential
equation in such away that its solution converges to an equillibrium point of the optimiza-
tion problem as parameter ¢ from this equation goesto co. We see that this approach based
on reformulation of the optimization problem as a differential equation was and continue
to be very attractive and promising. See aso the book by Helmke and Moore [22].

In the following we shall present the main convergence results and the corresponding
gradient flow algorithm for solving (1) by integration of the system (5) withinitial condition
(6) [3].

Theorem 2.1. Consider that z* isa point satisfying (4) and V?®(z*) is positive def-
inite. If xq issufficiently closeto «*, then «(¢), the solution of (5) with initial condition
xp, tendsto z* as t goesto co.

Proof. The system (5) can be written as

= W(x),
where U(z) = —V®(z). To show that z* is an asymptoticaly stable point for (5) we shall
consider the Poincaré-Lyapunov theory [35]. According to this theory, 2* is an asymp-
totically stable point for the nonlinear differential equation system = U(z) if ¥(z) is
continuously differentiable and the linearized system

Y= V¥(z")y,

wherey = x — 2%, is exponentidly stable, i.e. al eigenvalues of VU (2*) are strictly
negative. Considering the Taylor's expansion of ¥(z) around «*, and using (4), we get:

L x oy Ve )
= [Vo(a*) + V(") (z — )]
= —V20(z*)(z — ).

But, V2<I>(x*) is positive definite by the assumption of the theorem. Therefore, its
eigenvaluessatisfy A\; > 0, forall : = 1, ..., n. By the Poincaré-Lyapunov theory it follows



that tlim y(t) = 0,0r z(t) — z* ast — oco. W

The following theorem shows that ®(x(t)) is strictly decreasing aong the trajectory
solution of (5).

Theorem 2.2. Let z(t) be the solution of (5) with initial condition (6). For a fixed
to > 0if VO(x(t)) # 0for al t > tg, then ®(x(t)) isstrictly decreasing with respect to

t, for all t > .
Proof. We have:
B _ 9o — e va(() = - [Ve@E)]3.

Since VO(x(t)) # 0 whent > ¢, it followsthat d®(z(t))/dt < 0, i.e. ®(x(t)) isstrictly
decreasing with respecttot > t;. B

Observethat theordinary differential equation (5), associatedto (1), isagradient system
[23, pp.199]. Gradient systems have specia properties that make their flows very simple.
For gradient system (5) at regular points x, characterized by the fact that V& (z) # 0,
the trajectories cross level surfaces of the function ®(z) orthogonally. Nonregular points
are equillibria of the system, and if «* is an isolated minimum of ®(z), then z* is an
asymptotically stable equilibrium of the gradient system (5).

Therefore, solving the unconstrained optimization problem (1) has been reduced to that
of integration of the ordinary differential equation (5) with initial condition (6). Now we
shall consider a discretization of this equation as well as the corresponding integration
scheme.

LetO =tg <ty < --- < tg < --- beasequence of time points for thetimet > to.
Consider h, = tr11 — ti the sequence of time distances between two successive time
points. With these, let us consider the following time-steeping discretization of (5):

xk%:xk =—[(1-0)VP(zg) + OVP(rg11)], (11)

where 6 € [0,1] isapararﬁeter. From this we get:

Ty = 2 — g [(1 = O)VO(2g) + OV (211)] -

When 6 = 0 the above discretization is the explicit forward Euler's scheme. On the other
hand, when # = 1 we have the implicit backward Euler's scheme. But,

VO(zgy1) = VO(xy,) + V2O(x1)6z) + (623,
wheredzy, = xp11 —x, andT'(6zy,) istheremainder satisfying [|T'(6z)|| = O (H(SkaQ) .
Therefore
rpr = ap — by, [T+ heV2D(a)] ' [V () + 6T (5]
Omitting the higher order term I'(6x;,) we get:
g1 = o, — g [I 4+ V30 (2y)] ' VO (), (12)

forany 6 € [0, 1] . Considering = astheinitial guess, then (12) definesaseries {x} . Like
in [37], the convergence of (12) is given by



Theorem 2.3. Let {1} be the sequence defined by (12) and «* a solution of (1), such
that V2®(z*) is positive definite. If theinitial point =, is sufficiently closeto =*, then:

@) If 0 €[0,1] and Ay > 0 issufficiently small, then x;, convergeslinearly to =*.

(ii) If 6 =1and hy — oo, then x;, converges quadratically to z*.

