
Accelerated scaled memoryless BFGS preconditioned
conjugate gradient algorithm for unconstrained

optimization

NECULAI ANDREI
Research Institute for Informatics,

Center for Advanced Modeling and Optimization,
8-10, Averescu Avenue, Bucharest 1, Romania

 and
Academy of Romanian Scientists,

54, Splaiul Independentei, Bucharest 5, Romania.
E-mail: nandrei@ici.ro

Abstract. An accelerated scaled memoryless BFGS preconditioned conjugate gradient
algorithm for solving unconstrained optimization problems is presented. The basic idea is
to combine the scaled memoryless BFGS method and the preconditioning technique in the
frame of the conjugate gradient method. The preconditioner, which is also a scaled
memoryless BFGS matrix, is reset when the Beale-Powell restart criterion holds. The
parameter scaling the gradient is selected as a spectral gradient. For the steplength
computation the method has the advantage that in conjugate gradient algorithms the step
lengths may differ from 1 by two order of magnitude and tend to vary unpredictably. Thus,
we suggest an acceleration scheme able to improve the efficiency of the algorithm. Under
common assumptions, the method is proved to be globally convergent. It is shown that for
uniformly convex functions the convergence of the accelerated algorithm is still linear, but
the reduction in the function values is significantly improved. In mild conditions the
algorithm is globally convergent for strongly convex functions. Computational results for
a set consisting of 750 unconstrained optimization test problems show that this new
accelerated scaled conjugate gradient algorithm substantially outperforms known
conjugate gradient methods: SCALCG [3-6], CONMIN by Shanno and Phua [42,43],
Hestenes and Stiefel [25], Polak-Ribière-Polyak [32,33], Day and Yuan [17], Dai and Liao
(t=1) [14], conjugate gradient with sufficient descent condition [7], hybrid Day and Yuan
[17], hybrid Dai and Yuan zero [17], CG_DESCENT by Hager and Zhang [22,23], as well
as quasi-Newton LBFGS method [26] and truncated Newton method by Nash [27].

Keywords: Unconstrained optimization; conjugate gradient method; spectral gradient method;
Wolfe line search; BFGS preconditioning
49M07; 49M10; 90C06; 65K

1. Introduction

In this paper we consider the following unconstrained optimization problem:
 min f x() (1.1)
where is continuously differentiable and its gradient is available. We are
interested in elaborating an algorithm for solving large-scale cases for which the Hessian of

f R Rn: →

f is either not available or requires a large amount of storage and computational costs.
Plenty of conjugate gradient methods are known, and an excellent survey of these methods,
with a special attention on their global convergence, is given by Hager and Zhang [24].
Different conjugate gradient algorithms correspond to different choices for the scalar
parameter kβ [8,16,21,36,37]. Line search in the conjugate gradient algorithms often is based
on the standard Wolfe conditions. A numerical comparison of conjugate gradient algorithms

 1

with Wolfe line search, for different formulae of parameter kβ computation, including the
Dolan and Moré performance profile, is given in [8].

The paper presents a conjugate gradient algorithm based on a combination of the
scaled memoryless BFGS method and the preconditioning technique [3-6]. For general
nonlinear functions a good preconditioner is any matrix that approximates

where is a local solution of (1.1). In this algorithm the preconditioner is a
scaled memoryless BFGS matrix which is reset when the Powell restart criterion holds. The
scaling factor in the preconditioner is selected as spectral gradient [38].

∇ −2 f x() ,* 1 x*

 The algorithm uses the conjugate gradient direction where the famous parameter β k
is obtained by equating the conjugate gradient direction with the direction corresponding to
the Newton method. Thus, we get a general formula for the direction computation, which
could be particularized to include the Polak-Ribiére [32] and Polyak [33] and the Fletcher and
Reeves [20] conjugate gradient algorithms, the spectral conjugate gradient (SCG) by Birgin
and Martínez [11] or the algorithm of Dai and Liao [14], for t = 1. This direction is then
modified in a canonical manner as it was considered earlier by Oren and Luenberger [29],
Oren and Spedicato [30], Perry [31] and Shanno [39-41], by means of a scaled, memoryless
BFGS preconditioner placed into the Beale-Powell restart technology. This is the reason we
call this a scaled memoryless BFGS preconditioned conjugate gradient algorithm. The scaling
factor is computed in a spectral manner based on the inverse Rayleigh quotient, as suggested
by Raydan [38]. The method could be considered as an extension of the spectral conjugate
gradient (SCG) by Birgin and Martínez [11] or of a variant of the conjugate gradient
algorithm by Dai and Liao [14] (for t = 1) suggested to overcome the lack of positive
definiteness of the matrix defining their search direction.

In [28] Jorge Nocedal articulated a number of open problems in conjugate gradient
algorithms. One of them focuses on the step length. Intensive numerical experiments with
conjugate gradient algorithms proved that the step length may differ from 1 up to two orders
of magnitude, being larger or smaller than 1, depending on how the problem is scaled.
Moreover, the sizes of the step length tend to vary in a totally unpredictable way. This is in
sharp contrast with the Newton and quasi-Newton methods, as well as with the limited
memory quasi-Newton methods, which usually admit the unit step length for most of the
iterations and require only very few function evaluations for step length determination.
Therefore, in this paper we take the advantage of this behavior of the step lengths in conjugate
gradient algorithms and present an acceleration scheme, which modify the step length in such
a manner to improve the reduction in functions values.
 The paper is organized as follows: In section 2 we present the scaled conjugate
gradient algorithm BFGS preconditioned. The algorithm performs two types of steps: a
standard one in which a double quasi-Newton updating scheme is used and a restart one
where the current information is used to define the search direction. The convergence of the
algorithm for strongly convex functions is proved in section 3. In section 4 we present an
acceleration scheme of the algorithm. The idea of this computational scheme is to take
advantage that the step lengths kα in conjugate gradient algorithms are very different from 1.
Therefore, we suggest we modify kα in such a manner as to improve the reduction of the
function values along the iterations. In section 5 we present the ASCALCG algorithm and we
prove that for uniformly convex functions the convergence of the accelerated algorithm is still
linear, but the reduction in function values is significantly improved. Finally, in section 6 we
present computational results on a set of 750 unconstrained optimization problems from the
CUTE [12] collection along with some other large-scale unconstrained optimization problems
presented in [1]. The Dolan-Moré [19] performance profiles of ASCALCG versus some
known conjugate gradient algorithms including Hestenes and Stiefel [25], Polak-Ribière-
Polyak [32,33], Day and Yuan [17], hybrid Dai and Yuan [17], SCALCG by Andrei [3-6],
CONMIN by Shanno and Phua [42,43], CG_DESCENT by Hager and Zhang [22,23], or

 2

limited memory quasi-Newton LBFGS by Liu and Nocedal [26] and truncated Newton TN by
Nash [27] prove that ASCALCG is top performer among these algorithms.

