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Abstract. An accelerated scaled memoryless BFGS preconditioned conjugate gradient 
algorithm for solving unconstrained optimization problems is presented. The basic idea is 
to combine the scaled memoryless BFGS method and the preconditioning technique in the 
frame of the conjugate gradient method. The preconditioner, which is also a scaled 
memoryless BFGS matrix, is reset when the Beale-Powell restart criterion holds. The 
parameter scaling the gradient is selected as a spectral gradient. For the steplength 
computation the method has the advantage that in conjugate gradient algorithms the step 
lengths may differ from 1 by two order of magnitude and tend to vary unpredictably. Thus, 
we suggest an acceleration scheme able to improve the efficiency of the algorithm. Under 
common assumptions, the method is proved to be globally convergent. It is shown that for 
uniformly convex functions the convergence of the accelerated algorithm is still linear, but 
the reduction in the function values is significantly improved. In mild conditions the 
algorithm is globally convergent for strongly convex functions. Computational results for 
a set consisting of 750 unconstrained optimization test problems show that this new 
accelerated scaled conjugate gradient algorithm substantially outperforms known 
conjugate gradient methods: SCALCG [3-6], CONMIN by Shanno and Phua [42,43], 
Hestenes and Stiefel [25], Polak-Ribière-Polyak [32,33], Day and Yuan [17], Dai and Liao 
(t=1) [14], conjugate gradient with sufficient descent condition [7], hybrid Day and Yuan 
[17], hybrid Dai and Yuan zero [17], CG_DESCENT by Hager and Zhang [22,23], as well 
as quasi-Newton LBFGS method [26] and truncated Newton method by Nash [27]. 
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1. Introduction 
 
In this paper we consider the following unconstrained optimization problem: 
                                                                  min f x( )                                                             (1.1) 
where  is continuously differentiable and its gradient is available. We are 
interested in elaborating an algorithm for solving large-scale cases for which the Hessian of 

f R Rn: →

f  is either not available or requires a large amount of storage and computational costs. 
Plenty of conjugate gradient methods are known, and an excellent survey of these methods, 
with a special attention on their global convergence, is given by Hager and Zhang [24]. 
Different conjugate gradient algorithms correspond to different choices for the scalar 
parameter kβ  [8,16,21,36,37]. Line search in the conjugate gradient algorithms often is based 
on the standard Wolfe conditions. A numerical comparison of conjugate gradient algorithms 
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with Wolfe line search, for different formulae of parameter kβ  computation, including the 
Dolan and Moré performance profile, is given in [8]. 

The paper presents a conjugate gradient algorithm based on a combination of the 
scaled memoryless BFGS method and the preconditioning technique [3-6]. For general 
nonlinear functions a good preconditioner is any matrix that approximates 

where is a local solution of (1.1). In this algorithm the preconditioner is a 
scaled memoryless BFGS matrix which is reset when the Powell restart criterion holds. The 
scaling factor in the preconditioner is selected as spectral gradient [38].  

∇ −2 f x( ) ,* 1 x*

 The algorithm uses the conjugate gradient direction where the famous parameter β k  
is obtained by equating the conjugate gradient direction with the direction corresponding to 
the Newton method. Thus, we get a general formula for the direction computation, which 
could be particularized to include the Polak-Ribiére [32] and Polyak [33] and the Fletcher and 
Reeves [20] conjugate gradient algorithms, the spectral conjugate gradient (SCG) by Birgin 
and Martínez [11] or the algorithm of Dai and Liao [14], for t = 1. This direction is then 
modified in a canonical manner as it was considered earlier by Oren and Luenberger [29], 
Oren and Spedicato [30], Perry [31] and Shanno [39-41], by means of a scaled, memoryless 
BFGS preconditioner placed into the Beale-Powell restart technology. This is the reason we 
call this a scaled memoryless BFGS preconditioned conjugate gradient algorithm. The scaling 
factor is computed in a spectral manner based on the inverse Rayleigh quotient, as suggested 
by Raydan [38]. The method could be considered as an extension of the spectral conjugate 
gradient (SCG) by Birgin and Martínez [11] or of a variant of the conjugate gradient 
algorithm by Dai and Liao [14] (for t = 1 ) suggested to overcome the lack of positive 
definiteness of the matrix defining their search direction. 

In [28] Jorge Nocedal articulated a number of open problems in conjugate gradient 
algorithms. One of them focuses on the step length. Intensive numerical experiments with 
conjugate gradient algorithms proved that the step length may differ from 1 up to two orders 
of magnitude, being larger or smaller than 1, depending on how the problem is scaled. 
Moreover, the sizes of the step length tend to vary in a totally unpredictable way. This is in 
sharp contrast with the Newton and quasi-Newton methods, as well as with the limited 
memory quasi-Newton methods, which usually admit the unit step length for most of the 
iterations and require only very few function evaluations for step length determination. 
Therefore, in this paper we take the advantage of this behavior of the step lengths in conjugate 
gradient algorithms and present an acceleration scheme, which modify the step length in such 
a manner to improve the reduction in functions values. 
 The paper is organized as follows: In section 2 we present the scaled conjugate 
gradient algorithm BFGS preconditioned. The algorithm performs two types of steps: a 
standard one in which a double quasi-Newton updating scheme is used and a restart one 
where the current information is used to define the search direction. The convergence of the 
algorithm for strongly convex functions is proved in section 3. In section 4 we present an 
acceleration scheme of the algorithm. The idea of this computational scheme is to take 
advantage that the step lengths kα  in conjugate gradient algorithms are very different from 1. 
Therefore, we suggest we modify kα  in such a manner as to improve the reduction of the 
function values along the iterations. In section 5 we present the ASCALCG algorithm and we 
prove that for uniformly convex functions the convergence of the accelerated algorithm is still 
linear, but the reduction in function values is significantly improved. Finally, in section 6 we 
present computational results on a set of 750 unconstrained optimization problems from the 
CUTE [12] collection along with some other large-scale unconstrained optimization problems 
presented in [1]. The Dolan-Moré [19] performance profiles of ASCALCG versus some 
known conjugate gradient algorithms including Hestenes and Stiefel [25], Polak-Ribière-
Polyak [32,33], Day and Yuan [17], hybrid Dai and Yuan [17], SCALCG by Andrei [3-6], 
CONMIN by Shanno and Phua [42,43], CG_DESCENT by Hager and Zhang [22,23], or 

 2



limited memory quasi-Newton LBFGS by Liu and Nocedal [26] and truncated Newton TN by 
Nash [27] prove that ASCALCG is top performer among these algorithms. 
 
