
A New Gradient Descent Method for Unconstrained
Optimization

Neculai Andrei1

Abstract. In this work we present a technique for steplength selection in the frame of
gradient descent methods. The algorithm selects the steplength along the negative gradient
using a new approximation of the Hessian of the minimizing function based on the func-
tion values and its gradients in two successive points along the iterations. The resulting
algorithm belong to the same class of gradient descent with linear convergence property.

Some preliminary numerical experience shows that the the algorithm compares favourable
with the Barzilai-Borwein approach. The main advantage of this new algorithm is the
possibility to continue the iterations when the approximation of the Hessian based on the
Barzilai-Borwein’s approach is negative.

Keywords: gradient descent methods, Barzilai-Borwein method

1. Introduction

One of the first and well known method for unconstrained optimization is the gradient
descent method, designed by Cauchy early in 1847, in which the negative gradient direc-
tion is used to find local minimizers of a differentiable function. The method proved to
be effective for functions very well conditioned, but for functions poorly conditioned the
method is excessively slow, thus being of no practical value. Even for quadratic func-
tions the gradient descent method with exact line search behave increasingly badly when
the conditioning number of the matrix deteriorates. Early attempts to increase the per-
formance of the method have been considered by Humphrey [19], Forsythe and Motzkin
[11] and Schinzinger [31]. Even though the storage requirements for the gradient descent
method are minimal (3n locations for a n-dimensional problem), the development of con-
jugate gradient and quasi-Newton methods for large-scale unconstrained optimization cast
the gradient descent method in a penumbra.

In 1988 Barzilai and Borwein [2] proposed a gradient descent method (BB method)
that uses a different strategy for choosing the step length. This is based on an interpretation
of the quasi-Newton methods in a very simple manner. The steplength along the negative
gradient direction is computed from a two-point approximation to the secant equation from
quasi-Newton methods. In [2] Barzilai and Borwein proved that for the two-dimensional
quadratic case the BB method is R-superlinear convergent. They present some numerical
evidence showing that their method is remarkably superior to the classical gradient descent

� Research Institute for Informatics, 8-10 Averescu Avenue, Bucharest, Romania, E-mail: nandrei@u3.ici.ro
� AMS (MSC) subject classifications. Primary 65F30; Secondary 90C30

1

method for a quadratic function with four variables.
Raydan [28] proved that for strictly convex quadratic case with any number of vari-

ables the BB method is globally convergent. Using a globalization strategy, based on the
non-monotone line search technique introduced by Grippo, Lampariello and Lucidi [17],
Raydan [29] proved the global convergence of the BB method for non-quadratic functions
and reports some numerical evidence on problems up to 43

7 variables showing that the
BB method is competitive with the conjugate gradient Polak-Ribière [25] and CONMIN
of Shanno and Phua [32] methods. A preconditioning technique for the BB method has
been considered by Molina and Raydan [21]. Under a very restrictive assumption they
established the Q-linear rate of convergence of the preconditioned BB method. Some ap-
plications of preconditioned BB method on a distance matrix problem are considered by
Glunt, Hayden and Raydan [14, 15]. Extension of the BB method for box-constrained op-
timization problems have been considered by Friedlander, Martinez and Raydan [13] (for
quadratic function) and by Birgin, Martinez and Raydan [3].

An analysis of the BB method stressing the importance of non-monotone line search as
well as some open problems are presented by Fletcher [9]. Dai and Liao [5] refined the
analysis in Raydan [28] and proved that the convergence rate is R-linear. New globaliza-
tion strategies for BB method, based on relaxations of the monotonicity requirements, are
considered by Grippo and Sciandrone [18] where the nonmonotone watchdog technique
with nonmonotone linesearch rules are combined. Their algorithms are very sophisticated
and dependent of a number of parameters. Numerical experience and comparisons with
E04DGF routine of NAG library on some collections of problems, including CUTE, shows
that their globalization strategy for the BB algorithm compares favorables with E04DGF
algorithm. (However, for some difficult ill-conditioned problems, algorithm E04DGF is
more efficient.)

Recently, for the quadratic positive definite case Raydan and Svaiter [30] consider the
relaxed gradient method as well as the Cauchy-Barzilai-Borwein methods showing the su-
periority of the last one against the relaxed gradient descent and BB methods, Particularly,
the Cauchy-Barzilai-Borwein method proves to be Q-linearly convergent in a norm defined
by the matrix of the problem.

The purpose of this paper is to present a new algorithm of gradient descent type, in
which the step size is computed by means of a simple approximation of the Hessian of
the minimizing function. In contrast with the Barzilai and Borwein approach in which
the steplength is computed from a simple interpretation of the secant equation, the new
proposed algorithm considers another approximation of the Hessian based on the function
values and its gradients in two successive points along the iterations. The corresponding
algorithm belongs to the same class of linear convergent descent methods. The conclu-
sion is that using only the local information given by the gradient, any procedure for step
size computation, of any sophistication, does not change the linear convergence class of
algorithms.