2. Scaled Conjugate Gradient Method
The algorithm generates a sequence xk of approximations to the minimum ofx* f , in which
 x x dk k k+ k= +1 α , (2.1)
 d g sk k k k+ + + k= − +1 1 1θ β , (2.2)
where g f xk k ,= ∇ () α k is selected to minimize f x() along the search direction , dk β k is
a scalar parameter, s x xk k= −+1 k and θ k+1 is a parameter or a matrix to be determined. The
iterative process is initialized with an initial point x0 and d g0 0= − .
 Observe that if θ k+ =1 1, then we get the classical conjugate gradient algorithms
according to the value of the scalar parameter β k . On the other hand, if β k = 0, then we
get another class of algorithms according to the selection of the parameter θ k+1 . Considering
β k = 0, there are two possibilities for θ k+1 : a positive scalar or a positive definite matrix. If
θ k+ =1 1 , then we have the steepest descent algorithm. If θ k kf x+ +

−= ∇1
2

1
1() , or an

approximation of it, then we get the Newton or the quasi-Newton algorithms, respectively.
Therefore, we see that in the general case, when θ k+ ≠1 0 is selected in a quasi-Newton
manner, and β k ≠ 0, (2.2) represents a combination between the quasi-Newton and the
conjugate gradient methods. However, if θ k+1 is a matrix containing some useful information
about the inverse Hessian of function f , we are better off using d gk k+ + k+= −1 1 1θ since the
addition of the term β k ks in (2.2) may prevent the direction from being a descent
direction unless the line search is sufficiently accurate. Therefore, in this paper we shall
consider

dk

θ k+1 as a positive scalar which contains some useful information to the inverse
Hessian of function f .

As we know, when the initial point 0x is close enough to a local minimum point *x ,

then the best direction to be followed in the current point 1kx + is the Newton direction
2 1

1()k k 1f x g−
+−∇ + . Therefore, our motivation is to choose the parameter kβ in (2.2) so that

for every the direction given by (2.2) can be the best direction we know, i.e. the
Newton direction. Hence, using the Newton direction from the equality

1k ≥ 1kd +

 − ∇ = − ++
−

+ + +
2

1
1

1 1 1f x g g sk k k k k() k ,θ β (2.3)
we get:

 β
θ

k
k
T

k k k k
T

k

k
T

k k

s f x g s g
s f x s

=
∇ −

∇
+ + + +

+

2
1 1 1 1
2

1

()
()

. (2.4)

Observe that the Newton direction is being used here only as a motivation for formula (2.4).
The salient point with this formula for kβ computation is the presence of the Hessian. If the
line search is exact we get the scaled Daniel method [18]. For large-scale problems, choices
for the update parameter that do not require the evaluation of the Hessian matrix are often
preferred in practice to the methods that require the Hessian.

Now, for quasi-Newton methods an approximation matrix kB to the Hessian
2 ()kf x∇ is used and updated so that the new matrix 1kB + satisfies the secant condition

1k k kB s y+ = , where . Therefore, in order to have an algorithm for solving
large-scale problems we can assume that the pair satisfies the secant condition. In

this case, Zhang, Deng and Chen [46] proved that if

1k ky g g+= − k

(,)k ks y

ks is sufficiently small, then
32

1() (T T
k k k k k ks f x s s y O s+∇ − =) . Therefore, using this assumption we get:

 3

 1() .
T

k k k k
k T

k k

y s g
y s

θβ + −
= 1+ (2.5)

Birgin and Martínez [11] arrived at the same formula for β k , but using a geometric
interpretation of quadratic function minimization. The direction corresponding to β k given in
(2.5) is as follows:

 d g
y s g

y s
sk k k

k k k
T

k

k
T

k
k+ + +

+= − + +−
1 1 1

1θ 1θ()
. (2.6)

The following particularizations are obvious. If θ k+ =1 1, then (2.6) is the direction
considered by Perry [31]. At the same time we see that (2.6) is the direction given by Dai and
Liao [14] for obtained this time by an interpretation of the conjugacy condition.
Additionally, if

t = 1,
s gj

T
j+ =1 0, j k= 0 1, , , ,… then from (2.6) we get:

 d g
y g
g g

sk k k
k k

T
k

k k k
T

k
k+ + +

+ += − +1 1 1
1 1θ

θ
α θ

, (2.7)

which is the direction corresponding to a generalization of the Polak and Ribière formula. Of
course, if θ θk k+ = =1 1 in (2.7), we get the classical Polak and Ribière formula [32,33]. If

 s gj
T

j+ =1 0, j k= 0 1, , , ,… and additionally the successive gradients are orthogonal, then
from (2.6) we get:

 d g
g g

g g
sk k k

k k
T

k

k k k
T

k
k+ + +

+ + += − +1 1 1
1 1 1θ

θ
α θ

, (2.8)

which is the direction corresponding to a generalization of the Fletcher and Reeves formula
[20]. Therefore, (2.6) is a general formula for direction computation in a conjugate gradient
manner including the classical Fletcher and Reeves [20], and Polak-Ribière and Polyak [32,
33] formulae.
 There is a result by Shanno [40, 41] that says that the conjugate gradient method is
precisely the BFGS quasi-Newton method for which the initial approximation to the inverse
of the Hessian, at every step, is taken as the identity matrix. The extension to the scaled
conjugate gradient is very simple. Using the same methodology as considered by Shanno [40]
we get the following direction : dk+1

 d g
g s
y s

y
y y
y s

g s
y s

g y
y s

sk k k k
k
T

k

k
T

k
k k

k
T

k

k
T

k

k
T

k

k
T

k
k

k
T

k

k
T

k
k+ + + +

+
+

+
+

+= − +
⎛

⎝
⎜

⎞

⎠
⎟ − +

⎛

⎝
⎜

⎞

⎠
⎟ −

⎡

⎣
⎢

⎤

⎦
⎥1 1 1 1

1
1

1
1

11θ θ θ θ , (2.9)

involving only 4 scalar products. Again observe that if g sk
T

k+ =1 0, then (2.9) reduces to:

 d g
g y
y s

sk k k k
k
T

k

k
T

k
k+ + + +

+= − +1 1 1 1
1θ θ . (2.10)

Thus, in this case, the effect is simply one of multiplying the Hestenes and Stiefel [25] search
direction by a positive scalar.
 In order to ensure the convergence of the algorithm (2.1), with given by (2.9),
we need to constrain the choice of

dk+1

α k . We consider line searches that satisfy the Wolfe
conditions [44,45]:
 () () T

k k k k k k k ,f x d f x g dα ρα+ − ≤ (2.11)

 ()T T
k k k k k k ,f x d d g dα σ∇ + ≥ (2.12)

where 0 1/ 2 1.ρ σ< < ≤ <

Theorem 2.1. Suppose that α k in (2.1) satisfies the Wolfe conditions (2.11) and (2.12), then
the direction given by (2.9) is a descent direction. dk+1

Proof: Since d g0 = 0− , we have g d gT
0 0 0

2
0= − ≤ . Multiplying (2.9) by we have gk

T
+1 ,

 4

[g d
y s

g y s g y g s y sk
T

k
k
T

k
k k k

T
k k k

T
k k

T
k k

T
k+ + + + + + += − +1 1 2 1 1

2 2
1 1 1

1
2

()
() ()()()θ θ

]− −+ +() () ()()g s y s y y g sk
T

k k
T

k k k
T

k k
T

k1
2

1 1
2θ + .