2. Scaled Conjugate Gradient Method 
The algorithm generates a sequence xk of approximations to the minimum ofx* f , in which 
                                                            x x dk k k+ k= +1 α ,                                                    (2.1) 
                                                       d g sk k k k+ + + k= − +1 1 1θ β ,                                             (2.2) 
where g f xk k ,= ∇ ( )  α k is selected to minimize f x( ) along the search direction , dk β k is 
a scalar parameter, s x xk k= −+1 k and θ k+1 is a parameter or a matrix to be determined. The 
iterative process is initialized with an initial point x0 and d g0 0= − .  
 Observe that if θ k+ =1 1,  then we get the classical conjugate gradient algorithms 
according to the value of the scalar parameter β k .  On the other hand, if  β k = 0, then we 
get another class of algorithms according to the selection of the parameter θ k+1 . Considering  
β k = 0,  there are two possibilities for θ k+1 : a positive scalar or a positive definite matrix. If 
θ k+ =1 1 , then we have the steepest descent algorithm. If θ k kf x+ +

−= ∇1
2

1
1( ) , or an 

approximation of it, then we get the Newton or the quasi-Newton algorithms, respectively. 
Therefore, we see that in the general case, when θ k+ ≠1 0 is selected in a quasi-Newton 
manner, and β k ≠ 0,  (2.2) represents a combination between the quasi-Newton and the 
conjugate gradient methods. However, if θ k+1 is a matrix containing some useful information 
about  the inverse Hessian of function f , we are better off using d gk k+ + k+= −1 1 1θ since the 
addition of the term β k ks in (2.2) may prevent the direction  from being a descent 
direction unless the line search is sufficiently accurate. Therefore, in this paper we shall 
consider 

dk

θ k+1 as a positive scalar which contains some useful information to the inverse 
Hessian of function f .  

As we know, when the initial point 0x  is close enough to a local minimum point *x , 

then the best direction to be followed in the current point 1kx +  is the Newton direction 
2 1

1( )k k 1f x g−
+−∇ + . Therefore, our motivation is to choose the parameter kβ  in (2.2) so that 

for every  the direction  given by (2.2) can be the best direction we know, i.e. the 
Newton direction. Hence, using the Newton direction from the equality 

1k ≥ 1kd +

                                         − ∇ = − ++
−

+ + +
2

1
1

1 1 1f x g g sk k k k k( ) k ,θ β                                 (2.3) 
we get:                                      

                                           β
θ

k
k
T

k k k k
T

k

k
T

k k

s f x g s g
s f x s

=
∇ −

∇
+ + + +

+

2
1 1 1 1
2

1

( )
( )

.                                  (2.4) 

Observe that the Newton direction is being used here only as a motivation for formula (2.4). 
The salient point with this formula for kβ  computation is the presence of the Hessian. If the 
line search is exact we get the scaled Daniel method [18]. For large-scale problems, choices 
for the update parameter that do not require the evaluation of the Hessian matrix are often 
preferred in practice to the methods that require the Hessian.  

Now, for quasi-Newton methods an approximation matrix kB  to the Hessian 
2 ( )kf x∇  is used and updated so that the new matrix 1kB +  satisfies the secant condition 

1k k kB s y+ = , where . Therefore, in order to have an algorithm for solving 
large-scale problems we can assume that the pair  satisfies the secant condition. In 

this case, Zhang, Deng and Chen [46] proved that if 

1k ky g g+= − k

( , )k ks y

ks  is sufficiently small, then 
32

1( ) (T T
k k k k k ks f x s s y O s+∇ − = ) . Therefore, using this assumption we get: 
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                                                        1( ) .
T

k k k k
k T

k k

y s g
y s

θβ + −
= 1+                                             (2.5) 

Birgin and Martínez [11] arrived at the same formula for β k , but using a geometric 
interpretation of quadratic function minimization. The direction corresponding to β k given in 
(2.5) is as follows: 

                                       d g
y s g

y s
sk k k

k k k
T

k

k
T

k
k+ + +

+= − + +−
1 1 1

1θ 1θ( )
.                                (2.6) 

The following particularizations are obvious. If  θ k+ =1 1,  then (2.6) is the direction 
considered by Perry [31]. At the same time we see that (2.6) is the direction given by Dai and 
Liao [14] for obtained this time by an interpretation of the conjugacy condition. 
Additionally, if  

t = 1,
s gj

T
j+ =1 0, j k= 0 1, , , ,…  then from (2.6) we get: 

                                               d g
y g
g g

sk k k
k k

T
k

k k k
T

k
k+ + +

+ += − +1 1 1
1 1θ

θ
α θ

,                                      (2.7) 

which is the direction corresponding to a generalization of the Polak and Ribière formula. Of 
course, if θ θk k+ = =1 1  in (2.7), we get the classical Polak and Ribière formula [32,33]. If 

 s gj
T

j+ =1 0, j k= 0 1, , , ,… and additionally the successive gradients are orthogonal, then 
from (2.6) we get: 

                                             d g
g g

g g
sk k k

k k
T

k

k k k
T

k
k+ + +

+ + += − +1 1 1
1 1 1θ

θ
α θ

,                                      (2.8) 

which is the direction corresponding to a generalization of the Fletcher and Reeves formula 
[20]. Therefore, (2.6) is a general formula for direction computation in a conjugate gradient 
manner including the classical Fletcher and Reeves [20], and Polak-Ribière and Polyak [32, 
33] formulae. 
 There is a result by Shanno [40, 41] that says that the conjugate gradient method is 
precisely the BFGS quasi-Newton method for which the initial approximation to the inverse 
of the Hessian, at every step, is taken as the identity matrix. The extension to the scaled 
conjugate gradient is very simple. Using the same methodology as considered by Shanno [40] 
we get the following direction : dk+1

    d g
g s
y s

y
y y
y s

g s
y s

g y
y s

sk k k k
k
T

k

k
T

k
k k

k
T

k

k
T

k

k
T

k

k
T

k
k

k
T

k

k
T

k
k+ + + +

+
+

+
+

+= − +
⎛

⎝
⎜

⎞

⎠
⎟ − +

⎛

⎝
⎜

⎞

⎠
⎟ −

⎡

⎣
⎢

⎤

⎦
⎥1 1 1 1

1
1

1
1

11θ θ θ θ ,  (2.9) 

involving only 4 scalar products. Again observe that if g sk
T

k+ =1 0,  then (2.9) reduces to: 