The paper is organized as follows. In section 2 we present a new algorithm for uncon-
strained optimization in which the steplength is computed by backtracking starting with
the inverse of a scalar approximation of the Hessian. Section 3 contains some numerical
evidence and discussions of this approach.

2

2. A New Algorithm for Unconstrained Optimization

In the following let us consider the problem:

plq i+{, (1)

where i = Uq
�$ U is convex and twice continuously differentiable. A necessary and

sufficient condition for a point {� to be optimal for (1) is

ui+{�, @ 3= (2)

Usually, the problem is solved by an iterative algorithm which generates a sequence
of points {3> {4> === 5 grpi , for which i+{n, �$ i� as n �$ 4= The algorithms for
solving (1) generate a minimizing sequence {n> n @ 3> 4> === as:

{n.4 @ {n . wngn> (3)
where the scalar wn A 3 is the step size, and the vector gn is the search direction.

Many procedures for search direction computation have been proposed. One of the first
method, and the simplest one, for solving (1) using (3) was the gradient descent method
(Cauchy method [4]) where the choice for the search direction at the iteration {n is the neg-
ative gradient, �ui+{n,= Some other known methods dedicated for large-scale problems
are based on the conjugate gradient strategy. The simplest methods are those of Fletcher
and Reeves [10] (using 6q locations) and of Polak and Ribière [25] (using 7q locations).
More elaborate methods that use more storage are those of Shanno and Phua [32] (CON-
MIN that use :q locations), the Limited Memory BFGS method of Nocedal [24] (using
more than <q locations), the Truncated Newton method of Dembo, Eisenstat and Steihaug
[6] (an excellent survey of truncated-Newton methods has been given by Nash [23]), etc.

On the other hand, for step size selection two main algorithms have been considered:
exact line search and backtracking line search. In exact line search the step wn is selected
as:

wn @dujplq
wA3

i+{n . wgn, (4)

In some special cases (for example quadratic problems) it is possible to compute the
step wn analytically, but in most cases it is computed to approximately minimize i along
the ray i{n . wgn = w � 3j, or at least to reduce i enough. In practice the most used are the
inexact procedures which try to reduce i enough. Many inexact line search methods have
been proposed: Goldstein [16], Armijo [1], Wolfe [33], Powell [27], Denis and Schnabel
[7], Fletcher [8], Potra and Shi [26], Lemaréchal [20], Moré and Thuente [22], and many
others.

One which is very simple and efficient is the backtracking line search. This procedure
considers two constants 3 ? � ? 3=8 and 3 ? v ? 4 and takes the following steps:

Step 1. Consider the descent direction gn for i in point {n= Set w @ 4=

3

Step 2. While i+{n . wgn, A i+{n, . �wui+{n,
Wgn > set w @ wv=

Step 3. Set wn @ w=

Typically, � @ 3=3334 and v @ 3=;> meaning that we accept a small decrease in i of
the prediction based on the linear extrapolation. We emphasize that the backtracking start
with the value w @ 4= Using a backtracking procedure the Gradient Descent algorithm can
be presented as follows:

The Gradient Descent Algorithm (GD)
Step 1. Consider a starting point {3 5 grpi= Set n @ 3=
Step 2. Compute the search direction: gn @ �ui+{n,=
Step 3. Line search. Choose the step length wn via backtracking line search procedure.
Step 4. Update the variables: {n.4 @ {n . wngn=

Step 5. Test a criterion for stopping the iterations. If the test is satisfied, then stop,
otherwise consider n @ n . 4 and continue with step 2.

As we mentioned in introduction, for problem (1) Barzilai and Borwein ^5` suggested
an algorithm which essentially is a gradient one, where the choice of the stepsize along the
negative gradient is derived from a two-point approximation to the secant equation from
quasi-Newton methods. Considering Gn @ �nL as an approximation to the Hessian of i
at {n>they chose �

n
such that

Gn @ dujplq nGvn � |nn5

where vn @ {n � {n�4 and |n @ ui+{n,�ui+{n�4,> yielding

�EE
n

@
vW
n
|n

vW
n
vn

= (5)

With these, the method of Barzilai and Borwein is given by the following iterative scheme:

{n.4 @ {n �
4

�EE
n

ui+{n,= (6)

Mainly, the sequence i{nj generated by the BB method uses two initial vectors {3 and
{4= Having in view its simplicity and numerical efficiency for well-conditioned problems,
proved inter alia by Raydan ^5<` and Fletcher ^<`, the Barzilai and Borwein gradient method
has received a great deal of attention. However, like all steepest descent and conjugate
gradient methods, the BB method becomes slow when the problems happens to be more
ill-conditioned ^45` =

In the following I suggest another procedure for computing an approximation of the
Hessian of the function i at {n which can be considered to get the stepsize along the neg-
ative gradient. Let us consider the initial point {3 where i+{3, and j3 @ ui+{3, can im-
mediately be computed. Using the backtracking procedure (initialized with w @ 4) we can
compute the steplength w3 with which the next estimate {4 @ {3� w3j3 is computed, where
again we can compute i+{4, and j4 @ ui+{4,= So, the first step is computed using the
backtracking along the negative gradient. Now, in point {n.4 @ {n�wnjn> n @ 3> 4> = = =we
have:

4

i+{n.4, @ i+{n,� wnj
W

n jn .
4

5
w5nj

W

nu
5i+},jn> (7)

where } 5 ^{n> {n.4` = Having in view the local character of the searching procedure and
that the distance between {n and {n.4 is enough small we can choose } @ {n.4 and
consider �+{n.4,L as an approximation of the u5i+{n.4,, where �+{n.4, 5 U= This is
an anticipative point of view, in which the approximation of the Hessian in point {n.4 is
computed using the local information from point {n= Therefore we can write:

�+{n.4, @
5

jW
n
jn

4

w5
n

�
i+{n.4,� i+{n, . wnj

W

n
jn

�
= (8)

Now, in order to compute the next estimation {n.5 @ {n.4 � wn.4jn.4 we must consider
a procedure to determine the stepsize wn.4= For this let us consider the function:

�n.4+w, @ i+{n.4,� wjWn.4jn.4 .
4

5
w5�+{n.4,j

W

n.4jn.4=

Observe that �n.4+3, @ i+{n.4, and �3
n.4

+3, @ �jW
n.4

jn.4 ? 3= Therefore �n.4+w, is
a convex function for all w � 3= To have a minimum for �n.4+w, we must have �+{n.4, A
3= Considering for the moment that �+{n.4, A 3> then from �3

n.4
+w, @ 3 we get

�

w n.4@
4

�+{n.4,
> (9)

as the minimum of �n.4+w,= Now,

�n.4+
�

w n.4, @ i+{n.4,�
4

5�+{n.4,
njn.4n

5

5
>

which shows that if �+{n.4, A 3> then the value of function i is reduced. This suggests
us to determine the stepsize wn.4 as:

wn.4 @dujplq

w�
�

w n.4

i+{n.4 � wjn.4, (10)

using the backtracking procedure.
To complete the algorithm we must consider the situation when �+{n.4, ? 3= If i+{n.4,�

i+{n, . wnj
W

n
jn ? 3> then the reduction i+{n, � i+{n.4, is greater that wnjWn jn= In this

case we change a little the stepsize wn as wn . �n in such a manner that

i+{n.4,� i+{n, . +wn . �n,j
W

n
jn A 3=

To get a value for �n let us select a � A 3> enough small, and consider:

�
n
@

4

jW
n
jn

�
i+{n,� i+{n.4,� wnj

W

n
jn

�
. � (11)

with which a new value for �+{n.4, can be computed as:

�+{n.4, @
5

jW
n
jn

4

+wn . �n,
5

�
i+{n.4,� i+{n, . +wn . �n,j

W

n jn
�
= (12)

With these, the corresponding New gradient descent Algorithm (NA) is as follows:

5

The New Algorithm (NA)
Step 1. Select {3 5 grpi and compute i+{3,> j3 @ ui+{3, and w3 @dujplq

w?4

i+{3�

wj3,= Compute {4 @ {3 � w3j3> i+{4, and j4 @ ui+{4,= Set n @ 3=
Step 2. Test for continuation. If some criteria for stopping the algorithm are satisfied,

then stop; otherwise continue with step 3.
Step3. Compute the (scalar) approximation �+{n.4, of the Hessian of function i at

{n.4 as in (8).
Step 4. If �+{n.4, ? 3> then select � A 3 and compute a new value for �+{n.4, as in

(12), where �n is given by (11).
Step 5. Compute the initial stepsize

�

w n.4@
4

�+{n.4,
>

with which a backtracking procedure is performed in the next step.
Step 6. Using a backtracking procedure, determine the step length wn.4 as:

wn.4 @dujplq

w�
�

w n.4

i+{n.4 � wjn.4,=

Step 7. Update the variables: {n.5 @ {n.4 � wn.4jn.4> set n @ n . 4 and go to step
2.

Example 1. Let us illustrate the behaviour of the new algorithm (NA) in compari-
son with the gradient descent (GD) and Barzilai-Borwein (BB) algorithm on the following
function:

i+{, @
q[
l@4

l{
5
l .

4

433

#
q[
l@4

{l

$5
=

Considering {3 @ ^3=8> 3=8> ===> 3=8`, � @ 3=3334 and v @ 3=; in backtracking procedure,
as well as the following criteria for stopping the iterations

nui+{n,n � %j or
mi+{n.4,� i+{n,m

4 . mi+{n,m
� %i

with

%j @ 43�9 and %i @ 43�49>

then the number of iterations and the steplength corresponding to the GD, the Barzilai-
Borwein algorithm and the New Algorithm are given in table 1.

Table 1. Number of iterations and the step length of GD, BB and NA.