Applying the inequality u v u vT ≤ +
1
2

2(2) to the second term of the right hand side of

the above equality, with and u s y gk
T

k k= +() 1 v g s yk
T

k k= +()1 we get:

 g d
g s

y sk
T

k
k
T

k

k
T

k
+ +

+≤ −1 1
1

2()
. (2.13)

But, by Wolfe condition (2.12), Therefore, y sk
T

k > 0. g dk
T

k+ + <1 1 0 for every k = 0 1, ,…

Observe that the second Wolfe condition (2.12) is crucial for the descent character of
direction (2.9). Besides, we see that the estimation (2.13) is independent of the parameter
θ k+1 .
 Usually, all conjugate gradient algorithms are periodically restarted. The Powell
restarting procedure [34, 35] is to test if there is very little orthogonality left between the
current gradient and the previous one. At step r when:

 g g gr
T

r r+ ≥1

2
0 2. +1 , (2.14)

we restart the algorithm using the direction given by (2.9).
 At step r we know and sr , yr θ r+1 . If (2.14) is satisfied, then a restart step is
considered, i.e. the direction is computed as in (2.9). For k r≥ +1, we consider the same
philosophy used by Shanno [40], where the gradient gk+1 is modified by a positive definite
matrix which best estimates the inverse Hessian without any additional storage requirements,
i.e. we compute:

 v g
g s
y s

yr k r
k
T

r

r
T

r
r= −

⎛

⎝
⎜

⎞

⎠
⎟+ + +

+θ θ1 1 1
1

 + +
⎛

⎝
⎜

⎞

⎠
⎟ −

⎡

⎣
⎢

⎤

⎦
⎥+

+
+

+1 1
1

1
1θ θr

r
T

r

r
T

r

k
T

r

r
T

r
r

k
T

r

r
T

r
r

y y
y s

g s
y s

g y
y s

s , (2.15)

and

 w y
y s
y s

yr k r
k
T

r

r
T

r
r= −

⎛

⎝
⎜

⎞

⎠
⎟+ +θ θ1 1

 + +
⎛

⎝
⎜

⎞

⎠
⎟ −

⎡

⎣
⎢

⎤

⎦
⎥+ +1 1 1θ θr

r
T

r

r
T

r

k
T

r

r
T

r
r

k
T

r

r
T

r
r

y y
y s

y s
y s

y y
y s

s , (2.16)

involving 6 scalar products. With these, at any nonrestart step, the direction for dk+1

k r≥ +1, is computed using a double update scheme as in Shanno [40]:

 d v
g s w g w s

y s
y w
y s

g s
y s

sk
k
T

k k
T

k

k
T

k

k
T

k
T

k

k
T

k

k
T

k
k+

+ + += − +
+

− +
⎛

⎝
⎜

⎞

⎠
⎟1

1 1 11
() ()

, (2.17)

involving only 4 scalar products. Observe that is sufficient to ensure that the
direction given by (2.17) is well defined and it is always a descent direction.

y sk
T

k > 0
dk+1

 Motivated by the efficiency of the spectral gradient method introduced by Raydan
[38] and used by Birgin and Martínez [11] in their spectral conjugate gradient method for

 5

unconstrained optimization, in our algorithm θ k+1 is defined as a scalar approximation to the
inverse Hessian. This is given as the inverse of the Rayleigh quotient:

s f x ts dt s sk
T

k k k k
T

k∇ +
⎡

⎣
⎢

⎤

⎦
⎥∫ 2

0

1

() / s ,

i.e.

 θ k
k
T

k

k
T

k

s s
y s+ =1 . (2.18)

The inverse of Rayleigh quotient lies between the smallest and the largest eigenvalue of the

Hessian average . Again observe is sufficient to ensure that ∇ +∫ 2

0

1

f x ts dtk k() y sk
T

k > 0

θ k+1 in (2.18) is well defined.

3. Convergence Analysis for Strongly Convex Functions
Throughout this section we assume that f is strongly convex and f∇ is Lipschitz continuous
on the level set
 { }0: () () .nS x R f x f x= ∈ ≤ (3.1)

That is, there exists constants µ > 0 and such that L

 (() ()) ()∇ − ∇ − ≥ −f x f y x y x yT µ
2

 (3.2)
and
 ∇ −∇ ≤ −f x f y L x y() () , (3.3)
for all x and y from For the convenience of the reader we include here the following
lemma (see [22]).

.S

Lemma 3.1. Assume that is a descent direction and dk ∇f satisfies the Lipschitz condition

 ∇ −∇ ≤ −f x f x L x xk() () ,k (3.4)
for every x on the line segment connecting xk and xk+1 , where is a constant. If the line
search satisfies the second Wolfe condition (2.12), then

L

 2
1 .

T
k k

k
k

g d
L d
σα −

≥ (3.5)

Proof: Subtracting from both sides of (2.12) and using the Lipschitz condition we have g dk
T

k

2

1(1) ()T T
k k k k k k kg d g g d L dσ +− ≤ − ≤ .α (3.6)

Since is a descent direction and dk 1,σ < (3.5) follows immediately from (3.6).

Therefore, satisfying the Wolfe line search conditions α is bounded away from zero, i.e. there
exists a positive constant ω , such that .α ω≥

Lemma 3.2. Assume that f is strongly convex and ∇f is Lipschitz continuous on If .S
θ k+1 is selected by spectral gradient, then the direction given by (2.9) satisfies: dk+1

 d
L L

gk+ ≤ + + k+

⎛

⎝
⎜

⎞

⎠
⎟1 2

2

3 1

2 2
µ µ µ

. (3.7)

Proof: By Lipschitz continuity (3.3) we have
 y g g f x d f x L d L sk k k k k k k k k k= − = ∇ + − ∇ ≤ =+1 () ()α α . (3.8)

 6

On the other hand, by strong convexity (3.2)
 y s sk

T
k k≥ µ

2
. (3.9)

Selecting θ k+1 as in (2.18), it follows that

 θ
µ µk

k
T

k

k
T

k

k

k

s s
y s

s

s
+ = ≤ =1

2

2
1

. (3.10)

Now, using the triangle inequality and the above estimates (3.8)-(3.10), after some algebra on
dk+1 , where is given by (2.9), we get (3.7). dk+1

 The convergence of the scaled conjugate gradient algorithm when f is strongly
convex is given by

Theorem 3.1. Assume that f is strongly convex and ∇f is Lipschitz continuous on the level
set If at every step of the conjugate gradient (2.1) with given by (2.9) and the step
length

.S dk+1

α k selected to satisfy the Wolfe conditions (2.11) and (2.12), then either gk = 0 for
some k, or lim .

k
gk→∞

= 0

Proof: Suppose gk ≠ 0 for all k . By strong convexity we have

 y d g g d dk
T

k k k
T

k k k= − ≥+()1

2
µα . (3.11)

By theorem 2.1, Therefore, the assumption g dk
T

k < 0. gk ≠ 0 implies Since dk ≠ 0.
α k > 0, from (3.11) it follows that But y dk

T
k > 0. f is strongly convex over therefore ,S

f is bounded from below. Now, summing over k the first Wolfe condition (2.11) we have

α k k
T

k
k

g d
=

∞

∑ > −∞
0

.