                                              d g
g y
y s

sk k k k
k
T

k

k
T

k
k+ + + +

+= − +1 1 1 1
1θ θ .                                     (2.10) 

Thus, in this case, the effect is simply one of multiplying the Hestenes and Stiefel [25] search 
direction by a positive scalar. 
 In order to ensure the convergence of the algorithm (2.1), with given by (2.9), 
we need to constrain the choice of 

dk+1

α k .  We consider line searches that satisfy the Wolfe 
conditions [44,45]: 
                                              ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                    (2.11) 

                                                    ( )T T
k k k k k k ,f x d d g dα σ∇ + ≥                                        (2.12) 

where 0 1/ 2 1.ρ σ< < ≤ <   
 
Theorem 2.1. Suppose that α k in (2.1) satisfies the Wolfe conditions (2.11) and (2.12), then 
the direction given by (2.9) is a descent direction. dk+1

Proof: Since d g0 = 0− ,  we have g d gT
0 0 0

2
0= − ≤ .  Multiplying (2.9) by  we have gk

T
+1 ,
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[g d
y s

g y s g y g s y sk
T

k
k
T

k
k k k

T
k k k

T
k k

T
k k

T
k+ + + + + + += − +1 1 2 1 1

2 2
1 1 1

1
2

( )
( ) ( )( )( )θ θ  

                                                ]− −+ +( ) ( ) ( )( )g s y s y y g sk
T

k k
T

k k k
T

k k
T

k1
2

1 1
2θ + .

Applying the inequality u v u vT ≤ +
1
2

2( 2 )  to the second term of the right hand side of 

the above equality, with  and u s y gk
T

k k= +( ) 1 v g s yk
T

k k= +( )1 we get: 

                                                      g d
g s

y sk
T

k
k
T

k

k
T

k
+ +

+≤ −1 1
1

2( )
.                                             (2.13) 

But, by Wolfe condition (2.12),  Therefore, y sk
T

k > 0. g dk
T

k+ + <1 1 0  for every k = 0 1, ,…  
 
Observe that the second Wolfe condition (2.12) is crucial for the descent character of 
direction (2.9). Besides, we see that the estimation (2.13) is independent of the parameter 
θ k+1 .  
 Usually, all conjugate gradient algorithms are periodically restarted. The Powell 
restarting procedure [34, 35] is to test if there is very little orthogonality left between the 
current gradient and the previous one. At step r when: 

                                                        g g gr
T

r r+ ≥1

2
0 2. +1 ,                                                (2.14) 

we restart the algorithm using the direction given by (2.9). 
 At step r  we know  and sr , yr θ r+1 .  If (2.14) is satisfied, then a restart step is 
considered, i.e. the direction is computed as in (2.9). For k r≥ +1,  we consider the same 
philosophy used by Shanno [40], where the gradient gk+1 is modified by a positive definite 
matrix which best estimates the inverse Hessian without any additional storage requirements, 
i.e. we compute: 

                          v g
g s
y s

yr k r
k
T

r

r
T

r
r= −

⎛

⎝
⎜

⎞

⎠
⎟+ + +

+θ θ1 1 1
1  

                                                 + +
⎛

⎝
⎜

⎞

⎠
⎟ −

⎡

⎣
⎢

⎤

⎦
⎥+

+
+

+1 1
1

1
1θ θr

r
T

r

r
T

r

k
T

r

r
T

r
r

k
T

r

r
T

r
r

y y
y s

g s
y s

g y
y s

s ,                 (2.15) 

and 

                         w y
y s
y s

yr k r
k
T

r

r
T

r
r= −

⎛

⎝
⎜

⎞

⎠
⎟+ +θ θ1 1  

                                              + +
⎛

⎝
⎜

⎞

⎠
⎟ −

⎡

⎣
⎢

⎤

⎦
⎥+ +1 1 1θ θr

r
T

r

r
T

r

k
T

r

r
T

r
r

k
T

r

r
T

r
r

y y
y s

y s
y s

y y
y s

s ,                         (2.16) 

 
involving 6 scalar products. With these, at any nonrestart step, the direction for dk+1

k r≥ +1,  is computed using a double update scheme as in Shanno [40]: 
 

                        d v
g s w g w s

y s
y w
y s

g s
y s

sk
k
T

k k
T

k

k
T

k

k
T

k
T

k

k
T

k

k
T

k
k+

+ + += − +
+

− +
⎛

⎝
⎜

⎞

⎠
⎟1

1 1 11
( ) ( )

,               (2.17) 

 
involving only 4 scalar products. Observe that  is sufficient to ensure that the 
direction given by (2.17) is well defined and it is always a descent direction. 

y sk
T

k > 0
dk+1

 Motivated by the efficiency of the spectral gradient method introduced by Raydan 
[38] and used by Birgin and Martínez [11] in their spectral conjugate gradient method for 
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unconstrained optimization, in our algorithm θ k+1 is defined as a scalar approximation to the 
inverse Hessian. This is given as the inverse of the Rayleigh quotient: 

s f x ts dt s sk
T

k k k k
T

k∇ +
⎡

⎣
⎢

⎤

⎦
⎥∫ 2

0

1

( ) / s ,  

i.e. 

                                                            θ k
k
T

k

k
T

k

s s
y s+ =1 .                                                         (2.18) 

The inverse of Rayleigh quotient lies between the smallest and the largest eigenvalue of the 

Hessian average . Again observe   is sufficient to ensure that ∇ +∫ 2

0

1

f x ts dtk k( ) y sk
T

k > 0

θ k+1  in (2.18) is well defined. 

 

3. Convergence Analysis for Strongly Convex Functions 
Throughout this section we assume that f is strongly convex and f∇ is Lipschitz continuous 
on the level set 
                                                  { }0: ( ) ( ) .nS x R f x f x= ∈ ≤                                            (3.1) 

That is, there exists constants µ > 0  and  such that L

                                         ( ( ) ( )) ( )∇ − ∇ − ≥ −f x f y x y x yT µ
2

                                   (3.2) 
and 
                                                   ∇ −∇ ≤ −f x f y L x y( ) ( ) ,                                           (3.3) 
for all x  and y  from  For the convenience of the reader we include here the following 
lemma (see [22]). 