Proof. (i) From (12) we have:

[I+ thVQ(I)(Ik)] ($k+1 — :L‘k) = 7hkv(b(l‘k)
hence:
Lhyl = Tk — hk [V(I)(mk) + 0V2¢)($k)(wk+1 - Sl,‘k)] . (13)

Subtracting =* from both sides of (13) and having inview that e, = z, — 2™, g1 — 2 =
epr1 — e and VO(a*) = 0, we get:

ext+1 = e — hy [V@(mk) — V(I)(.I'*) + 9V2<I>(l'k)(6k+1 - ek)] .
Now using the mean value theorem we have:
ex+1 = e — hy [V2<I>(§k)ek + 9V2@(Ik)(€k+1 - ek)] ,
where ¢, € [z, 2*] . Solving for ex1, we have:

epir = {1 — hy [T+ hi 6V ()] v%(gk)} ek. (14)
Considering the norm of both sides of this equality we obtain:
lert1ll < ek, ks 0, he) llell (15)
where
len €40, h) = 1= [1+ hiov2 ()] ™ Vs, (16)

From (16) we see that if p(xy, &, 0, hi) < 1, then e, converges to zero linearly. Using
continuity and the fact that = is closeto =* we can write:

(zr,&1,0, hi) < 1—Lﬁnin <1 (17)
P\l Spes Uy i) = 1+hk0}\fmax )
where A", and A" __represent the minimum and the maximum eigenvalues of V>® (),

respectively. Therefore, from (17) it follows that klim er = 0linearly, i.e. z; — z*
linearly.
(ii) Consider 6 = 1 in (11), we get:

T T T (G () + V2D (r) o]
hy

where dzy, = xp11 — x. When hy, — oo the above relation is reduced to
VO(zy,) + V20 (xy)dz =0

which is the Newton method applied to V®(z) = 0. When z;, is sufficiently closeto z*,
as we know the Newton method is quadratically convergent, proving the theorem. Bl



Remark 2.1. From (15) and (17), with 8 = 1, we have:
|

k .
i)l .

b -1 <1 - —m> .
0 1+ A

But, V>®(z;) is positive definite, thereforefor al i = 0, .. . k,

0<1-— & < 1.
So, pg, for al k, is a decreasing sequence, from (0, 1), i.e. it is convergent. If h; — oo,
thenforal:=0,...k,

ert1ll < pry lleoll
where

RN 2
— ——min 1 1/k (V2®(23)) .
1+ hi)‘inax - /K: ( (w ))
Clearly, if thereis an ¢ for which & (V2<I>(xi)) is close to 1, then the convergence of the
algorithmisvery rapid. B
As the theorem 2.3 recommends, the algorithm based on (12) is quadratically conver-
gentif 6 = 1 and hy, — oo. The problem is how to choose the sequence h;.. The most

direct ideaisto choose hy, in such away that the matrix
I + hp,0V2®(x1)

to be positive definite. Thefollowing theorem suggests how to choose the value i, of time
distances between two successive time points.

Theorem 2.4. If hk>max{ L z‘:l,...,n},where)\f’,z‘:1,...,n,arethe

—3
eigenvalues of VZ®(xy,), then [I + by, V>®(zy,)] is positive definite.

Proof. The matrix V2®(x;,) issymmetric, i.e. it hasreal eigenvalues\? i =1,...,n.
There existsamatrix P such that:

P IV2d(xy) P = diag(AY, ..., \F).

Therefore, P=! [T+ h,V2®(xy)] P = T + hydiag (A’f, Af;) , which is positive

definitewhen 1 + hpAF > 0, forali =1,...,n. W

The above presented results are very general and can be applied to any function ®(x)
satisfying the conditions of the above theorems. Basically, the function ® must have a
positive definite Hessian at solution point. Now, in order to get an algorithm for solving the
nonlinear least squares problem (1) we shall particularize the above gradient flow a gorithm
by considering the special structure of the Hessian of function ®(z).

Proposition 2.1. If f;(z) isaconvex functionfor all i = 1,...,m, fi(xz) > 0, for al
i=1,..,mandrank(VF(z)) = n, then V2®(z) is positive definite.

Proof. For every y # 0,we seethat 47 (VF(2)TVF(z))y = |VF(x)y||”> > 0 since
rank(VF(z)) = n. On the other hand, f;(z) > 0, therefore f;(x) V2 fi(z) is a positive



definite matrix, since f; isaconvex function. ll

Therefore, in conditions of Proposition 2.1 all the above theorems remain true show-
ing the convergence of the method when applied to this particular form of function ®(x).
Therefore, for solving (1) by integration of the ordinary differential equation (5), the fol-
lowing algorithm can be presented:

Algorithm GFA (Gradient Flow Algorithm)

Sep 1. Consider theinitia point zqg € R™, aparameter § € [0, 1], asequence of time
stepsizes{h;} andane > 0 sufficiently smal. Set & = 0.