Considering the lower bound for α k given by (3.5) in Lemma 3.1 and having in view that
is a descent direction it follows that dk

g d

d
k
T

k

kk

2

2
1=

∞

∑ < ∞. (3.12)

Now, from (2.13), using the inequality of Cauchy and (3.9) we get

g d
g s

y s
g s

s

g
k
T

k
k
T

k

k
T

k

k k

k

k
+ +

+ + +≤ − ≤ − = −1 1
1

2
1

2 2

2
1

2
()

.
µ µ

Therefore, from (3.12) it follows that

g

d
k

kk

4

2
0

< ∞
=

∞

∑ . (3.13)

Now, inserting the upperbound (3.7), for in (3.13) yields dk

gk
k

2

0
< ∞

=

∞

∑ ,

which completes the proof.
 For general functions the convergence of the algorithm is coming from theorem 2.1
and the restart procedure. Therefore, for strongly convex functions and under inexact line
search it is global convergent. To a great extent, however, the algorithm is very close to the
Perry/Shanno computational scheme [40, 41] which is a scaled memoryless BFGS
preconditioned algorithm where the scaling factor is the inverse of a scalar approximation of
the Hessian. If the Powell restart criterion (2.14) is used, for general functions f bounded
from below with bounded second partial derivatives and bounded level set, using the same

 7

arguments considered by Shanno in [40] it is possible to prove that the iterates either
converge to a point satisfying x * g x() ,* = 0 or the iterates cycle. It remains for further
study to determine a complete global convergence result and whether cycling can occur for
general functions with bounded second partial derivatives and bounded level set.
 More sophisticated reasons for restarting the algorithms have been proposed in the
literature, but we are interested in the performance of an algorithm that uses the Powell restart
criterion, associated with the scaled memoryless BFGS preconditioned direction choice for
restart. Additionally, some convergence analysis with Powell restart criterion was given by
Dai and Yuan [15] and can be used in this context of the preconditioned and scaled
memoryless BFGS algorithm.

4. Acceleration of the algorithm
It is common to see that in conjugate gradient algorithms the search directions tend to be
poorly scaled and as a consequence the line search must perform more function evaluations in
order to obtain a suitable steplength .kα In order to improve the performances of the
conjugate gradient algorithms the efforts were directed to design procedures for direction
computation based on the second order information. For example, CONMIN [42], and
SCALCG [3-6] take this idea of BFGS preconditioning. In this section we focus on the step
length modification. In the context of gradient descent algorithm with backtracking the step
length modification has been considered for the first time in [2].

Jorge Nocedal [28] pointed out an open problem in conjugate gradient algorithms that
in these methods the step lengths may differ from 1 in a very unpredictable manner. They can
be larger or smaller than 1 depending on how the problem is scaled. Numerical comparisons
between conjugate gradient methods and the limited memory quasi Newton method, by Liu
and Nocedal [26], show that the latter is more successful [8]. One explanation of the
efficiency of the limited memory quasi-Newton method is given by its ability to accept unity
step lengths along the iterations. In this section we take advantage of this behavior of
conjugate gradient algorithms and present an acceleration scheme. Basically, this modifies the
step length in a multiplicative manner to improve the reduction of the function values along
the iterations [9, 10].

Given the initial point 0x we can compute 0 0(),f f x= 0 ()g f x0= ∇ and by Wolfe
line search conditions (2.11) and (2.12) the steplength 0α is determined. With these, the next
iteration is computed as: 1 0 0 0x x dα= + , (0d g0= −) where 1f and are immediately
determined and the direction can be computed as in (2.9). Therefore, at the iteration

 we know

1g

1d
1,2,...k = ,kx ,kf and Suppose that is a descent direction. By the

Wolfe line search (2.11) and (2.12) we can compute
kg .kd kd

kα with which the following point

k kz x dkα= + is determined. The first Wolfe condition (2.11) shows that the steplength
0kα > satisfies:

() () () .T
k k k k k k kf z f x d f x g dα ρα= + ≤ +

With these, let us introduce the accelerated conjugate gradient algorithm by means of the
following iterative scheme:
 1k k k k kx x dγ α+ = + , (4.1)
where 0kγ > is a parameter which follows to be determined in such a manner as to improve
the behavior of the algorithm. Now, we have:

 ()22 21() () () .
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dα α α α+ = + + ∇ + (4.2)

On the other hand, for 0γ > we have:

 8

 ()22 2 21() () ()
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dγα γα γ α γα+ = + + ∇ + .

(),

 (4.3)

With these we can write:
 () ()k k k k k k kf x d f x dγα α+ = + +Ψ γ (4.4)
where

2 2 21() (1) () (1)
2

T T
k k k k kd f x d g dγ γ α γ αΨ = − ∇ + − k k k

 () ()22 .k k k k k ko d o dγ α α α α+ − 2 (4.5)

Let us denote:
 0,T

k k k ka g dα= ≤
2 2 () ,T

k k k k kb d f x dα= ∇

 ()2 .k k ko dε α=

Observe that , since is a descent direction, and for convex functions 0ka ≤ kd 0.kb ≥
Therefore,

 2 21() (1) (1) .
2k k k k kb a k kγ γ γ γ α ε αΨ = − + − + − ε

k

 (4.6)

Now, we see that () (2)k k k kb aγ α ε γ′Ψ = + + and () 0k mγ′Ψ = , where

 .
2

k
m

k k

a
b

γ
kα ε

= −
+

 (4.7)

Observe that Therefore, assuming that (0) 0.k ka′Ψ = < 2k k kb 0,α ε+ > then ()k γΨ is a
convex quadratic function with minimum value in point mγ and

2((2))() 0
2(2)

k k k k
k m

k k k

a b
b

α εγ
α ε

+ +
Ψ = − ≤

+
.