.S

 
Lemma 3.1. Assume that is a descent direction and dk ∇f satisfies the Lipschitz condition 

                                                 ∇ −∇ ≤ −f x f x L x xk( ) ( ) ,k                                         (3.4) 
for every x  on the line segment connecting xk and xk+1 ,  where  is a constant. If the line 
search satisfies the second Wolfe condition (2.12), then 

L

                                                          2
1 .

T
k k

k
k

g d
L d
σα −

≥                                                    (3.5) 

Proof: Subtracting from both sides of (2.12) and using the Lipschitz condition we have g dk
T

k

                                       
2

1( 1) ( )T T
k k k k k k kg d g g d L dσ +− ≤ − ≤ .α                               (3.6) 

Since is a descent direction and dk 1,σ <  (3.5) follows immediately from (3.6).  
 
Therefore, satisfying the Wolfe line search conditions α is bounded away from zero, i.e. there 
exists a positive constant ω , such that .α ω≥  
 
Lemma 3.2. Assume that f is strongly convex and ∇f is Lipschitz continuous on  If .S
θ k+1 is selected by spectral gradient, then the direction given by (2.9) satisfies: dk+1

                                                d
L L

gk+ ≤ + + k+

⎛

⎝
⎜

⎞

⎠
⎟1 2

2

3 1

2 2
µ µ µ

.                                         (3.7) 

 
Proof: By Lipschitz continuity (3.3) we have 
                 y g g f x d f x L d L sk k k k k k k k k k= − = ∇ + − ∇ ≤ =+1 ( ) ( )α α .          (3.8) 
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On the other hand, by strong convexity (3.2) 
                                                             y s sk

T
k k≥ µ

2
.                                                      (3.9) 

Selecting θ k+1  as in (2.18), it follows that 

                                                   θ
µ µk

k
T

k

k
T

k

k

k

s s
y s

s

s
+ = ≤ =1

2

2
1

.                                        (3.10) 

Now, using the triangle inequality and the above estimates (3.8)-(3.10), after some algebra on 
dk+1 , where is given by (2.9), we get (3.7).  dk+1

 
 The convergence of the scaled conjugate gradient algorithm when f is strongly 
convex is given by 
 
Theorem 3.1. Assume that f is strongly convex and ∇f is  Lipschitz continuous on the level 
set  If at every step of the conjugate gradient (2.1) with given by (2.9) and the step 
length 

.S dk+1

α k selected to satisfy the Wolfe conditions (2.11) and (2.12), then either gk = 0  for 
some k,  or lim .

k
gk→∞

= 0  

Proof: Suppose gk ≠ 0  for all k .  By strong convexity we have 

                                           y d g g d dk
T

k k k
T

k k k= − ≥+( )1

2
µα .                                  (3.11) 

By theorem 2.1,  Therefore, the assumption g dk
T

k < 0. gk ≠ 0 implies  Since dk ≠ 0.
α k > 0,  from (3.11) it follows that  But y dk

T
k > 0. f is strongly convex over  therefore ,S

f  is bounded from below. Now, summing over k  the first Wolfe condition (2.11) we have 

α k k
T

k
k

g d
=

∞

∑ > −∞
0

.  

Considering the lower bound for α k given by (3.5) in Lemma 3.1 and having in view that 
is a descent direction it follows that dk

                                                             
g d

d
k
T

k

kk

2

2
1=

∞

∑ < ∞.                                                    (3.12) 

Now, from (2.13), using the inequality of Cauchy and (3.9) we get 

g d
g s

y s
g s

s

g
k
T

k
k
T

k

k
T

k

k k

k

k
+ +

+ + +≤ − ≤ − = −1 1
1

2
1

2 2

2
1

2
( )

.
µ µ

 

Therefore, from (3.12) it follows that 

                                                             
g

d
k

kk

4

2
0

< ∞
=

∞

∑ .                                                    (3.13) 

Now, inserting the upperbound (3.7), for  in (3.13) yields dk

gk
k

2

0
< ∞

=

∞

∑ ,  

which completes the proof.  
 For general functions the convergence of the algorithm is coming from theorem 2.1 
and the restart procedure. Therefore, for strongly convex functions and under inexact line 
search it is global convergent. To a great extent, however, the algorithm is very close to the 
Perry/Shanno computational scheme [40, 41] which is a scaled memoryless BFGS 
preconditioned algorithm where the scaling factor is the inverse of a scalar approximation of 
the Hessian. If the Powell restart criterion (2.14) is used, for general functions f bounded 
from below with bounded second partial derivatives and bounded level set, using the same 
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arguments considered by Shanno in [40] it is possible to prove that the iterates either 
converge to a point satisfying x * g x( ) ,* = 0 or the iterates cycle. It remains for further 
study to determine a complete global convergence result and whether cycling can occur for 
general functions with bounded second partial derivatives and bounded level set. 
 More sophisticated reasons for restarting the algorithms have been proposed in the 
literature, but we are interested in the performance of an algorithm that uses the Powell restart 
criterion, associated with the scaled memoryless BFGS preconditioned direction choice for 
restart. Additionally, some convergence analysis with Powell restart criterion was given by 
Dai and Yuan [15] and can be used in this context of the preconditioned and scaled 
memoryless BFGS algorithm. 
 
4. Acceleration of the algorithm 
It is common to see that in conjugate gradient algorithms the search directions tend to be 
poorly scaled and as a consequence the line search must perform more function evaluations in 
order to obtain a suitable steplength .kα  In order to improve the performances of the 
conjugate gradient algorithms the efforts were directed to design procedures for direction 
computation based on the second order information. For example, CONMIN [42], and 
SCALCG [3-6] take this idea of BFGS preconditioning. In this section we focus on the step 
length modification. In the context of gradient descent algorithm with backtracking the step 
length modification has been considered for the first time in [2]. 

Jorge Nocedal [28] pointed out an open problem in conjugate gradient algorithms that 
in these methods the step lengths may differ from 1 in a very unpredictable manner. They can 
be larger or smaller than 1 depending on how the problem is scaled. Numerical comparisons 
between conjugate gradient methods and the limited memory quasi Newton method, by Liu 
and Nocedal [26], show that the latter is more successful [8]. One explanation of the 
efficiency of the limited memory quasi-Newton method is given by its ability to accept unity 
step lengths along the iterations. In this section we take advantage of this behavior of 
conjugate gradient algorithms and present an acceleration scheme. Basically, this modifies the 
step length in a multiplicative manner to improve the reduction of the function values along 
the iterations [9, 10].  