Sep 2. Solvefor dy, the system:

I+ hyt <VF($k)TVF($k)+ Z fi(ﬂ%)Vin(wk)>] dp = —hpVF(zy)" F(xy).

i=1
(18)
Sep 3. Update the variables: x4 1 = xp, + dk.
Sep 4. Test for continuation of iterations. If |[F(xp11)|| < e, stop; otherwise set
k =k + 1 and continue with step 2. B

Therefore, when f; () are convex and positivefor al i = 1, ..., m; rank(VF(z)) = n,
0 = 1 and hy, — oo, then the GFA is quadratically convergent to =*. e see that the al-
gorithm is very smple. The most difficult is step 2, requiring to solve a system of linear
equations. But, thisis a common step also for Newton, Gauss-Newton and Levenberg-
Marquardt algorithms. On the other hand, it is necessary to evaluate the Hessians of func-
tions f;(z),i = 1, ..., m, which turns out to be adifficult task. Observethat, rejecting from
(18) the second order terms, we get an equivalent algebraic expression of the Levenberg-
Marquardt algorithm for solving least squares minimization problems. In the next section
we consider some variants of GF algorithm and prove that the best al gorithm corresponding
tothe gradient flow approach isthat which ignore compl etely the second order information
given by the Hessians V2 f; (), i = 1, ..., m.

3. Gradient flow algorithm for nonlinear least squares
minimization without second order terms

It is well-known that, when the residuals are very small at the solution, the second-order
termsdo not contribute significantly to theefficiency of the Levenberg-Marquardt or Gauss-
Newton algorithms for solving least squares minimization problems. In this section we
prove that rejecting from (18) the second order information we get a more efficient algo-
rithm which is quadratically convergent to a solution of (1). With other words, we prove
that any (scalar) approximation of Hessians V2 f; (), at point z, does not improve the
convergence of the algorithm (18).

To seethiswe present amodification of GFA by considering some scalar approximations



of the Hessian matrices V2 f;(z;,) of theresidual functions f;(z),i = 1,...,m, a point z.
Many approximation schemes could be imagined, here we present one of them.

Supposethat the functions f;(x), i = 1, ..., m, are convex, and et us consider the point
Tp+1 = Tk + di, Wwhere dj, isthe searching direction. In this point we can write;

Filain) = filan) + Vi) di + 5dE V2 i),

where z € [z, 2x+1] - Having in view the local character of the searching procedure and
that the distance between x, and ;.1 is sufficiently small, we can choose z = x4, and
consider v¥*11 as an approximation of V2f;(z), in point 2, where y¥*! ¢ R. As
we can see thisis an anticipative viewpoint in which the approximation of the Hessian of
function f; inpoint x4 iscomputed using thelocal information from point x;,. Therefore
we can write:

AL = dgid [Fiwnes) — filee) — Vfilan)Tde] (19)

Since f;, ¢ = 1,...,m are convex functions, it follows that 7’5*1 >0fordli=1,...m.
In fact the following proposition can be proved.

Proposition 3.1. Assumethat f;(x) iscontinuously differentiableand V f;(z) isLip-
schitz continuous, with a positive constant ;. Then at point 1, 75 < 2L,

Proof. From (19) we have:

L 2 [fi(@r) + V(&) Tde — filar) — V fi(wr) T dy
’ s ®

?

where ¢, € [zk, x4+1] . Therefore,
w1 _ 2[VFil&) = Viila)]" dy
' ldx”
Using the inequality of Cauchy and the Lipschitz continuity it follows that
i < 2||Vfi(&e) — Vfi(ak) 2L ||€y, — xk
S |d| - | T e — el

Therefore, inthe current point z;, the following approximation of the Hessian V2® ()
can be considered:

2L; [|wg1 — x|

=2L;.1

VF(xp)TVE(xr) + i, (20)
where
Sk = filzr)Vi- (21)

i=1
Observethat if rankV F(zy) = n and f;(xy) > 0, then (20) represents a positive definite
approximation of V2® ().
Using this approximation of Hessians V2 f;(z,), i = 1,...,m, in the current point zy,
and (18) we get the following iterative process:

10



Tpy1 = Tpp — hy, [I + hi0 (VF(wk)TVF(mk) + 6kI)] -t VF(mk)TF(mk), (22)
where ¢, isgiven by (21).