Considering mγ γ= in (4.4) and since , we see that for every k 0kb ≥
2((2))() () ()

2(2)
k k k k

k m k k k k k k k k
k k k

a b ,f x d f x d f x d
b

α εγ α α α
α ε

+ +
+ = + − ≤ +

+

which is a possible improvement of the values of function f (when (2)k k k ka b 0α ε+ + ≠).
Therefore, using this simple multiplicative modification of the stepsize kα as k kγ α where

/(2)k m k k k ka bγ γ α= = − + ε we get:
2

1
((2))() () ()

2(2)
T k k k k

k k k k k k k k k
k k k

a bf x f x d f x g d
b

α εγ α ρα
α ε+

+ +
= + ≤ + −

+

2((2))() (),

2(2)
k k k k

k
k k k

a b
k kf x

b
α ε ρ
α ε

⎡ ⎤+ +
= − − ≤⎢ +⎣ ⎦

a f x⎥ (4.8)

since (is a descent direction). 0,ka ≤ kd
Since () (1) 0,kγΨ ≤ Ψ = 1ρ < and 0,ka ≤ then neglecting the contribution of kε , we still
get an improvement on the function values as

2

1
()() () ()

2
k k

k k k
k

a b .kf x f x a f x
b

ρ+

⎡ ⎤+
≤ − − ≤⎢ ⎥

⎣ ⎦

 9

Now, in order to get the algorithm we have to determine a way for computation. For this,
at point

kb

k kz x dkα= + we have:

2 21() () () () ,
2

T T
k k k k k k k k k k kf z f x d f x g d d f x dα α α= + = + + ∇ �

where kx� is a point on the line segment connecting kx and On the other hand, at point .z

k k kx z dα= − we have:

2 21() () () () ,
2

T T
k k k k z k k k k kf x f z d f z g d d f x dα α α= − = − + ∇

where and ()zg f= ∇ z kx is a point on the line segment connecting kx and Having in
view the local character of searching and that the distance between

.z

kx and is small enough,
we can consider

z
.k k kx x x= =� So, adding the above equalities we get:

 (4.9) ,T
k k kb yα= − kd

zwhere .k ky g g= −

Observe that if ka b> k , then 1.kγ > On the other hand, if ,k ka b≤ then 1.kγ ≤

Therefore, if ka b≠ k , then 1kγ ≠ and the steplength kα computed by Wolfe conditions will

be modified by its increasing or its reducing through factor .kγ

5. ASCALCG Algorithm
Having in view the above developments and the definitions of gk , and as well as the
selection procedure for

sk yk ,
θ k+1 computation, the following accelerated scaled conjugate gradient

algorithm can be presented.
Step 1. Initialization. Select and the parameters x R n

0∈ , 0 1.ρ σ< ≤ < Compute f x()0

and g f x0 0= ∇ (). Set d g0 0= − and α 0 01= / g . Set k = 0.
Step 2. Line search. Compute α k satisfying the Wolfe conditions (2.11) and (2.12). Update
the variables x x dk k k+ = +1 kα . Compute f x gk k(),+1 1+ and s x xk k k= −+1 ,
y g gk k k= −+1 .

Step 3. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
else set k k= +1.
Step 4. Scaling factor computation. Compute θ k using (2.18).
Step 5. Restart direction. Compute the (restart) direction d as in (2.9). k

Step 6. Line search. Compute the initial guess:α αk k k kd d= − −1 1 2
/

2
. Using this

initialization compute α k satisfying the Wolfe conditions. Update the variables
x x dk k k+ = +1 kα . Compute 1(k)f x + and gk+1 .

Step 7. Acceleration scheme. Compute and If b then
compute

T
k ka g d= k

T
k k k kb g g d+= − 0,k ≠

k

1() .
/k ka bγ = and update the variables as: 1 .k k k k kx x dγ α+ = + Compute f xk()+1 ,

gk+1 and s x xk k k= −+1 , y g gk k k= −+1 . Otherwise (if 0kb =), then compute
s x xk k k= −+1 , y g gk k k= −+1 .
Step 8. Store: θ θ= k , and s sk= y yk= .
Step 9. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
else set k k= +1.
Step 10. Restart. If the Powell restart criterion (2.14) is satisfied, then go to step 4 (a restart
step); otherwise continue with step 11 (a standard step).

 10

Step 11. Standard direction. Compute the direction as in (2.17), where and w are
computed as in (2.15) and (2.16) with saved values

dk v
θ , and s y.

Step 12. Line search. Compute the initial guess: α αk k k kd d= − −1 1 2
/

2
. Using this

initialization compute α k satisfying the Wolfe conditions. Update the variables
x x dk k k+ = +1 kα . Compute 1(k)f x + and gk+1 .

Step 13. Acceleration scheme. Compute and b g If then
compute

T
k ka g d= k

T
k k k kg d+= − 0,kb ≠

k

1() .
/k ka bγ = and update the variables as: 1 .k k k k kx x dγ α+ = + Compute f xk()+1 ,

gk+1 and s x xk k k= −+1 , y g gk k k= −+1 . Otherwise (if 0kb =), then compute
s x xk k k= −+1 , y g gk k k= −+1 .
Step 14. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
else set k k= +1 and go to step 10.

 It is well known that if f is bounded below along the direction then there exists
a step length

dk ,
α k satisfying the Wolfe conditions. The initial selection of the step length

crucially affects the practical behavior of the algorithm. At every iteration k ≥ 1 the starting

guess for the step α k in line search is computed as α k k kd d− −1 1 2
/

2
. This procedure was

considered for the first time by Shanno and Phua in CONMIN [42]. The same one is taken by
Birgin and Martínez in SCG [11] and in the SCALCG algorithm [3-6]. In steps 3, 9 and 14 we
can consider, for example, the following test: 6() 10 .kf x −

∞
∇ ≤

Proposition 5.1. Suppose that f is an uniformly convex function on the level set

{ }0: () ()S x f x f x= ≤ , and satisfies the sufficient descent condition kd 2
1 ,T

k k kg d c g< −

where , and 1 0c > 2
2kd c g≤ 2

k , where Then the sequence generated by

ASCALCG converges linearly to
2 0.c >

*,x solution to the problem (1.1).

Proof. From (4.8) we have that 1() (k)kf x f x+ ≤ for all Since .k f is bounded below, it
follows that

1lim(() ()) 0.k kk
f x f x +→∞

− =

Now, since f is uniformly convex there exist positive constants and m ,M such that
 on Suppose that 2 ()mI f x MI≤ ∇ ≤ .S k kx d Sα+ ∈ and k m kx d Sγ α+ ∈ for all 0.α >

We have:
2()() ()

2
k k

k m k k k
k

a bf x d f x d
b

γ α α +
+ ≤ + − .

But, from uniform convexity we have the following quadratic upper bound on ()k kf x dα+ :
221() ()

2
T

k k k k k kf x d f x g d M dα α α+ ≤ + + .

Therefore,
2 22

1 2
1() ()
2k k k k kf x d f x c g Mc gα α α+ ≤ − +

22

1 2
1() .
2k kf x c Mc gα α⎡ ⎤= + − +⎢ ⎥⎣ ⎦

 11

Observe that for 1 20 /(),c Mcα≤ ≤ 2 1
1 2

1
2 2

cc Mcα α α− + ≤ −

.

 which follows from the

convexity of 2
1 2(/ 2)c Mcα α− + Using this result, since 1/ 2,ρ < we get:

2 2
1 1

1() () ()
2k k k k k kf x d f x c g f x c gα α ρ+ ≤ − ≤ − α ,

From Lemma 3.1 the Wolfe line search terminates with a value 0.α ω≥ > Therefore, for

1 20 /(c Mc),α≤ ≤ this provides a lower bound on the decrease in the function ,f i.e.