Given the initial point 0x  we can compute 0 0( ),f f x=  0 ( )g f x0= ∇  and by Wolfe 
line search conditions (2.11) and (2.12) the steplength 0α  is determined. With these, the next 
iteration is computed as: 1 0 0 0x x dα= + ,  ( 0d g0= − ) where 1f  and  are immediately 
determined and the direction  can be computed as in (2.9). Therefore, at the iteration 

 we know 

1g

1d
1,2,...k = ,kx  ,kf   and  Suppose that  is a descent direction. By the 

Wolfe line search (2.11) and (2.12) we can compute 
kg .kd kd

kα  with which the following point 

k kz x dkα= +  is determined. The first Wolfe condition (2.11) shows that the steplength 
0kα >  satisfies: 

( ) ( ) ( ) .T
k k k k k k kf z f x d f x g dα ρα= + ≤ +  

With these, let us introduce the accelerated conjugate gradient algorithm by means of the 
following iterative scheme: 
                                                          1k k k k kx x dγ α+ = + ,                                                    (4.1) 
where 0kγ >  is a parameter which follows to be determined in such a manner as to improve 
the behavior of the algorithm. Now, we have: 

                  ( )22 21( ) ( ) ( ) .
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dα α α α+ = + + ∇ +           (4.2) 

On the other hand, for 0γ >  we have: 
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            ( )22 2 21( ) ( ) ( )
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dγα γα γ α γα+ = + + ∇ + .

( ),

      (4.3) 

With these we can write: 
                                         ( ) ( )k k k k k k kf x d f x dγα α+ = + +Ψ γ                                  (4.4) 
where 

2 2 21( ) ( 1) ( ) ( 1)
2

T T
k k k k kd f x d g dγ γ α γ αΨ = − ∇ + − k k k  

                                              ( ) ( )22 .k k k k k ko d o dγ α α α α+ − 2                                     (4.5) 

Let us denote: 
                                                        0,T

k k k ka g dα= ≤  
2 2 ( ) ,T

k k k k kb d f x dα= ∇  

                                                        ( )2 .k k ko dε α=  

Observe that , since  is a descent direction, and for convex functions  0ka ≤ kd 0.kb ≥
Therefore, 

                                 2 21( ) ( 1) ( 1) .
2k k k k kb a k kγ γ γ γ α ε αΨ = − + − + − ε

k

                          (4.6) 

Now, we see that ( ) ( 2 )k k k kb aγ α ε γ′Ψ = + +  and ( ) 0k mγ′Ψ = , where 

                                                           .
2

k
m

k k

a
b

γ
kα ε

= −
+

                                                   (4.7) 

Observe that  Therefore, assuming that (0) 0.k ka′Ψ = < 2k k kb 0,α ε+ >  then ( )k γΨ  is a 
convex quadratic function with minimum value in point mγ  and 

2( ( 2 ))( ) 0
2( 2 )

k k k k
k m

k k k

a b
b

α εγ
α ε

+ +
Ψ = − ≤

+
.  

Considering mγ γ=  in (4.4) and since , we see that for every k  0kb ≥
2( ( 2 ))( ) ( ) ( )

2( 2 )
k k k k

k m k k k k k k k k
k k k

a b ,f x d f x d f x d
b

α εγ α α α
α ε

+ +
+ = + − ≤ +

+
 

which is a possible improvement of the values of function f  (when ( 2 )k k k ka b 0α ε+ + ≠ ). 
Therefore, using this simple multiplicative modification of the stepsize kα  as k kγ α  where 

/( 2 )k m k k k ka bγ γ α= = − + ε  we get: 
2

1
( ( 2 ))( ) ( ) ( )

2( 2 )
T k k k k

k k k k k k k k k
k k k

a bf x f x d f x g d
b

α εγ α ρα
α ε+

+ +
= + ≤ + −

+
 

                              
2( ( 2 ))( ) ( ),

2( 2 )
k k k k

k
k k k

a b
k kf x

b
α ε ρ
α ε

⎡ ⎤+ +
= − − ≤⎢ +⎣ ⎦

a f x⎥                               (4.8) 

since  (  is a descent direction). 0,ka ≤ kd
Since ( ) (1) 0,kγΨ ≤ Ψ =  1ρ <  and 0,ka ≤  then neglecting the contribution of kε , we still 
get an improvement on the function values as 

2

1
( )( ) ( ) ( )

2
k k

k k k
k

a b .kf x f x a f x
b

ρ+

⎡ ⎤+
≤ − − ≤⎢ ⎥

⎣ ⎦
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Now, in order to get the algorithm we have to determine a way for  computation. For this, 
at point 

kb

k kz x dkα= +  we have: 

2 21( ) ( ) ( ) ( ) ,
2

T T
k k k k k k k k k k kf z f x d f x g d d f x dα α α= + = + + ∇ �  

where kx�  is a point on the line segment connecting kx  and  On the other hand, at point .z

k k kx z dα= −  we have: 

2 21( ) ( ) ( ) ( ) ,
2

T T
k k k k z k k k k kf x f z d f z g d d f x dα α α= − = − + ∇  

where  and ( )zg f= ∇ z kx  is a point on the line segment connecting kx  and  Having in 
view the local character of searching and that the distance between 

.z

kx  and is small enough, 
we can consider 

z
.k k kx x x= =�  So, adding the above equalities we get: 

                                                                                                                     (4.9) ,T
k k kb yα= − kd

zwhere   .k ky g g= −

Observe that if ka b> k , then 1.kγ >  On the other hand, if ,k ka b≤  then 1.kγ ≤  

Therefore, if ka b≠ k , then 1kγ ≠  and the steplength kα  computed by Wolfe conditions will 

be modified by its increasing or its reducing through factor .kγ  
 
5. ASCALCG Algorithm 
Having in view the above developments and the definitions of gk ,   and as well as the 
selection procedure for 

sk yk ,
θ k+1 computation, the following accelerated scaled conjugate gradient 

algorithm can be presented. 
Step 1. Initialization. Select  and the parameters x R n

0∈ , 0 1.ρ σ< ≤ <  Compute f x( )0  

and g f x0 0= ∇ ( ).  Set d g0 0= −  and α 0 01= / g .  Set k = 0.  
Step 2. Line search. Compute α k satisfying the Wolfe conditions (2.11) and (2.12). Update 
the variables x x dk k k+ = +1 kα .  Compute f x gk k( ),+1 1+ and s x xk k k= −+1 ,  
y g gk k k= −+1 .   