However, even if f;(x) isa convex function, due to finite precision of the numerical
computations, especialy towards the final part of the iterative process, it is possible that
7% be negative, but very small. On the other hand, for nonconvex function it is often
possible that * be negative. Therefore, in order to have a positive definite approximation
of V2<I>(a:k) we can consider the following formulafor 65, computation:

Sk _Z filze)® (vF)". (23)

Thisformulais alittle too conservanve Our numerical evidence proved that a Iarge per-
centage from the number of iterations are characterized by: f;(z;) > 0 and v¥ > 0.
Therefore, for computation of 65 we can consider the following less conservative proce-
dure, which ensures a nonnegative value for 6y, :
Procedure 6 (6;, computation)
St 6, = 0.
For i =1,...,m, do:
Set p = fi(ar), ¢ =75
If p< 0, then p= fz(ack)Q
If ¢ <0, then ¢ = (+¥)”.
Set O = Ok + pq.
End For.
Another approximation of the Hessians V f;(x.), at point x,, the smplest one, is to
consider V2 f;(z1) = fi(xx)I. (See[14, pp.210].) Therefore, in this case we have:

Ok —Z fz xk . (24)

We see that using a scalar approxi maruon of the Hessians we get a family of agorithms,
given by (22), parametrized by 6;,, where §;, is computed as in (23), (24) or by means of
procedure 6. With this the following a gorithm can be presented:

Algorithm MGFA (Modified Gradient Flow Algorithm)

Sep 1. Consider the initid point g € R™, a parameter 6 < [0, 1], a sequence of
time step sizes {h} and an ¢ > 0 sufficiently small. Compute: F(xq), VF(zo) and
60 = ||F(xo)|| - Set k= 0.

Sep 2. Solve the system of linear equations:

(14 h6 (VE(2)"VF(2k) + 6p1)] di = —he VF (zi) T F(xy,). (25)
Step 3. Update the variables: x 1 = xi + di.
Step 4. Test for continuation of iterations. If |F(z+1)|| < €, stop; otherwise set
k =k + 1andgotostep 5.
Sep 5. Compute 6, using (23), procedure 6 or (24), andgoto step 2. B

n



The convergence of MGFA is given by

Theorem 3.1. Let {z;} be the sequence defined by (22) and =* a solution of (1)
such that: F(z) is twice continuous differentiable, VF(z) is Lipschitz continuous and
rankVF(z*) = n. If theinitial point zy is sufficiently closeto z*, then:

(i) If 6 €[0,1] and Ay > 0 issufficiently small, then x;, convergeslinearly to =*.

@i If 6 =1and hy — oo, then x; converges quadratically to x*.

Proof. (i) From (22) we have

[(1 + heb6i) I + hiOV F ()" VF(2)] dic = —hi VF ()T F(2x).
After some algebrawe get:

Tpt1 = Tk — Py [VF(a:k)TF(a:k) + OV F(2) I VF(2r)(2pg1 — )], (26)
where

Pl = T hefoy @0
Subtracting 2* from both sides of the above equality and using the mean value theorem, as
in the proof of Theorem 2.3, we have:

o1 = {I — o [T+ P18V F (@) TV F ()] VF(a:k)TVF(fk)} e, (28)

where e, = xy — 2%, §;, € [z, 2*]. Taking the norm on both sides of this equality we
obtain:

Hek—&-lu S ¢($k7£k707pk) HekH ) (29)
where

P, €5,0,01) = | L= pic [1+ 08V F () 'V F ()]~ VF@) V()| (20)

From the estimate (29) we see that if ¢(xg, &, 0, p,) < 1, then the first order termsin
(29) show that the error e;, convergesto zero linearly. Since rankV F(z*) = n it follows
that VF(z*)T'VF(z*) is podtive definite. Now, when z, is sufficiently close to z*, by
continuity, (30) impliesthat if ¢ € [0,1] :

k
pk)\min
2 €0, ) < 1 —LkAmin 31

(P( k gk pk) < 1+pk9/\r]{;ax> ( )
where \¥

ki @nd A®  are the minimum and maximum eigenvalues of VF(z;,) TV F(zy,),
respectively. Using (27) we see that

At hE
- Pk rnlrllc -1 k\min - < 1. (32)
1+ pke)‘max 1+ hke(ék + )‘max)

Therefore, (29) implies that

lim e =0
k—oo

12



linearly, proving that x; convergesto z* linearly.
(ii) Considering 6 =1 in (26) we get:

B G [P + VF () e — ) @
k
But

lim L
hi—oo 1+ hipdy a Ok

and using, for example, (23) we seethat klim 8% :;}im 3 filzr)? (%’“)2 = 0. (Thesame
e— OO "—>OO7;:1

istrue for procedure 6 or (24)) Therefore klim p, = oo. Havingin view that V F' is of full
column rank, the equation (33) reduces to

VF(xg)(2k11 — 2x) + F(zg) = 0.

This coincides with the Newton method applied to F'(x) = 0, which we know that in con-
ditions of thetheorem is quadratically convergent to z* if theinitial point zq issufficiently
close to z*. This completesthe proof. B

An interesting feature of the theorem 3.1 is that the algorithm allows sufficiently large
values for h;, when the splitting parameter satisfies 6 = 1. In this case, x; converges
quadratically to alocal solution of (1). On the other hand, we see that /;, is acting on the
both members of (25) as a scaling parameter, this ensuring the numerical stability of the
system (25).