2

1() ()k k k kf x d f x c gα ρ ω+ ≤ − . (5.1)
On the other hand,

42 22 2

22 1 2 1
22

22

()() () .
2 22

kk k
k

k k

Mc c ga b Mc c g
b MMc g

α α ω
α

−+ −
≥ ≥

c
 (5.2)

Considering (5.1) and (5.2) we get:

2

2 22 1
1

2

()() ()
2k m k k k k

Mc cf x d f x c g g
Mc

ωγ α ρ ω −
+ ≤ − − . (5.3)

Therefore,
2

22 1
1

2

()() ()
2k k m k k

Mc cf x f x d c g
Mc

ωγ α ρ ω
⎡ ⎤−

− + ≥ +⎢ ⎥
⎣ ⎦

.

→

But, and as a consequence goes to zero, i.e. 1() () 0k kf x f x +− kg kx converges to *.x

Having in view that ()kf x is a nonincreasing sequence, it follows that ()kf x converges to
*().f x From (5.3) we see that

2

22 1
1 1

2

()() ()
2k k

Mc cf x f x c g
Mc

ωρ ω+

⎡ ⎤−
≤ − +⎢

⎣ ⎦
.k⎥ (5.4)

Combining this with 2 *2 (())k kg m f x f≥ − and subtracting *f from both sides of (5.4)
we conclude:

* *
1() (())k k ,f x f c f x f+ − ≤ −

where
2

2 1
1

2

()1 2 1.
2

Mc cc m c
Mc

ωρ ω
⎡ ⎤−

= − + <⎢ ⎥
⎣ ⎦

Therefore, ()kf x converges to *f at least as fast as a geometric series with a factor that
depends on the parameter ρ in the first Wolfe condition and the bounds and m .M
Therefore, the convergence of the acceleration scheme is at least linear. ■
Observe that for strongly convex functions f with f∇ Lipschitz continuous, in Lemma 3.2
we proved that the direction given by (2.9) is bounded as in (3.7). Therefore the

condition

1kd +

2
2kd c g≤ 2

k is satisfied with
22

2 2 3

2 2 .L Lc
µ µ µ

⎛ ⎞
= + +⎜ ⎟
⎝ ⎠

6. Computational results and comparisons
In this section we present the performance of a Fortran implementation of the ASCALCG –
accelerated scaled conjugate gradient algorithm on a set of 750 unconstrained optimization
test problems. At the same time, we compare the performance of ASCALCG with some
conjugate gradient algorithms including SCALCG [3-6], CONMIN [42], Hestenes-Stiefel

 12

(HS) [25], Polak-Ribière-Polyak (PRP) [32,33], Dai-Yuan (DY) [17], Dai-Liao (DL) [14],
conjugate gradient with sufficient descent CGSD [7], hybrid Dai-Yuan (hDY) [17], hybrid
Dai-Yuan zero (hDYz) [17], CG_DESCENT [22,23], and limited memory quasi-Newton
LBFGS (m=3, m=5) by Liu and Nocedal [26] and truncated Newton TN by Nash [27].

All codes are written in Fortran and compiled with f77 (default compiler settings) on
an Intel Pentium 4, 1.5Ghz. All algorithms implement the same stopping criterion
gk ∞

≤ ε g , where . ∞ denotes the maximum absolute component of a vector and

ε g =
−10 6 .
The test problems are the unconstrained problems in the CUTE [12] collection, along

with other large-scale optimization problems [1]. We selected 75 large-scale unconstrained
optimization problems in extended or generalized form. For each function we have considered
10 numerical experiments with number of variables n = 1000 2000 10000, , ,… .

,

The comparisons of algorithms are given in the following context. Let and

be the optimal value found by ALG1 and ALG2, for problem
respectively. We say that, in the particular problem the performance of ALG1 was better
than the performance of ALG2 if:

f i
ALG1

f i
ALG2 i = 1 750, ,…

i,

 f fi
ALG

i
ALG1 2 10− < −3 (6.1)

and the number of iterations, or the number of function-gradient evaluations, or the CPU time
of ALG1 was less than the number of iterations, or the number of function-gradient
evaluations, or the CPU time corresponding to ALG2, respectively.

In the first set of numerical experiments we compare ASCALCG with SCALCG.
Basically, SCALCG [3-6] is the unaccelerated variant of ASCALCG. Figure 1 presents the
Dolan-Moré [19] CPU performance profiles of these algorithms, i.e. we plot the fraction of
problems for which the given method is within a factor τ of the best time.

Fig. 1. ASCALCG versus SCALCG.

 13

The percentage of the test problems for which a method is the fastest is given on the left axis
of the plot. The right side of the plot gives the percentage of the test problems that were
successfully solved by these algorithms, respectively. When comparing ASCALCG with
SCALCG (Figure 1), subject to the number of iterations, we see that ASCALCG was better in
467 problems (i.e. it achieved the minimum number of iterations in 467 problems). SCALCG
was better in 58 problems and they achieved the same number of iterations in 125 problems,
etc. Out of 750 problems, only for 650 problems does the criterion (6.1) hold. Clearly,
introducing the acceleration scheme represents an important ingredient in getting an efficient
conjugate gradient algorithm. Numerical experiments proved that for the majority of
iterations /k k ka b 1γ = < , i.e. the acceleration scheme has the propensity to reduce the values
of the step lengths. We see that the best performance, relative to the CPU time metric, was
obtained by ASCALCG, the top curve in Figure 1. Hence, ASCALCG appears to generate the
best steplength, on average.

In the second set of numerical experiments we compare ASCALCG versus to
CONMIN developed by Shanno and Phua [42,43] (See also [40]). Shanno [40] and Perry [31]
showed that their version of conjugate gradient algorithm can be viewed as memoryless
BFGS method. The advantage of their approach is that their methods generate directions of
descent. Furthermore, versions of their method are globally convergent for strictly convex
functions and for Lipschitzian functions under the assumption that lim 0k ks→∞ = . Figure 2
presents the Dolan-Moré CPU performance profiles of ASCALCG versus CONMIN.

Fig. 2. ASCALCG versus CONMIN (Shanno-Phua)

We see that ASCALCG is clearly superior. One reason is that it uses more vectors to calculate
the direction . (ASCALCG uses 11 vectors and CONMIN only 7). Besides, ASCALCG
uses the accelerate scheme which is a crucial ingredient on the performance of the algorithm.

kd

In the third set of numerical experiments we compare ASCALCG to: HS
(), PRP (), DY (), DL (t=1)

(),CGSD (),
1 /HS T T

k k k ky g y sβ += k k k

k)k

1 /PRP T T
k k k ky g g gβ += 1 1 /DY T T

k k k kg g y sβ + +=

1() /DL T T
k k k k kg y ts y sβ += − 2

1 1 1 1/ ()() /(CGSD T T T T T
k k k k k k k k k kg g y s y g s g y sβ + + + += −

 14

hDY ({ }{ }max ,min ,hDY DY HS DY
k k k kβcβ β β= − (1) /(1), c σ σ= − + , 0.8σ =) and hDYz

({ }{ }max 0,min ,hDYz HS DY
k kβ β= kβ). Figures 3-9 present the Dolan-Moré CPU performance

profiles of these conjugate gradient algorithms.

