

Acceleration of conjugate gradient algorithms
for unconstrained optimization

Neculai Andrei
Research Institute for Informatics,

Center for Advanced Modeling and Optimization,
8-10, Averescu Avenue, Bucharest 1, Romania,

E-mail: nandrei@ici.ro

Abstract. Conjugate gradient methods are important for large-scale unconstrained
optimization. This paper proposes an acceleration of these methods using a modification of
steplength. The idea is to modify in a multiplicative manner the steplength kα , computed

by Wolfe line search conditions, by means of a positive parameter kη , in such a way to
improve the behavior of the classical conjugate gradient algorithms. It is shown that for
uniformly convex functions the convergence of the accelerated algorithm is still linear, but
the reduction in function values is significantly improved. Numerical comparisons with
some conjugate gradient algorithms using a set of 750 unconstrained optimization
problems, some of them from the CUTE library, show that the accelerated computational
scheme outperform the corresponding conjugate gradient algorithms.

Keywords: Acceleration methods, conjugate gradient, Wolfe line search, line search gradient
methods, unconstrained optimization
AMS subject classifications: 49M20, 65K05, 90C30

1. Introduction
For solving the unconstrained optimization problems
 min ()

nx R
f x

∈
, (1.1)

where : nf R → R is a continuously differentiable function, bounded from below, one of the
most elegant and probably the simplest methods are the conjugate gradient methods. For
solving this problem, starting from an initial guess 0

nx R∈ , a nonlinear conjugate gradient

method, generates a sequence { }kx as:

 1k k k kx x dα+ = + , (1.2)
where 0kα > is obtained by line search, and the directions are generated as: kd
 1 1k k k kdd g β+ += − + 0 0g, d = − . (1.3)
In (1.3) kβ is known as the conjugate gradient parameter, 1k ks x x+ k= − and .
The search direction , assumed to be a descent one, plays the main role in these methods.
On the other hand, the stepsize

()k kg f x= ∇

kd

kα guarantees the global convergence in some cases and is
crucial in efficiency. Plenty of conjugate gradient methods are known, and an excellent
survey of these methods, with a special attention on their global convergence, is given by
Hager and Zhang [17]. Different conjugate gradient algorithms correspond to different
choices for the scalar parameter .kβ Line search in the conjugate gradient algorithms often is
based on the standard Wolfe conditions. A numerical comparison of conjugate gradient
algorithms (1.2) and (1.3) with Wolfe line search, for different formulae of parameter kβ
computation, including the Dolan and Moré performance profile, is given in [2].

It is common to see that in conjugate gradient algorithms the search directions tend to
be poorly scaled and as a consequence the line search must perform more function evaluations
in order to obtain a suitable steplength .kα In conjugate gradient methods the steplengths
differ from 1 in a very unpredictable manner. They can be larger or smaller than 1 depending
on how the problem is scaled. This is in very sharp contrast to the Newton and quasi-Newton
methods, including the limited memory methods, which accept the unit steplength most of the
time along the iterations, and therefore usually they require only few function evaluations per
search direction. Numerical comparisons between conjugate gradient methods and limited
memory quasi Newton method by Liu and Nocedal [19] show that the later are more
successful [2]. One explanation of efficiency of this limited memory quasi-Newton method is
given by its ability to accept unity steplengths along the iterations.

The purpose of this paper is to present an acceleration of the conjugate gradient
algorithms. The idea is to modify the steplength kα (computed by means of Wolfe line search
conditions) by means of a positive parameter kη , in a multiplicative manner, in such a way to
improve the behavior of these algorithms. We show that the resulting algorithm is linear
convergent, but the reduction in function value is significantly improved. An acceleration of
gradient descent algorithm with backtracking for unconstrained optimization is given in [1].