Remark 3.1. From (29) and (31) with (32), for 6 = 1, we have:

llers1ll < prstlleoll s (34)
where
X .
hi\? .
. — 1 _ 77 'min _ 35
. g < 1+hi(5i+>\fnax)> (39
But, VF(z;)TVF(x;) isapositive definite matrix, thereforefor all i = 0,1, ..., k,
0 < 1— hi)\min i
1+ hi(6; + Aax)

So, p, for al k, isadecreasing sequencein (0, 1), i.e. py isconvergent to zero. B
In order to see the complexity of the MGF agorithm let us denote:

0 = —Limin_ (36)
1+ hi(8; + N
and consider a; = min{a; : 0 <i < k}.Then
k
P =] [ (1 —ai) < (1 —a;)**, (37)
=0

13



e+l < pr [leol] < (1 —a)** lea -

Thus, the number of iterations required to obtain an accuracy |le, 1| = |[zr41 — 2| <,
starting from the initial point xg, is bounded by

log(e) — log(leol) ()
log(1 — a;)
We see that this expression depends on the final accuracy, on the initial estimation zq of
the solution, aswell as on the distribution of the eigenvalues of the Hessians of the residual
functions f;, i = 1, ..., m, along the trgjectory of the ordinary differential equation (5).
Remark 3.2. Considering 6 = 0 in MGFA (22) agorithm we get another algorithm
which isvery close to that of Levenberg-Marquardt:

g1 =y — by [T+ bV F () "V F(21,)] " VF ()T F (), (39)
for which, like in theorem 3.1, for § = 1, we can prove that || e 1 || < Pry1 ||eol| , where

o hi)‘fnin
eIl (155

7=0 max

and, asabove, fori = 0, ..., k, \, and \.
of VF(z;)'VF(z;), respectively. B
Theorem 3.2. In the family of algorithms given by (22), the Levenberg-Marquardt al-
gorithm, which correspondto # = 1 and 6, = 0, isthe best one.
Proof. Having in view that h;, > 0, it is very easy to see that (39), with 8 = 1, can be

written as;

are the minimum and maximum eigenval ues

1
—1+ VE(xp)'VE(xy) | dp = —VF(xp)  F(xy),
k

whichisthe Levenberg-Marquardt algorithm (3), with z1;, = 1/hy,. Now, since VF (z;) TV F(x;)
isapositive definite matrix and 6; > 0 in (22), it followsthat for al i = 0,1, ..., k
hi): R

<

min min

1+hi(5i+)\i T 14 kX

max) max

3 3

Therefore, using (35) we see that pr,1 > Pry1 . Hence, for 6, = 0, the convergence of
(22) with @ = 1, i.e. the convergence of (39) with & = 1, ismore rapid. &

Therefore in this interpretation we get the Levenberg-Marquardt algorithm asasimple
particularization of MGF agorithm.

4. Numerical examples
In order to see the performances of the MGFA, in the sequel, we present some numeri-

cal experiments obtained with a Fortran implementation of the MGFA. In this respect the
algorithm MGFA has been implemented with the following values for 6y, :

14



a) O :Tf: fi(xr)? (+%)%,  b) 6 given by procedure 5,
=1

C) or =), fi(xk)Q, d) 6 = 0.
=1

In al numerical experiments we have considered § = 1. The tolerance ¢ is chosen to
be 10~7,(see step 4 of the algorithm). The time step size h;, is considered constant, the
same for all k. At 2the same time, we have considered another set of experimentsin which
he =1/ [F()|”. _

Example 1. (Equillibrium Combustion) [27]

fi(z) = w129 + 21 — 325,
fo(x) = 22129 + 21 + 3r1023 + 2223 + 172073 + roToTy + TyT2 — T,
f3(x) = 2x20% + rrwaxs + 2r523 + rexs — 8ws,
fa(x) = rozamy + 222 — dras,
f5(2) = my29 + 21 + 71072 + 2202 + TrT0T3 + T9ToTY + T8T2 + 1523 + T3 + 22 — 1,

where

r =10 r5 = 0.193 rg = 4.10622e — 4
r7 =5.45177e —4 rg =4.4975e — 7 rg = 3.40735e — 5
ri0 = 9.615e — 7

Thefollowing initial points have been considered:

L 26 [ 28 [ 8 [ a5 |
1 ] 1] 1] 2
0 | 1 [ 1 | 1

10.15 | 10.15 | 10.15 | 10.15
5.5 0.5 0.5 15
005 | 005 | 10.05 | 1.05

The following tables give the number of iterations necessary to get a solution corre-
sponding to different selections of 6, and h,, starting the algorithm from different initial
points.