6

GD BB NA
q #iter average step # iter average step # iter average step � ? 3

500 3105 0.002006 748 0.008818 706 0.009316 0
1000 6129 0.0010003 1353 0.004934 1269 0.004967 0
2000 12147 0.0005011 2675 0.002398 2410 0.002510 0
3000 16773 0.0003349 3526 0.001740 3282 0.001687 0
4000 22722 0.0002516 4194 0.001319 4895 0.001289 0
5000 27910 0.0002013 6227 0.001031 6113 0.001020 0

where the elements in column below � ? 3 represents the number of iterations in which
�+{n.4, ? 3= Observe that the behaviour of the New Algorithm is very close to that of
Barzilai-Borwein. In fact, the difference �+{n.4, � �EE

n
is very small, as it is illustrated

in figure 1.

Figure 1: Difference �+{n.4,� �EE
n

=

However, this is not the typical behaviour of the NA algorithm. Generally, for the most
numerical experiments we notice that �+{n.4, � �EE

n
=

In the following let us consider the analysis of the convergence of this algorithm. As-
sume that i is strongly convex and the sublevel set V @ i{ 5 grpi = i+{, � i+{3,j is
closed. Strong convexity of i on V involves the existence the constants p andP such that
pL � u

5
i+{, �PL> for all { 5 V= A consequence of strong convexity of i on V is that

we can bound i� as:

7

i+{,�
4

5p
nui+{,n

5

5
� i� � i+{,�

4

5P
nui+{,n

5

5
= (13)

Theorem 1. For strongly convex functions the New Algorithm with backtracking is
linear convergent and

i+{n,� i� �

#
n�4\
l@3

fl

$
+i+{3,� i�, >

where

fl @ 4�plq i5p�> 5p�vslj ? 4

and sl � 4 is an integer, (sl @ 4> 5> = = = given by the backtracking procedure).
Proof. We can write:

i+{n.4, @ i+{n,�

�
w�

4

5
w5�+{n.4,

�
njnn

5

5
=

But, w�w5�+{n.4,@5 is a concave function, and for all 3 � w � 4@�+{n.4,> w�w
5�+{n.4,@5 �

w@5= Hence

i+{n.4, � i+{n,�
w

5
njnn

5

5
� i+{n,� �w njnn

5

5
=

The backtracking procedure terminates either with w @ 4 or with w @ vsn > where sn is an
integer. Therefore

i+{n.4, � i+{n,�plq i�> �vsnj njnn
5

5
=

Having in view that for strongly convex functions njnn
5

5
� 5p+i+{n,�i�, it follows that

i+{n.4,� i� � fn +i+{n,� i�, >

where fn @ 4�plq i5p�> 5p�vsnj = Since fn ? 4 the sequence i+{n, is linear conver-
gent, like a geometric series, to i�= �

Theorem 2. For every n @ 3> 4> = = = �+{n.4,> generated by the New Algorithm, is
bounded away form zero.

Proof. For every n @ 3> 4> = = =we know that i+{n.4,�i+{n,.wnjWn jn A 3=Therefore,
i+{n,� i+{n.4, ? wnj

W
n jn= With this we have:

�+{n.4, @
5

wn
�

5 +i+{n,� i+{n.4,,

w5n
�
jWn jn

� A
5

wn
�

5wn
�
jWn jn

�
w5n
�
jWn jn

� @ 3= �

Therefore the step 5 of the NA is well defined. However, towards the final iterations of
the algorithm, especially when the accuracy requirements are too high, it is possible that�
i+{n.4, . wnj

W
n jn

�
� i+{n, ? 3> but very close to zero. This is because jWn jn is too

small. That means the reduction in function values is too small. The remedy we have
considered in this situation is to increase a little the steplength in order to compensate the
accuracy requirements.

8

3. Numerical Experiments

In this section we report some numerical results obtained by a FORTRAN implemention of
the above gradient descent algorithms for 11 functions. In all experiments the backtracking
procedure considers � @ 3=3334 and v @ 3=;= The criteria for stopping the algorithms
are those used in example 1 above. For each function the initial point has been presented.
Each table presents the number of iterations as well as the average stepsize corresponding
to algorithms. Tables *a give the number of iterations, corresponding to the GD, BB and
the NA algorithms. Tables *b show the number of iterations of an implementation of BB
algorithm. Tables *c present the number of iterations of NA for different values of �= The
number of iterations in which �+{n.4, ? 3 or �EE ? 3 is shown in column below �.

Example 2. i+{, @
qS

l@4

l

43
+h{s+{l,� {l, > {3 @ ^4> 4> = = = > 4` =

Table 2a. Number of iterations and the average steplength of GD, BB and NA.
GD BB NA

q # iter average step # iter average step # iter average step
1000 2696 0.020215 744 0.08733 588 0.1199889
2000 4380 0.010106 1284 0.04795 758 0.0498313
3000 5514 0.006744 1487 0.03086 1465 0.0429736
4000 5788 0.005044 1812 0.02458 1401 0.0348057
5000 6108 0.004036 1676 0.01981 1316 0.0189150

Table 2b. Number of iterations of BB.
q # iter �

10000 2155 0
20000 3181 0
30000 2747 0
40000 2073 0
50000 2214 0

Table 2c. Number of iterations of NA for different values of �=
� @ 3=34 � @ 3=4 � @ 4 � @ 43 � @ 433

q # iter � # iter � # iter � # iter � # iter �

10000 2413 0 2413 0 2413 0 2413 0 2413 0
20000 2586 3 3091 19 1896 4 1702 4 1918 2
30000 2806 3 2405 2 2858 16 2173 2 2076 8
40000 2449 23 3099 4 2865 4 2504 8 2407 3
50000 3847 11 3931 11 3368 19 2915 1 3427 11

Example 3. (Tridiagonal function)

i+{, @
�
+8� 6{4 � {

5
4,{4 � 6{5 . 4

�5
.