Step 3. Test for continuation of iterations. If this test is satisfied the iterations are stopped, 
else set k k= +1.  
Step 4. Scaling factor computation. Compute θ k using (2.18). 
Step 5. Restart direction. Compute the (restart) direction d  as in (2.9). k

Step 6. Line search. Compute the initial guess:α αk k k kd d= − −1 1 2
/

2
.  Using this 

initialization compute α k satisfying the Wolfe conditions. Update the variables 
x x dk k k+ = +1 kα .  Compute 1( k )f x +  and gk+1 .  

Step 7. Acceleration scheme. Compute  and  If b  then 
compute 

T
k ka g d= k

T
k k k kb g g d+= − 0,k ≠

k

1( ) .
/k ka bγ =  and update the variables as: 1 .k k k k kx x dγ α+ = +  Compute f xk( )+1 ,  

gk+1  and s x xk k k= −+1 ,  y g gk k k= −+1 .  Otherwise (if 0kb = ), then compute 
s x xk k k= −+1 ,  y g gk k k= −+1 .  
Step 8. Store: θ θ= k ,   and s sk= y yk= .  
Step 9. Test for continuation of iterations. If this test is satisfied the iterations are stopped, 
else set k k= +1.  
Step 10. Restart. If the Powell restart criterion (2.14) is satisfied, then go to step 4 (a restart 
step); otherwise continue with step 11 (a standard step). 
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Step 11. Standard direction. Compute the direction as in (2.17), where  and w  are 
computed as in (2.15) and (2.16) with saved values 

dk v
θ ,   and  s y.

Step 12. Line search. Compute the initial guess: α αk k k kd d= − −1 1 2
/

2
.  Using this 

initialization compute α k satisfying the Wolfe conditions. Update the variables 
x x dk k k+ = +1 kα .  Compute 1( k )f x +  and gk+1 .  

Step 13. Acceleration scheme. Compute  and b g  If  then 
compute 

T
k ka g d= k

T
k k k kg d+= − 0,kb ≠

k

1( ) .
/k ka bγ =  and update the variables as: 1 .k k k k kx x dγ α+ = +  Compute f xk( )+1 ,  

gk+1  and s x xk k k= −+1 ,  y g gk k k= −+1 .  Otherwise (if 0kb = ), then compute 
s x xk k k= −+1 ,  y g gk k k= −+1 .  
Step 14. Test for continuation of iterations. If this test is satisfied the iterations are stopped, 
else set k k= +1  and go to step 10.  

 It is well known that if f is bounded below along the direction then there exists 
a step length 

dk ,
α k satisfying the Wolfe conditions. The initial selection of the step length 

crucially affects the practical behavior of the algorithm. At every iteration k ≥ 1 the starting 

guess for the step α k in line search is computed as α k k kd d− −1 1 2
/

2
.  This procedure was 

considered for the first time by Shanno and Phua in CONMIN [42].  The same one is taken by 
Birgin and Martínez in SCG [11] and in the SCALCG algorithm [3-6]. In steps 3, 9 and 14 we 
can consider, for example, the following test: 6( ) 10 .kf x −

∞
∇ ≤  

 
Proposition 5.1. Suppose that f  is an uniformly convex function on the level set 

{ }0: ( ) ( )S x f x f x= ≤ , and  satisfies the sufficient descent condition kd 2
1 ,T

k k kg d c g< −  

where , and 1 0c > 2
2kd c g≤ 2

k , where  Then the sequence generated by 

ASCALCG converges linearly to 
2 0.c >

*,x  solution to the problem (1.1). 
 
Proof. From (4.8) we have that 1( ) (k )kf x f x+ ≤  for all  Since .k f  is bounded below, it 
follows that 

1lim( ( ) ( )) 0.k kk
f x f x +→∞

− =  

Now, since f  is uniformly convex there exist positive constants  and m ,M  such that 
 on  Suppose that 2 ( )mI f x MI≤ ∇ ≤ .S k kx d Sα+ ∈  and k m kx d Sγ α+ ∈  for all 0.α >  

We have: 
2( )( ) ( )

2
k k

k m k k k
k

a bf x d f x d
b

γ α α +
+ ≤ + − .  

But, from uniform convexity we have the following quadratic upper bound on ( )k kf x dα+ : 
221( ) ( )

2
T

k k k k k kf x d f x g d M dα α α+ ≤ + + .  

Therefore, 
2 22

1 2
1( ) ( )
2k k k k kf x d f x c g Mc gα α α+ ≤ − +  

                                                       
22

1 2
1( ) .
2k kf x c Mc gα α⎡ ⎤= + − +⎢ ⎥⎣ ⎦
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Observe that for 1 20 /( ),c Mcα≤ ≤  2 1
1 2

1
2 2

cc Mcα α α− + ≤ −

.

 which follows from the 

convexity of  2
1 2( / 2)c Mcα α− +  Using this result, since 1/ 2,ρ < we get: 

2 2
1 1

1( ) ( ) ( )
2k k k k k kf x d f x c g f x c gα α ρ+ ≤ − ≤ − α , 

From Lemma 3.1 the Wolfe line search terminates with a value 0.α ω≥ >  Therefore, for 

1 20 /(c Mc ),α≤ ≤  this provides a lower bound on the decrease in the function ,f  i.e.  

                                              
2

1( ) ( )k k k kf x d f x c gα ρ ω+ ≤ − .                                      (5.1) 
On the other hand, 

                           
42 22 2

22 1 2 1
22

22

( )( ) ( ) .
2 22

kk k
k

k k

Mc c ga b Mc c g
b MMc g

α α ω
α

−+ −
≥ ≥

c
                   (5.2) 

Considering (5.1) and (5.2) we get: 

                         
2

2 22 1
1

2

( )( ) ( )
2k m k k k k

Mc cf x d f x c g g
Mc

ωγ α ρ ω −
+ ≤ − − .                   (5.3) 

Therefore, 
2

22 1
1

2

( )( ) ( )
2k k m k k

Mc cf x f x d c g
Mc

ωγ α ρ ω
⎡ ⎤−

− + ≥ +⎢ ⎥
⎣ ⎦

.