Fig. 3. ASCALCG versus Hestenes – Stiefel (HS).

Fig. 4. ASCALCG versus Polak-Ribière-Polyak (PRP).

 15

Fig. 5. ASCALCG versus Dai-Yuan (DY).

Fig. 6. ASCALCG versus Dai-Liao (t=1) (DL).

 16

Fig. 7. ASCALCG versus CG with Sufficient Descent Condition (CGSD).

Fig. 8. ASCALCG versus Hybrid Dai-Yuan (hDY).

 17

Fig. 9. ASCALCG versus Hybrid Dai-Yuan zero (hDYz).

From Figures 3-9 we see that the accelerated conjugate gradient algorithm

ASCALCG is more successful and more robust than the considered classical and hybrid
conjugate gradient algorithms considered in this numerical study. Hence, ASCALCG appears
to generate the best search direction and the best steplength, on average. Not only ASCALCG
is the fastest among these algorithms, but it is also more robust in solving a large variety of
unconstrained optimization problems.

An attractive feature of the Hestenes and Stiefel conjugate gradient algorithm is that
the pure conjugacy condition 1 0T

k ky d + = always is satisfied, independent of the line search.
However, for an exact line search the convergence properties of the HS method are similar to
the convergence properties of the PRP method. Therefore, by Powell’s example [34], the HS
method with exact line search may not converge for a general nonlinear function. Both the HS
and PRP methods possess a built-in restart feature that addresses directly to the jamming
phenomenon. When the step 1k kx x+ − is small, the factor 1k ky g g+ k= − in the numerator of

kβ tends to zero. Therefore, kβ becomes small and the new search direction essentially
becomes the steepest descent direction

1kd +

1.kg +− Hence, both HS and PRP methods
automatically adjust kβ to avoid jamming. The performance of these methods is better than
the performance of DY. On the other hand, the DY method always generates descent
directions, and in [13] Dai established a remarkable property for the DY conjugate gradient
algorithm, relating the descent directions to the sufficient descent condition. It is shown that if
there exist constants 1λ and 2λ such that 1 kg 2λ λ≤ ≤ for all k , then for any p ∈ (,)0 1 ,

there exists a constant c such that the sufficient descent condition > 0 g d c gi
T

i ≤ −
2

i holds
for at least ⎣ ⎦pk indices where i k∈ [,],0 ⎣ ⎦j denotes the largest integer However, the
DY method does not satisfy the conjugacy condition. The hDY method reduces to the
Fletcher and Reeves method [16] if

≤ j.

f is a strictly convex quadratic function and the line

 18

search is exact. For a standard Wolfe line search, Dai and Yuan [17] proved that it produces
descent directions at every iteration and they established the global convergence of their
hybrid conjugate gradient algorithm when the Lipschitz assumption holds.

In the fourth set of numerical experiments we compare ASCALCG to
CG_DESCENT with Wolfe line search. In Figure 10 the Dolan-Moré CPU performance
profiles of ASCALCG and CG_DESCENT are presented.

Fig. 10. ASCALCG versus CG_DESCENT (Wolfe conditions).

The top solid curve in Figure 10 corresponds to ASCALCG. Observe that subject to the CPU
time metric, ASCALCG is more robust. Also, it is interesting to observe in Figure 10 that for

1τ = , relative to the CPU time metric, CG_DESCENT is slighter better, ASCALCG is at
best competitive with CG_DESCENT. However, for 1τ > , ASCALCG turns out to be faster
and more robust than CG_DESCENT. Presently CG_DESCENT is the practical conjugate
gradient algorithm with more reputation. In this computational scheme the direction is
generated by the rule:

1kd +

 1 1 ,HZ
k k k kd g dβ+ += − +

2

1
1 2 .

T

kHZ
k k k kT T

k k k k

y
y d g

y d y d
β +

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (6.2)

This scheme is obtained by deleting a term from the search direction for the memoryless
quasi-Newton scheme of Perry [31] and Shanno [40]. Observe that CG_DESCENT is a
modification of HS and was devised in order to ensure sufficient descent, independent of the
accuracy of the line search. The ASCALCG and CG_DESCENT algorithms (and codes)
differ in many respects. Although the update formula (2.9) is more complicated than (6.2),
this computational scheme proved to be efficient and more robust in numerical experiments.
However, since each of these codes are different in the number of parameters which can be
modified by the user to establish a context of optimization (CG_DESCENT has 26 parameters
while ASCALCG has only 10 parameters) and in the amount of linear algebra required in
each iteration, it is quite clear that different codes will be superior in different problem sets.

 19

In the fifth set of numerical experiments in Figures 11 and 12 the Dolan-Moré
performance profiles of ASCALCG versus LBFGS (m=3) and LBFGS (m=5) are presented.

Fig. 11. ASCALCG versus LBFGS (m=3).

Fig. 12. ASCALCG versus LBFGS (m=5).

 20

Finally, Figures 13 illustrates the performance profiles of ASCALCG versus the truncated
Newton TN algorithm by Nash [27].

Fig. 13. ASCALCG versus truncated Newton TN (Nash).

From Figures 11 and 12 again we see that the best performance is obtained by ASCALCG.
LBFGS is a professional implementation of the limited memory quasi-Newton method [26],
where is the number of the stored pairs (, . Even that LBFGS admits unit step
lengths for the most of the iterations, thus requiring only few function and gradient
evaluations for steplength determination, ASCALCG combines in a more adequate way the
direction determination and step length to be the top performer.

m)k ks y

It is interesting to observe in Figure 13 that TN by Nash [27] is completely outperformed by
ASCALCG, at least for this set of unconstrained optimization test functions.

7. Conclusion
We have presented a new conjugate gradient algorithm which mainly is an acceleration of
SCALCG – scaled BFGS preconditioned conjugate gradient algorithm [3-6]. The acceleration
scheme is simple and proved to be robust in numerical experiments. In very mild conditions
we proved that the algorithm is globally convergent. For uniformly convex functions the
convergence of the accelerated algorithm is still linear, but the reduction in the function
values is significantly improved. For a set of 750 test unconstrained optimization problems
(some from CUTE library) with dimensions ranging between 1000 and 10000 variables, the
CPU time performance profile for ASCALCG was higher than those of SCALCG, CONMIN,
HS, PRP, DY, DL (t=1), CGSD, hDY, hDYz, CG_DESCENT, LBFGS and TN.