9

p�4S
l@5

�
+8� 6{l � {

5
l
,{l � {l�4 � 6{l.4 . 4

�5
.

�
+8� 6{p � {

5
p
,{p � {p�4 . 4

�5
>

{3 @ ^�4>�4> = = = >�4` =

Table 3a. Number of iterations and the average steplength of GD, BB and NA.

GD BB NA
q # iter average step # iter average step # iter average step

1000 574 0.0017747 103 0.00678 112 0.00662298
2000 154 0.0087885 50 0.02207 116 0.01128028
3000 547 0.0021763 212 0.02659 101 0.01049011
4000 3681 0.0082045 81 0.01034 71 0.01177585
5000 147 0.0087238 198 0.00946 147 0.00518654

Table 3b. Number of iterations of BB.

q # iter �

10000 70 0
20000 241 5
30000 478 14
40000 48 0
50000 50 0

Table 3c. Number of iterations of NA for different values of �=

� @ 3=34 � @ 3=4 � @ 4 � @ 43 � @ 433
q # iter � # iter � # iter � # iter � # iter �

10000 75 5 69 1 62 1 64 1 63 1
20000 52 1 65 1 249 7 51 1 76 2
30000 66 2 71 2 68 1 77 1 80 2
40000 51 0 51 0 51 0 51 0 51 0
50000 51 2 48 2 51 1 48 1 50 1

Example 4. (Penalty function)

i+{, @
q�4S
l@4

+{l � 4,
5
.

#
qS
m@4

{
5
m
� 3=58

$5
> {3 @ ^4> 5> = = = > q` =

Table 4a. Number of iterations and the average steplength of GD, BB and NA.

10

GD BB NA
q # iter average step # iter average step # iter average step

1000 88 0.0192150 45 0.008656 51 0.008363
2000 95 0.0115713 48 0.007326 50 0.006259
3000 243 0.0151839 45 0.006173 50 0.004794
4000 110 0.0071455 49 0.005273 53 0.003977
5000 138 0.0086804 49 0.004581 57 0.006126

Table 4b. Number of iterations of BB.
q # iter �

10000 58 0
20000 58 0
30000 56 0
40000 58 0
50000 61 0

Table 4c. Number of iterations of NA for different values of �=

� @ 3=34 � @ 3=4 � @ 4 � @ 43 � @ 433

q # iter � # iter � # iter � # iter � # iter �

10000 63 2 62 1 62 1 65 4 62 1
20000 66 1 68 3 69 4 66 1 70 5
30000 65 4 63 1 66 5 67 5 64 3
40000 67 1 69 3 68 1 70 4 73 7
50000 74 7 75 8 72 5 79 12 75 6

Example 5. (Tridiagonal function)

i+{, @
�
+5 . 8{54,{4 . 5{5 . 4

�5
.

q�4S

l@5

�
+5 . 8{5

l
,{

l
. {

l�4 . 5{
l.4 . 4

�5
.

�
+5 . 8{5

q
,{q . {q�4 . 4

�5
>

{3 @ ^4> 4> = = = > 4` =

Table 5a. Number of iterations and the average steplength of GD, BB and NA.
GD BB NA

q # iter average step # iter average step # iter average step
1000 1087 0.031504 224 0.11734 195 0.129313
2000 1059 0.031499 235 0.11257 193 0.130184
3000 1061 0.031499 219 0.11813 196 0.130313
4000 1063 0.031500 219 0.12023 201 0.129180
5000 1063 0.031500 190 0.12876 185 0.135398

Table 5b. Number of iterations of BB. Table 5c. Number of iterations of NA

11

q # iter � q # iter �

10000 207 0 10000 195 0
20000 226 0 20000 188 0
30000 207 0 30000 191 0
40000 192 0 40000 192 0
50000 205 0 50000 218 0

Example 6. i+{, @
q�4S
l@4

�
{l.4 � {5

l

�5
. +4� {l,

5
> {3 @ ^�4=5> 4> = = = >�4=5> 4` =

Table 6a. Number of iterations and the average steplength of GD, BB and NA.