→

 

But,  and as a consequence  goes to zero, i.e. 1( ) ( ) 0k kf x f x +− kg kx  converges to *.x  

Having in view that ( )kf x  is a nonincreasing sequence, it follows that ( )kf x  converges to 
*( ).f x  From (5.3) we see that 

                                  
2

22 1
1 1

2

( )( ) ( )
2k k

Mc cf x f x c g
Mc

ωρ ω+

⎡ ⎤−
≤ − +⎢

⎣ ⎦
.k⎥                            (5.4) 

Combining this with 2 *2 ( ( ) )k kg m f x f≥ −  and subtracting *f  from both sides of (5.4) 
we conclude: 

* *
1( ) ( ( ) )k k ,f x f c f x f+ − ≤ −  

where  
2

2 1
1

2

( )1 2 1.
2

Mc cc m c
Mc

ωρ ω
⎡ ⎤−

= − + <⎢ ⎥
⎣ ⎦

 

Therefore, ( )kf x  converges to *f  at least as fast as a geometric series with a factor that 
depends on the parameter ρ  in the first Wolfe condition and the bounds  and m .M  
Therefore, the convergence of the acceleration scheme is at least linear. ■ 
Observe that for strongly convex functions f  with f∇ Lipschitz continuous, in Lemma 3.2 
we proved that the direction  given by (2.9) is bounded as in (3.7).  Therefore the 

condition 

1kd +

2
2kd c g≤ 2

k  is satisfied with 
22

2 2 3

2 2 .L Lc
µ µ µ

⎛ ⎞
= + +⎜ ⎟
⎝ ⎠

  

 
6. Computational results and comparisons 
In this section we present the performance of a Fortran implementation of the ASCALCG – 
accelerated scaled conjugate gradient algorithm on a set of 750 unconstrained optimization 
test problems. At the same time, we compare the performance of ASCALCG with some 
conjugate gradient algorithms including SCALCG [3-6], CONMIN [42], Hestenes-Stiefel 
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(HS) [25], Polak-Ribière-Polyak (PRP) [32,33], Dai-Yuan (DY) [17], Dai-Liao (DL) [14], 
conjugate gradient with sufficient descent CGSD [7], hybrid Dai-Yuan (hDY) [17], hybrid 
Dai-Yuan zero (hDYz) [17], CG_DESCENT [22,23], and limited memory quasi-Newton  
LBFGS (m=3, m=5) by Liu and Nocedal [26] and truncated Newton TN by Nash [27]. 

All codes are written in Fortran and compiled with f77 (default compiler settings) on 
an Intel Pentium 4, 1.5Ghz. All algorithms implement the same stopping criterion 
gk ∞

≤ ε g , where . ∞ denotes the maximum absolute component of a vector and 

ε g =
−10 6 .  
The test problems are the unconstrained problems in the CUTE [12] collection, along 

with other large-scale optimization problems [1]. We selected 75 large-scale unconstrained 
optimization problems in extended or generalized form. For each function we have considered 
10 numerical experiments with number of variables n = 1000 2000 10000, , ,… .

,

 
The comparisons of algorithms are given in the following context. Let and 

be the optimal value found by ALG1 and ALG2, for problem  
respectively. We say that, in the particular problem  the performance of ALG1 was better 
than the performance of ALG2 if:  

f i
ALG1

f i
ALG2 i = 1 750, ,…

i,

                                                       f fi
ALG

i
ALG1 2 10− < −3                                                 (6.1) 

and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. 

In the first set of numerical experiments we compare ASCALCG with SCALCG. 
Basically, SCALCG [3-6] is the unaccelerated variant of ASCALCG. Figure 1 presents the 
Dolan-Moré [19] CPU performance profiles of these algorithms, i.e. we plot the fraction of 
problems for which the given method is within a factor τ  of the best time. 

 
Fig. 1. ASCALCG versus SCALCG. 
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The percentage of the test problems for which a method is the fastest is given on the left axis 
of the plot. The right side of the plot gives the percentage of the test problems that were 
successfully solved by these algorithms, respectively. When comparing ASCALCG with 
SCALCG (Figure 1), subject to the number of iterations, we see that ASCALCG was better in 
467 problems (i.e. it achieved the minimum number of iterations in 467 problems). SCALCG 
was better in 58 problems and they achieved the same number of iterations in 125 problems, 
etc. Out of 750 problems, only for 650 problems does the criterion (6.1) hold. Clearly, 
introducing the acceleration scheme represents an important ingredient in getting an efficient 
conjugate gradient algorithm. Numerical experiments proved that for the majority of 
iterations /k k ka b 1γ = < , i.e. the acceleration scheme has the propensity to reduce the values 
of the step lengths. We see that the best performance, relative to the CPU time metric, was 
obtained by ASCALCG, the top curve in Figure 1. Hence, ASCALCG appears to generate the 
best steplength, on average. 

In the second set of numerical experiments we compare ASCALCG versus to 
CONMIN developed by Shanno and Phua [42,43] (See also [40]). Shanno [40] and Perry [31] 
showed that their version of conjugate gradient algorithm can be viewed as memoryless 
BFGS method. The advantage of their approach is that their methods generate directions of 
descent. Furthermore, versions of their method are globally convergent for strictly convex 
functions and for Lipschitzian functions under the assumption that lim 0k ks→∞ = . Figure 2 
presents the Dolan-Moré CPU performance profiles of ASCALCG versus CONMIN. 

 
Fig. 2. ASCALCG versus CONMIN (Shanno-Phua) 

 
We see that ASCALCG is clearly superior. One reason is that it uses more vectors to calculate 
the direction . (ASCALCG uses 11 vectors and CONMIN only 7). Besides, ASCALCG 
uses the accelerate scheme which is a crucial ingredient on the performance of the algorithm. 

kd

In the third set of numerical experiments we compare ASCALCG to: HS 
( ), PRP ( ), DY ( ), DL (t=1) 

( ),CGSD ( ), 
1 /HS T T

k k k ky g y sβ += k k k

k )k

1 /PRP T T
k k k ky g g gβ += 1 1 /DY T T

k k k kg g y sβ + +=

1( ) /DL T T
k k k k kg y ts y sβ += − 2

1 1 1 1/ ( )( ) /(CGSD T T T T T
k k k k k k k k k kg g y s y g s g y sβ + + + += −
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hDY ( { }{ }max ,min ,hDY DY HS DY
k k k kβcβ β β= − (1 ) /(1 ), c σ σ= − + , 0.8σ = ) and hDYz 

( { }{ }max 0,min ,hDYz HS DY
k kβ β= kβ ). Figures 3-9 present the Dolan-Moré CPU performance 

profiles of these conjugate gradient algorithms. 

 
Fig. 3. ASCALCG versus Hestenes – Stiefel (HS). 

 
Fig. 4. ASCALCG versus Polak-Ribière-Polyak (PRP). 
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Fig. 5. ASCALCG versus Dai-Yuan (DY). 