References
1. Andrei, N., An unconstrained optimization test functions collection. Advanced Modeling

and Optimization. An Electronic International Journal, 10, 147-161 (2008)
2. Andrei, N., An acceleration of gradient descent algorithm with backtracking for

unconstrained optimization, Numerical Algorithms 42, 63-73, (2006)

 21

3. Andrei, N., Scaled conjugate gradient algorithms for unconstrained optimization.
Computational Optimization and Applications 38, 401-416 (2007)

4. Andrei, N., Scaled memoryless BFGS preconditioned conjugate gradient algorithm for
unconstrained optimization. Optimization Methods and Software 22, 561-571 (2007)

5. Andrei, N., A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained
optimization. Applied Mathematics Letters 20, 645-650 (2007)

6. Andrei, N., A scaled nonlinear conjugate gradient algorithm for unconstrained
optimization. Optimization. A journal of mathematical programming and operations
research. 57, 549-570 (2008).

7. Andrei, N., A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy
conditions for unconstrained optimization. Applied Mathematics Letters 21, 165-171
(2008)

8. Andrei, N., Numerical comparison of conjugate gradient algorithms for unconstrained
optimization. Studies in Informatics and Control 16, 333-352 (2007)

9. Andrei, N., Acceleration of conjugate gradient algorithms for unconstrained optimization.
Applied Mathematics and Computation, 213, 361-369 (2009).

10. Andrei, N., Accelerated hybrid conjugate gradient algorithm with modified secant
condition for unconstrained optimization. Numerical Algorithms, DOI 10.1007/s11075
009-9321-0

11. Birgin, E. and Martínez, J.M., A spectral conjugate gradient method for unconstrained
optimization, Applied Math. and Optimization 43, 117-128 (2001)

12. Bongartz, I, Conn, A.R., Gould, N.I.M. and Toint, P.L., CUTE: constrained and
unconstrained testing environments, ACM Trans. Math. Software 21, 123-160 (1995)

13. Y.H. Dai, New properties of a nonlinear conjugate gradient method. Numer. Math., 89
(2001), pp.83-98.

14. Dai, Y.H. and Liao, L.Z., New conjugate conditions and related nonlinear conjugate
gradient methods, Appl. Math. Optim. 43, 87-101 (2001)

15. Dai, Y.H. and Yuan, Y., Convergence properties of the Beale-Powell restart algorithm,
Science in China (series A) 41, 1142-1150 (1998)

16. Dai, Y.H. and Yuan, Y., Global convergence of the method of shortest residuals.
Numerische Mathematik, 83, 581-598 (1999)

17. Dai, Y.H. and Yuan, Y., An efficient hybrid conjugate gradient method for unconstrained
optimization, Ann. Oper. Res. 103, 33-47 (2001)

18. Daniel, J.W., The conjugate gradient method for linear and nonlinear operator equations.
SIAM J. Numer. Anal. 4, 10-26 (1967)

19. Dolan, E.D. and Moré, J.J., Benchmarking optimization software with performance
profiles, Math. Programming 91, 201-213 (2002)

20. Fletcher, R. and Reeves, C.M., Function minimization by conjugate gradients Comput. J.
7, 149-154 (1964)

21. Gilbert, J. Ch. and Nocedal, J., Global convergence properties of conjugate gradient
methods for optimization. SIAM J. Optimization, 2, 21-42 (1992)

22. Hager, W.W. and Zhang, H., A new conjugate gradient method with guaranteed descent
and an efficient line search, SIAM Journal on Optimization 16, 170-192 (2005)

23. Hager, W.W. and Zhang, H., Algorithm 851: CG-DESCENT, A conjugate gradient
method with guaranteed descent ACM Trans. Math. Software 32, 113-137 (2006)

24. Hager, W.W. and Zhang, H., A survey of nonlinear conjugate gradient methods. Pacific
Journal of Optimization, 2, pp.35-58 (2006)

25. Hestenes, M.R. and Stiefel, E., Methods of conjugate gradients for solving linear systems,
J. Research Nat. Bur. Standards Sec. B. 48, 409-436 (1952)

26. Liu, D.C. and Nocedal, J., On the limited memory BFGS method for large scale
optimization methods. Mathematical Programming 45, 503-528 (1989)

27. Nash, S.G., Preconditioning of truncated-Newton methods. SIAM J. on Scientific and
Statistical Computing 6, 599-616 (1985)

 22

28. Nocedal, J., Conjugate gradient methods and nonlinear optimization. In Linear and
nonlinear Conjugate Gradient related methods, L. Adams and J.L. Nazareth (eds.),
SIAM, 9-23 (1996)

29. Oren, S.S. and Luenberger, D.G., Self-scaling variable metric algorithm. Part I,
Management Sci. 20, 845-862 (1976)

30. Oren, S.S. and Spedicato, E., Optimal conditioning of self-scaling variable metric
algorithms, Math. Programming 10, 70-90 (1976)

31. Perry, J.M., 1977, A class of conjugate gradient algorithms with a two step variable
metric memory, Discussion paper 269, Center for Mathematical Studies in Economics
and Management Science, Northwestern University (1977)

32. Polak E. and Ribière, G., Note sur la convergence de methods de directions conjugres,
Revue Francaise Informat. Reserche Opérationnelle 16, 35-43 (1969)

33. Polyak, B.T., The conjugate gradient method in extreme problems. USSR Comp. Math.
Math. Phys. 9, 94-112 (1969)

34. Powell, M.J.D., Some convergence properties of the conjugate gradient method. Math.
Programming 11, 42-49 (1976)

35. Powell, M.J.D., Restart procedures for the conjugate gradient method, Math.
Programming 12, 241-254 (1977)

36. Pytlak, R., On the convergence of conjugate gradient algorithms. IMA J. Numerical
Analysis, 14, 443-460 (1994)

37. Pytlak, R., Conjugate gradient algorithms in nonconvex optimization. Springer,
Heidelberg, 2009.

38. Raydan, M., The Barzilai and Borwein gradient method for the large scale unconstrained
minimization problem, SIAM J. Optim. 7, 26-33 (1997)

39. Shanno, D.F., Conditioning of quasi-Newton methods for function minimization. Math.
Computation, 24, 647-657 (1970)

40. Shanno, D.F., Conjugate gradient methods with inexact searches, Mathematics of
Operations Research 3, 244-256 (1978)

41. Shanno, D.F., On the convergence of a new conjugate gradient algorithm, SIAM J.
Numer. Anal. 15, 1247-1257 (1978)

42. Shanno, D.F. and Phua, K.H., Algorithm 500, Minimization of unconstrained multivariate
functions, ACM Trans. on Math. Soft. 2, 87-94 (1976)

43. Shanno, D.F. and Phua, K.H., Matrix conditioning and nonlinear optimization.
Mathematical Programming, 14, 149-160, (1978)

44. Wolfe, P., Convergence conditions for ascent methods, SIAM Rev. 11, 226-235 (1969)
45. Wolfe, P., Convergence conditions for ascent methods II: some corrections, SIAM Rev.

13, 185-188 (1971)
46. Zhang, J.Z., Deng, N.Y. and Chen, L.H., New quasi-Newton equation and related

methods for unconstrained optimization. J. Optim. Theory Appl. 102, 147-167 (1999)

July 31, 2009

 23