GD BB NA
q # iter average step # iter average step # iter average step

1000 295 0.100293 89 0.28313 78 0.29727
2000 298 0.100221 83 0.29775 74 0.29916
3000 297 0.100196 86 0.28155 59 0.27871
4000 296 0.100172 84 0.29868 86 0.29183
5000 298 0.100149 88 0.29738 91 0.28947

Table 6b. Number of iterations of BB. Table 6c. Number of iterations of NA
q # iter � q # iter �

10000 95 0 10000 82 0
20000 68 0 20000 84 0
30000 85 0 30000 81 0
40000 96 0 40000 79 0
50000 95 0 50000 82 0

Example 7. (Trigonometric function)

i+{, @
qS

l@4

##
q�

qS
m@4

frv{m

$
. l +4� frv{l,� vlq{l

$5
> {3 @ ^3=5> 3=5> = = = > 3=5` =

Table 7a. Number of iterations and the average steplength of GD, BB and NA.

GD BB NA
q # iter average step # iter average step # iter average step

1000 68 0.366606 44 0.51781 40 0.44384
2000 108 0.313093 31 0.21982 36 0.26234
3000 130 0.365581 31 0.19371 31 0.16299
4000 76 0.191776 31 0.17401 30 0.09079
5000 137 0.313370 32 0.17217 31 0.09094

Table 7b. Number of iterations of BB. Table 7c. Number of iterations of NA

12

q # iter � q # iter �

10000 33 0 10000 33 0
20000 36 0 20000 36 0
30000 36 0 30000 37 0
40000 38 0 40000 40 0
50000 39 0 50000 41 0

Example 8. i+{, @
q�4S

l@4

�
{l.4 � {6

l

�5
. +4� {l,

5
> {3 @ ^�4=5> 4> = = = >�4=5> 4` =

Table 8a. Number of iterations and the average steplength of GD, BB and NA.

GD BB NA
q # iter average step # iter average step # iter average step

1000 1061 0.059832 230 0.22841 185 0.265502
2000 1069 0.059531 222 0.24470 217 0.242480
3000 1069 0.059513 242 0.21853 203 0.251972
4000 1070 0.059523 220 0.23544 218 0.237006
5000 1063 0.059831 233 0.22414 198 0.257031

Table 8b. Number of iterations of BB.
q # iter �

10000 200 0
20000 219 0
30000 209 0
40000 230 0
50000 214 0

Table 8c. Number of iterations of NA for different values of �=

� @ 3=34 � @ 3=4 � @ 4 � @ 43 � @ 433
q # iter � # iter � # iter � # iter � # iter �

10000 224 1 219 1 204 1 239 1 208 1
20000 207 1 200 1 230 1 210 1 190 1
30000 194 1 226 1 234 1 224 1 204 1
40000 195 1 207 1 215 1 222 1 226 1
50000 212 1 222 1 222 1 224 1 205 1

Example 9. i+{, @
q@5S

l@4

�
{55l�4 . {55l . {5l�4{5l

�5
. vlq5+{5l�4, . frv5+{5l,> {3 @

^6> 3=4> = = = 6> 3=4` =

Table 9a. Number of iterations and the average steplength of GD, BB and NA.

13

GD BB NA
q # iter average step # iter average step # iter average step

1000 145 0.326641 15 0.26319 12 0.291550
2000 145 0.326641 15 0.26319 12 0.277770
3000 142 0.326620 15 0.26319 12 0.263386
4000 142 0.326620 15 0.26319 12 0.255323
5000 142 0.326620 15 0.26319 12 0.252502

Table 9b. Number of iterations of BB. Table 9c. Number of iterations of NA

q # iter � q # iter �

10000 15 0 10000 12 0
20000 16 0 20000 12 0
30000 16 0 30000 12 0
40000 16 0 40000 12 0
50000 16 0 50000 12 0

Example 10. i+{, @
q�4S

l@4

�
{5
l
. {5

l.4 . {
l
{
l.4

�5
. vlq5+{

l
, . frv5+{

l.4,> {3 @

^6> 3=4> = = = 6> 3=4` =

Table 10a. Number of iterations and the average steplength of GD, BB and NA.

GD BB NA
q # iter average step # iter average step # iter average step
10 6301 0.414179 1084 3.65298 1056 3.755755

100 6587 0.414563 1687 3.61832 1212 8.452615
500 7014 0.414611 2522 3.67988 533 8.248792
1000 6321 0.414590 2539 3.36897 566 34.69698

Table 10b. Number of iterations of BB.

q # iter �

10000 2088 2
20000 2223 0
30000 1582 1
40000 1644 0
50000 1883 0

Table 10c. Number of iterations of NA for different values of �=

14

� @ 3=34 � @ 3=4 � @ 4 � @ 43 � @ 433

q # iter � # iter � # iter � # iter � # iter �

10000 690 70 598 82 646 83 398 23 888 82
20000 384 33 283 22 420 46 703 85 705 66
30000 624 46 325 23 560 62 737 73 798 62
40000 252 7 663 89 360 51 606 65 574 41
50000 321 21 488 48 1142 204 695 65 637 52

Example 11. (Beale function)

i+{, @
q@5S

l@4

+4=8� {5l�4 +4� {5l,,
5
.

�
5=58� {5l�4

�
4� {5

5l

��5
.

�
5=958� {5l�4

�
4� {6

5l

��5
>

{3 @ ^4> 3=;> = = = > 4> 3=;` =

Table 11a. Number of iterations and the average steplength of GD, BB and NA.