 
 

 
Fig. 6. ASCALCG versus Dai-Liao (t=1) (DL). 
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Fig. 7. ASCALCG versus CG with Sufficient Descent Condition (CGSD). 

 

 
Fig. 8. ASCALCG versus Hybrid Dai-Yuan (hDY). 
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Fig. 9. ASCALCG versus Hybrid Dai-Yuan zero (hDYz). 

 
From Figures 3-9 we see that the accelerated conjugate gradient algorithm 

ASCALCG is more successful and more robust than the considered classical and hybrid 
conjugate gradient algorithms considered in this numerical study. Hence, ASCALCG appears 
to generate the best search direction and the best steplength, on average. Not only ASCALCG 
is the fastest among these algorithms, but it is also more robust in solving a large variety of 
unconstrained optimization problems.  

An attractive feature of the Hestenes and Stiefel conjugate gradient algorithm is that 
the pure conjugacy condition 1 0T

k ky d + =  always is satisfied, independent of the line search. 
However, for an exact line search the convergence properties of the HS method are similar to 
the convergence properties of the PRP method. Therefore, by Powell’s example [34], the HS 
method with exact line search may not converge for a general nonlinear function. Both the HS 
and PRP methods possess a built-in restart feature that addresses directly to the jamming 
phenomenon. When the step 1k kx x+ −  is small, the factor 1k ky g g+ k= −  in the numerator of 

kβ  tends to zero. Therefore, kβ  becomes small and the new search direction  essentially 
becomes the steepest descent direction 

1kd +

1.kg +−  Hence, both HS and PRP methods 
automatically adjust kβ  to avoid jamming. The performance of these methods is better than 
the performance of DY. On the other hand, the DY method always generates descent 
directions, and in [13] Dai established a remarkable property for the DY conjugate gradient 
algorithm, relating the descent directions to the sufficient descent condition. It is shown that if 
there exist constants 1λ  and 2λ  such that 1 kg 2λ λ≤ ≤ for all k , then for any p ∈ ( , )0 1 , 

there exists a constant c such that the sufficient descent condition > 0 g d c gi
T

i ≤ −
2

i holds 
for at least ⎣ ⎦pk  indices where i k∈ [ , ],0 ⎣ ⎦j  denotes the largest integer  However, the 
DY method does not satisfy the conjugacy condition. The hDY method reduces to the 
Fletcher and Reeves method [16] if 

≤ j.

f  is a strictly convex quadratic function and the line 

 18



search is exact. For a standard Wolfe line search, Dai and Yuan [17] proved that it produces 
descent directions at every iteration and they established the global convergence of their 
hybrid conjugate gradient algorithm when the Lipschitz assumption holds. 

In the fourth set of numerical experiments we compare ASCALCG to 
CG_DESCENT with Wolfe line search. In Figure 10 the Dolan-Moré CPU performance 
profiles of ASCALCG and CG_DESCENT are presented.  

 
Fig. 10. ASCALCG versus CG_DESCENT (Wolfe conditions). 

 
The top solid curve in Figure 10 corresponds to ASCALCG. Observe that subject to the CPU 
time metric, ASCALCG is more robust. Also, it is interesting to observe in Figure 10 that for 

1τ = , relative to the CPU time metric, CG_DESCENT is slighter better, ASCALCG is at 
best competitive with CG_DESCENT. However, for 1τ > , ASCALCG turns out to be faster 
and more robust than CG_DESCENT. Presently CG_DESCENT is the practical conjugate 
gradient algorithm with more reputation. In this computational scheme the direction  is 
generated by the rule: 

1kd +

                            1 1 ,HZ
k k k kd g dβ+ += − +

2

1
1 2 .

T

kHZ
k k k kT T

k k k k

y
y d g

y d y d
β +

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

              (6.2) 

This scheme is obtained by deleting a term from the search direction for the memoryless 
quasi-Newton scheme of Perry [31] and Shanno [40]. Observe that CG_DESCENT is a 
modification of HS and was devised in order to ensure sufficient descent, independent of the 
accuracy of the line search. The ASCALCG and CG_DESCENT algorithms (and codes) 
differ in many respects. Although the update formula (2.9) is more complicated than (6.2), 
this computational scheme proved to be efficient and more robust in numerical experiments. 
However, since each of these codes are different in the number of parameters which can be 
modified by the user to establish a context of optimization (CG_DESCENT has 26 parameters 
while ASCALCG has only 10 parameters) and in the amount of linear algebra required in 
each iteration, it is quite clear that different codes will be superior in different problem sets.  
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In the fifth set of numerical experiments in Figures 11 and 12 the Dolan-Moré 
performance profiles of ASCALCG versus LBFGS (m=3) and LBFGS (m=5) are presented. 

 
Fig. 11. ASCALCG versus LBFGS (m=3). 

 

 
Fig. 12. ASCALCG versus LBFGS (m=5). 
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Finally, Figures 13 illustrates the performance profiles of ASCALCG versus the truncated 
Newton TN algorithm by Nash [27]. 

 
Fig. 13. ASCALCG versus truncated Newton TN (Nash). 

 
From Figures 11 and 12 again we see that the best performance is obtained by ASCALCG. 
LBFGS is a professional implementation of the limited memory quasi-Newton method [26], 
where  is the number of the stored pairs ( , . Even that LBFGS admits unit step 
lengths for the most of the iterations, thus requiring only few function and gradient 
evaluations for steplength determination, ASCALCG combines in a more adequate way the 
direction determination and step length to be the top performer. 

m )k ks y

It is interesting to observe in Figure 13 that TN by Nash [27] is completely outperformed by 
ASCALCG, at least for this set of unconstrained optimization test functions. 
 
7. Conclusion 
We have presented a new conjugate gradient algorithm which mainly is an acceleration of 
SCALCG – scaled BFGS preconditioned conjugate gradient algorithm [3-6]. The acceleration 
scheme is simple and proved to be robust in numerical experiments. In very mild conditions 
we proved that the algorithm is globally convergent. For uniformly convex functions the 
convergence of the accelerated algorithm is still linear, but the reduction in the function 
values is significantly improved. For a set of 750 test unconstrained optimization problems 
(some from CUTE library) with dimensions ranging between 1000 and 10000 variables, the 
CPU time performance profile for ASCALCG was higher than those of SCALCG, CONMIN, 
HS, PRP, DY, DL (t=1), CGSD, hDY, hDYz, CG_DESCENT, LBFGS and TN. 
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