Tablela (65 =3 fi(zx)? (+4)°)

=1

| [ he=10° | Ay =107 [ Ry, =108 | by = 10° | by =10 | Ry, = 1/ || F(ap)| |

x§ 670 115 63 57 57 328
x5 752 197 144 139 138 403
3 702 148 94 89 88 403
z§ 719 164 m 105 105 790

Table 1b (6 given by procedure 6)
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| hie =108 | by =107 | by = 103 | by = 10° | hy = 10" | by = 1/ || F(a)|” |
x} 653 100 48 43 41 314
3 658 105 52 48 47 310
g 657 104 51 46 46 362
x| 809 133 68 62 59 724

Table 1c (65, :f: filar)?)

i=1

| hiy =100 | by =107 | Ay =103 | Ry, = 10° | by = 10" | by = 1/ || F(ap)|” |
3 927 370 315 310 309 595
73 921 364 309 304 303 582
3 973 416 361 356 355 684
| 1784 809 712 702 701 1373

Table 1d (5, = 0)

| hy =108 | by =107 | by = 10° | by, = 10° | hy = 10" | by =1/ || F(ap)|” |
3 768 87 19 12 1 309
z2 632 74 18 14 14 303
3 632 74 18 14 14 355
8 632 74 18 14 14 701

The following solutions have been obtained:

[+ [ & [ = ]

Example 2. (Seady-state solution for reaction rate equations) [32]

where

0.00311411

0.002471

0.0027567

34.592169

43.87876

39.248218

0.0650419

0.0577847

-0.0613849 |’

0.859378

-0.860205

0.859724

0.0369518

0.0369655

0.0369851

filz) =1 — 21 — ki + 1124,
fa(x) =1 — x5 — kpxows + To5,
f3(x) = —w3 + 2kzw 425,
fa(x) = kywqag — rixy — kaxgaws,

f5(37) = 1.5(k2$2$6 - 7”2.1135) - k3374375,

fo(x) =1— x4 — x5 — 6,

k1 =31.24 ko =0272 Fk3=303.03

r1 = 2.062

T = 0.02

Thefollowing initial points have been considered:

16



x5 |

7
]

I

T
]

1.09

1.19

2.19

0.05

1.05

1.15

3.15

0.99

0.05

0.05

0.05

0.05

0.99

0.99

0.99

0.99

0.05

0.05

0.05

0.05

0

0.09

1.09

0.09

Table 2a (6, :i fil@n)? (%))

| e =10 | hy, =10 | by = 10% | hy = 10*

hie = 10° [ hy, = 1/ [[F (i) ]

| 2 12 10 10 10 10
2| 2 2 10 9 9 10
23| 244 234 232 232 232 237
2 137 127 125 125 125 126

Table 2b (6 given by procedure 6)

| e =10 | hy, =10 [ by = 10% | hy = 10*

hie = 10° [ hy, = 1/ [[F (i) ]

) 19 10 9 8 8 8
72 19 10 8 8 8 8
g 154 145 143 143 143 148
73 192 181 179 179 179 188
Table 2¢ ((5k :Z fz(lk)Q)
=1
| hiy =10 | Ay, =10% | hy = 10% | hy = 10* | by =105 | by = 1/ || F(ap)]” |
7y 16 7 5 5 5 5
3 17 7 6 5 5 6
73 24 14 12 12 12 16
g 21 1 9 9 9 9
Table 2d (6, = 0)
| hiy =10 | Ay, =10% | hy = 10% | hy = 10* | by =105 | by = 1/ || F(ap)]” |
g 14 5 3 3 3 5
3 15 5 4 4 4 5
w3 18 6 5 5 5 12
g 17 6 5 5 5 9

The following solution has been obtained:
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x*

0.974243
0.982829
0.0515124
0.935671
0.9083%-4
0.06423807

Example 3 (Circuit design problem) [31]

fe(@) = (1 — a122)as {exp [w5 (916 — 93271072 — gsragl03)] — 1} —
g5k + gakT2, k= 17 "'747
frsa(@) = (1 — w122)xs {exp 26 (910 — g2 — 93627107 — gupwe1072)] — 1} —
5621 + Gk, k= 1, "'747
fg(I) = T1X3 — X224,

where

0.4850 0.7520 0.8690 0.9820
0.3690 1.2540 0.7030 1.4550
g=| 5209 10.0677 229274  20.2153
233037 101.7790 1114610 191.2670
285132 111.8467 134.3884 211.4823

Thefollowing initial points have been considered:

Lo | @ | o8 [ 0 |
0.7 065] 0.75] 0.5
05 | 045 | 045 | 045
09| 08 | 09 | 09
19| 18 | 1.7 | 177
81| 85 | 85 | 89 |
81| 85 | 75 | 79
59| 59 | 55 | 55
T |11 [125]1%
19| 15 | 1.88 | 168

Table 3a (5, :i Filzi)? (75)%)

| hiy =10 | Ay, =10% | hy = 10% | hy = 10* | by =105 | by = 1/ || F(ap)]” |

) 142 50 40 38 38 27
3 173 60 47 45 45 56
3 256 146 133 131 131 132
z§ 600 500 489 487 487 488

Table 3b (6% given by procedure 6)
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| [ he=10] hy =10% | hy =103 | he =10 [ by = 10° | by = 1/ | F(ar)||” |

z) 123 32 22 20 20 21
x5 151 39 26 24 24 26
] 218 108 96 94 94 94
g 497 397 386 384 384 385

Table 3c (65, :f: filar)?)

i=1

[ T/ =10 he =10% [ by = 10° [y = 10" [ hye = 10° [ e = 1/ [ F(an)|” ]

) 113 22 12 10 10 n
3 140 27 15 12 12 14
3 135 25 13 n n 12
z§ 124 24 14 12 1n 13

Table 3d (5, = 0)

| [ he=10] R, =10% | hy =103 | by =10 [ by, = 10° | By, = 1/ | F ()] |

25 | 108 10 6 4 4 10
22| 132 16 7 5 ] 12
23| 129 19 6 5 5 1
21 46 15 6 5 5 il

The following solution has been obtained:

/l:,*

0.8999999
0.4499875
1.000006
2.00006
7.99997
7.99969
5.00003
0.99998
2.00005

Example 4 (Robot kinematics problem) [24]

fi(z) = 0.004731z123—0.3578xo23—0.1238x1 +x7—0.001637x5 —0.933824 —0.3571,
fa(z) = 0.2238z 23 + 0.7623x025 + 0.2638x1 — w7 — 0.07745x5 — 0.673424 — 0.6022,
fa(x) = xgag + 0.3578x1 + 0.004731x5,
fa(z) = —0.7623z1 + 0.2238x5 + 0.3461,
fo(a) =af + a3 -1,
folz) = af + a3 - 1,
f7(£1,) = ‘Tg +‘T% - 17
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fs(x) = a2+ 23 — 1.

Thefollowing initial points have been considered:

1

2

3

L9 | Lo | g L9 |

0164 [ 014 [ -015 [ -1

-098 [ 098 [ 098 | 1

-094 [ 094 [ -094 | -1

032 | 032 [ 032 | 1

-099 [ 099 | -097 | -1

-0.056 | 0.056 | 0.056 | 1

041 | 041 | 044 | -1

-091 [ 091 099 | 1

Tableda (5, =3 fi(xx)? (v5)°)
| hiy =10 | by, = 10% | hy, = 103 | hy = 10* | hy =105 | by = 1/ || F(xp)]” |

ad 9 4 3 3 3 3
23| 10 6 5 5 5 5
ag | 13 8 7 7 6 7
x| 15 11 10 10 9 12

Table 4b (6 given by procedure 6)

| e =10 | hyy =107 [ by =103 | hy = 10*

hie = 10° [ hy, = 1/ [[F ()| ]

) 9 5 4 3 3 4
22 i} 7 6 6 6 6
< 13 9 8 8 8 8
73 16 i) 10 10 10 14
Table4c (6, =Y fi(x1)?)
i=1
| hiy =10 | Ay, =10% | hy = 10% | hy = 10* | by =105 | by = 1/ || F(ap)]” |
g 9 4 3 3 3 3
3 n 6 5 5 5 6
w3 13 8 7 7 7 8
<3 18 13 12 12 12 16

Table 4d (5, = 0)
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| [ he=10] hy =10% | hy =103 | he =10 [ by = 10° | by = 1/ | F(ar)||” |
) 9 4 3 3 3 3
22| 10 6 5 5 5 5
| 1 7 6 6 6 7
zh 14 9 9 9 9 12
The following solutions have been obtained:
0.164431 | 0.671554 | 0.671563 | 0.671554
-0.986388 | 0.7400955 | 0.741005 | 0.740955
-0.947063 | 0.951893 | -0.651582 | -0.651590
-0.321045 | -0.306431 | -0.758578 | -0.758578 |.
-0.998233 | 0.963810 | -0.962545 | 0.962793
0.059418 | 0.266587 | -0.271124 | 0.271124
0.411033 | 0.404641 | -0.437592 | -0.437592
-0.911620 | -0.914475 | 0.899181 | -0.899181