GD BB NA
q # iter average step # iter average step # iter average step

1000 1236 0.0427481 46 0.39584 63 0.385026
2000 1236 0.0427117 46 0.39584 63 0.385114
3000 1281 0.0426884 46 0.39584 63 0.385179
4000 1293 0.0426732 46 0.39584 63 0.385108
5000 1302 0.0426619 46 0.39584 63 0.385691

Table 11b. Number of iterations of BB. Table 11c. Number of iterations of NA

q # iter � q # iter �

10000 46 0 10000 63 0
20000 46 0 20000 63 0
30000 46 0 30000 63 0
40000 46 0 40000 63 0
50000 46 0 50000 63 0

Example 12. (Freudenstein and Roth function)

i+{, @
q@5S

l@4

+�46 . {5l�4 . ++8� {5l,{5l � 5,{5l,
5
.

+�5< . {5l�4 . ++{5l . 4,{5l � 47,{5l,
5
>

{3 @ ^3=8>�5> = = = > 3=8>�5`.

Table 12a. Number of iterations and the average steplength of BB and NA.

15

BB NA
q # iter average step # iter average step

1000 220 0.018691 25 0.04292
2000 245 0.018652 25 0.04292
3000 250 0.018069 25 0.04292
4000 173 0.025440 25 0.04292
5000 138 0.021845 25 0.04291

Table 12b. Number of iterations of BB.
q # iter �

10000 183 0
20000 395 0
30000 380 0
40000 218 0
50000 205 0

Table 12c. Number of iterations of NA for different values of �=
� @ 3=34 � @ 3=4 � @ 4 � @ 43 � @ 433

q # iter � # iter � # iter � # iter � # iter �

10000 25 0 25 0 25 0 25 0 25 0
20000 25 0 25 0 25 0 25 0 25 0
30000 25 0 25 0 25 0 25 0 25 0
40000 25 0 25 0 25 0 25 0 25 0
50000 29 1 27 1 27 1 32 1 27 1

Some comments are in order.
Both algorithms, BB and NA, are linear convergent. Modifying only the steplength

along the negative gradient we get linear convergent algorithms, i.e. the error i+{n,� i�

converges to zero approximately as a geometric series.
The convergence rate depends greatly on the condition number of the Hessian of the

minimizing function. For well conditioned convex functions both algorithms are improve-
ments of the classical gradient descent algorithm. For ill-conditioned functions these algo-
rithms, like any gradient descent one, are so slow that they have no value in practice.

Generally, �+{n.4, � �EE
n

showing that the initial step in backtracking procedure of
NA is lower than the corresponding initial step of Barzilai-Borwein approach. However,
along the iterations �+{n.4, is very close to �EE

n
= This give us the motivation to modify

the Barzilai-Borwein algorithm when �EE
n

? 3. If �EE
n

? 3, as in exemples 3 and 10
above, then we can consider in the Barzilai-Borwein algorithm �+{n.4, instead of �EE

n
=

Refering to the number of iterations corresponding to BB and NA algorithms, from the
above tables the following cumulative results have been obtained.

Table 13. Number of iterations. Cumulative results for tables *a.

16

Nr. Ex. BB NA
Ex1 18723 18675
Ex2 7003 5528
Ex3 644 547
Ex4 236 261
Ex5 1087 970
Ex6 430 388
Ex7 169 168
Ex8 1147 1021
Ex9 75 60
Ex10 7832 3367
Ex11 230 315
Ex12 1026 125

TOTAL 38602 31425

Table 14. Number of iterations. Cumulative results for tables *b and *c.
Large-scale problems. (NA with � @ 433)

Nr. Ex. BB NA
Ex2 12370 12304
Ex3 887 320
Ex4 291 344
Ex5 1037 984
Ex6 439 408
Ex7 182 187
Ex8 1072 1033
Ex9 79 60
Ex10 9420 3602
Ex11 230 315
Ex12 1381 127

TOTAL 27388 19684

4. Conclusion

A new gradient descent algorithm is proposed in which the step length is computed by
backtracking using a simple approximation of the Hessian. This new approach compares
favourable with Barzilai-Borwein’s, for well conditioned convex functions this being an
improvement of the classical gradient descent algorithm. The main advantage of the NA
algorithm against the BB algorithm is the very easy possibility to modify it when�+{n.4, ?
3= The general conclusion is that using only the local information given by the gradient of
the minimizing function, any procedure for step length computation, does not change the
linear convergence property of the gradient descent algorithms.

References

17

1. L. Armijo. Minimization of functions having Lipschitz continuous first partial deriv-
atives. Pacific Journal of Mathematics, vol.6:1-3, 1966.

2. J. Barzilai and J.M. Borwein. Two point step size gradient method. IMA J. Numer.
Anal., 8: 141-148, 1988.

3. E.G. Birgin, J.M. Martinez and M. Raydan. Nonmonotone spectral projected gradi-
ent methods on convex sets. SIAM J. Optim., 10:1196-1211, 2000.

4. A. Cauchy, Méthodes générales pour la résolution des systèmes déquations simul-
tanées, C.R. Acad. Sci. Par., vol.25, pp.536-538, 1847.

5. Y.H. Dai and L.Z. Liao. R-linear convergence of the Barzilai and Borwein gradient
method. IMA J. Numer. Anal., 22:1-10, 2002.

6. R.S. Dembo, S.C. Eisenstat and T. Steihaug. Inexact Newton methods. SIAM J.
Numer. Anal., vol.19:400-408, 1982.

7. J.E. Dennis ans R.B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

8. R. Fletcher. Practical Methods of Optimization. John Wiley and Sons, New York,
1987.

9. R. Fletcher. On the Barzilai-Borwein method. Numerical Analysis Report NA/207,
2001.

10. R. Fletcher and C.M. Reeves. Function minimization by conjugate gradients. Com-
puter Journal, vol.7:149-154, 1964.

11. G.E., Forsythe and T.S., Motzkin, Asymptotic properties of the optimum gradient
method. Bull. American Society, vol.57, 1951, pp.183.

12. A. Friedlander, J.M. Martinez, B. Molina and M. Raydan. Gradient method with
retards and generalizations. SIAM J. Numer. Anal., vol.36:275-289, 1999.

13. A. Friedlander, J.M. Martinez and M. Raydan. A new method for large-scale box
constrained convex quadratic minimization problems. Optimization Methods and Software,
5:55-74, 1995.

14. W. Glunt, T.L. Hayden and M. Raydan. Molecular conformations from distance
matrices, J. Comput. Chem., 14:114-120, 1993.

15. W. Glunt, T.L. Hayden and M. Raydan. Preconditioners for distance matrix algo-
rithms. J. Comput. Chem., 15:227-232, 1994.

16. A.A. Goldstein. On steepest descent. SIAM Journal on Control, vol.3:147-151,
1965.

17. L. Grippo, F. Lampariello and S. Lucidi. A nonmonotone line search technique for
Newtons method. SIAM J. Numer. Anal., 23:707-716, 1986.

18. L. Grippo and M. Sciandrone. Nonmonotone globalization techniques for the
Barzilai-Borwein gradient method. Computational Optimization and Applications, 23:143-
169, 2002.

19. W. E., Humphrey, ’’A general minimising routine - minfun,’’ in A. Lavi, and T.P.
Vogl, (Eds.), Recent Advances in Optimisation Techniques, John Wiley, 1966.

20. C. Lemaréchal. ’’A view of line search,’’ in A. Auslander, W. Oettli and J. Stoer
(Eds.) Optimization and Optimal Control, Springer Verlag, pp.59-78, 1981.

21. B. Molina and M. Raydan. Preconditioned Barzilai-Borwein method for the nu-
merical solution of partial differential equations. Numerical Algorithms, 13:45-60, 1996.

18

22. J. Moré and D.J. Thuente. On line search algorithms with guaranteed sufficient de-
crease. Mathematics and Computer Science Division Preprint MCS-P153-0590, Argonne
National Laboratory, Argonne, 1990.

23. S. Nash. A survey of Truncated-Newton methods. Journal of Computational and
Applied Mathematics, vol.124:45-59, 2000.

24. J. Nocedal. Updating quasi-Newton matrices with limited starage. Math. of Com-
put., vol.35:773-782, 1980.

25. E. Polak and G. Ribière. Note sur la convergence de methodes de directions conju-
gat. Revue Francaise dInformatique et Recherche Operationnelle, 16:35-43, 1969.

26. F.A. Potra and Y. Shi. Efficient line search algorithm for unconstrained optimization.
JOTA, vol.85, no.3:677-704, 1995.

27. M.J.D. Powell. Some global convergence properties of a variable-metric algo-
rithm for minimization without exact line searches. SIAM-AMS Proceedings, Philadelphia,
vol.9:53-72, 1976.

28. M. Raydan. On the Barzilai and Borwein choice of the steplength for the gradient
method. IMA J. Numer. Anal., 13:618-622, 1993.

29. M. Raydan. The Barzilai and Borwein gradient method for the lasge scale uncon-
strained minimization problem. SIAM J. Optim., 7:26-33, 1997.

30. M. Raydan and B.F. Svaiter, Relaxed Steepest Descent and Cauchy-Barzilai-Borwein
Method, Computational Optimization and Applications, 21, pp.155-167, 2002.

31. R., Schinzinger, ’’Optimization in electromagnetic system design,’’ in A. Lavi, and
T.P. Vogl (Eds.), Recent Advances in Optimisation Techniques, John Wiley, 1966.

32. D.F. Shanno and K.H. Phua. Remark on Algorithm 500: Minimization of uncon-
strained multivariate functions. ACM Trans. Math. Software, vol.6:618-622, 1980.

33. P. Wolfe. Convergence conditions for ascent methods. SIAM Review, vol.11:226-
235, 1968.

Research Institute for Informatics,
8-10, Averescu Avenue, Bucharest, Romania,
E-mail: nandrei@u3.ici.ro

19