Example 5. (Quadratic residual functions)

fl(l') :.CL% - ]-7

fl(l') = (a:ifl + xi)Q - 7’72 = 27 ey T

Considering theinitial point =9 = [1, ..., 1], the following results are obtained.
Table5a (6, =Y fi(zx)? (+4)°)
=1

| n | hy=10] hy =102 | hy =10° | by, =101

hi =10° | hi =1/[|F(an)]” |

100 176 43 28 25 25 613
150 274 57 34 30 28 1600
200 378 71 38 34 32 3152

Table 5b (6, given by procedure 6)

| n | hiy=10] hy =102 | hy =10° | by, =10*

hie = 10° | hy = 1/ [F(zi)[” ]

100 246 114 99 96 95 681
150 409 192 169 165 164 1732
200 586 279 247 242 241 3357

Table 5¢ (65, :f fi(zr)?)

=1
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[ n [ he=10] ki =10% | hy =10% | he =10 | by = 10° | by = 1/ || F(a)||” |

100 [ 746 614 599 597 596 179

150 | 1824 1607 1584 1581 1580 3145

200 | 3473 3166 3134 3130 3129 6242
Table 5d (55, = 0)
n | k=10 hp =102 | hy =103 | hy =10% | hyy = 105 | hy = 1/ | F(a)|

100 | 155 23 8 6 6 596

150 | 249 32 9 7 7 1580

200 | 350 42 i} 7 7 3129

Example 6. (Quadratic residual functions)

fi(x) =23 -1,

fi(@)

1—1

=(z;— Y, z;)?—1,i=2,...,n.

Jj=1

Considering theinitial point =9 = [0.1, ...,0.1]7, the following results are obtained.
Table 6b (6, given by procedure 6)

| n | he=1]hy=10] hyy=10% | hyy =10% | hy, =10* | hy, =1/ ||F ()] |

0] 20 16 16 16 16 18
200 | 30 26 25 25 25 27
00| 27 23 23 23 23 26
Table6c (6, =Y fi(z1)?)
=1
| n | he =1 | hi =10 | hi = 10% | hy =103 | hy = 10* | hie = 1/ || ()| |
0] 15 ) 10 11 1 12
200 | 16 14 13 13 13 14
30| 18 15 14 14 14 16
Table 6d (5, — 0)
n | e =1 ] he =10 | hy = 102 | hy = 10° | hy = 10° | hy, = 1/ [[F ()P
00| 9 7 7 7 ’ =
200 10 8 8 8 8 12
300 10 9 9 9 9 14
Example 7.
fi(@) =af —1,

fil) = (22 —2;1)% —i,i=2,...,n.

Considering theinitial point =9 = [3.2, ..., 3.2]7, the following results are obtained.
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Table 7b (6 given by procedure 6)

| n [h=1]h=10] hy =10% | by, = 10°

hie =10% [ by =1/ [[F(w) |7 ]

100 | 26 20 19 19 19 30
200 | 85 79 78 78 78 138
300 | 173 167 166 166 166 360
Table 7c (6, =Y fi(zk)?)
i=1
| n [ he=1]h =10 hy =10 | by =10% | by, =10* | g, = 1/ || F(ap)| |
100 | 28 23 21 21 21 32
200 79 73 72 72 71 131
300 | 214 208 207 207 207 401
Table 7d (65 = 0)
no | he=1[h,=10] hy =102 | hpy = 10% | by = 10* | hy = 1/ |F(21)]|”
100 | 13 8 7 7 7 21
200 | 13 8 7 7 7 71
300 13 8 7 7 7 207

5. Conclusion

In this paper we proposed a gradient flow approach for solving the nonlinear least squares
problem. Thisis based on the integration of an ordinary differential equation for which a
discretization thechique with a splitting parameter has been considered. It has been shown
that the solution of the discretized problem converges to a local solution of the problem
either linearly or quadratically as afunction of the choice of the spliting parameter and the
size of the discretization step. When the size of the discretization step tendsto infinit, then
the convergenceisquadratic. Themain result of the paper showsthat when the second order
information, given by the Hessian of theresidual functions of the problem, isnot considered
into the algorithm, then we get the best algorithm based on gradient flow approach, which
isan equivaent agebraic expression of the Levenberg-Marquardt algorithm, for which we
proveits quadratic convergence. Numerical experimentswith different strategiesfor scalar
approximation of the Hessian matrices of the residual functions of the problem show that
the most efficient variant of the algorithm isthat correspondig to the case when the second
order information is not considered into the algorithm.

Whilethewell known Levenberg-Marquardt algorithmisin no way optimal motivated,
but just only a heuristic (as a combination of the gradient descent and Gauss-Newton iter-
aions, or as atrust-region algorithm), the paper represents a reasonabl e justification of the
Levenberg-Marquardt as a result of the gradient flow method for nonlinear least squares
problem.
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