The structure of the paper is as follows. Section 2 is presenting the line search
methods of Goldstein [15] and Wolfe [26], and proves that these computational schemes
generate steplengths bounded away from zero. Section 3 presents the general accelerated
conjugate gradient algorithm. This algorithm can be particularized using different formula of

kβ computation. For uniformly convex functions we prove that if the direction satisfied the
sufficient descent condition and it is bounded, then the convergence of the accelerated
algorithm is at least linear. Some numerical results and comparisons including the Dolan and
Moré [13] performance profiles are given in section 4.

2. Line search
For implementing the algorithm (1.2) one of the crucial elements is the stepsize computation.
Many procedures have been suggested. In the exact line search the step kα is selected as:

0
arg min (),k k kf x d

α
α α

>
= + (2.1)

where is a descent direction. In some very special cases (quadratic problems, for example)
it is possible to compute the step

kd

kα analytically, but for the vast majority of cases it is

computed to approximately minimize f along the ray { }: 0k kx dα α+ ≥ , or at least to

reduce f sufficiently. In practice the most used are the inexact procedures. A lot of inexact
line search procedures have been proposed: Goldstein [15], Armijo [7], Wolfe [26], Powell
[24], Dennis and Schnabel [12], Fletcher [14], Potra and Shi [23], Lemaréchal [18], Moré and
Thuente [20], Hager and Zhang [16], and many others. The line search in conjugate gradient
algorithms is often based either on the Goldstein’s conditions [15]:
 (

where
1 2() ()T T

k k k k k k k k k kg d f x d f x g dρ α α ρ α≤ + − ≤ , 2.2)

 1
2 120 1ρ ρ< < < < and 0,kα > or the Wolfe conditions [26]:

 () () ,T
k k k k k k kf x α ρ+ (2.3)

d f x g dα− ≤

 (2.4) 1 ,T T
k k k kg d g dσ+ ≥

where 0 1/ 2 1.ρ σ< < ≤ < proposition shows that The following α satisfying the
Goldste arch conditions is bounded away from zero (see also [16]).

in or the Wolfe line se

roposition 2.1. Assume that is a descent direction and P kd f∇ satisfies the Lipschitz

condition () ()k kf x f x L x x∇ −∇ ≤ − for all x on the line segment connecting kx and

 2

1,kx + where L is a positive constant. If the line search satisfies the Goldstein conditions (2.2),
then

 1(1) .k k
k

g dρα −
≥ (2.5) 2

T

k
L d

If the line search satisfies the Wolfe conditions (2.3) and (2.4), then

 2k
k

L d
(1) .

T
k kg dσα −

≥ (2.6)

e satisfied, then usin

we get:
)g d f x d f xρ α α≤ + −

 k k k

Proof. If the Goldstein conditions ar g the mean value theorem from (2.2)

 1 k k k k k k k

 T

() (T

 () kf x dα ξ= ∇ + d 22T ,k k k k kg d L dα α≤ +

where (0,).kξ α∈ Fro lym this inequality we get immediate (2.5).

 from both sides of (2.4) and using the Lipschitz condition

Now, to prove (2.6) subtract T
kg dk

we get:
2

1(() .T
k k k k k kd g g d L dσ α+− ≤ − ≤

But, kd is a descent direction

1) T
kg

and since 1σ < , we get immediately (2.6). ■

Therefore α satisfying the Goldstein or the Wolfe line search conditions is bo
from

unded away
zero, i.e. there exists a positive constant γ , such that .α γ≥

3. Accelerated conjugate gradient algorithms
In this section let us present the accelerated conjugate gr t adien algorithms for solving the

hat the function unconstrained optimization problem (1.1). Suppose t f is twice continuously
differentiable. At the iteration 1,2,...k = we know ,kx ,kf kg and

1 1,k k k kd g dβ − −= − + where 1kβ − is computed according to the conjugate gradient algorithm
we consider to accelerate. Suppose that cent direction. For exam i-Yuan

gorithm 1 1 / ,T T
k k k k kg g y d+ += with a standard Wolfe line search [11]

and the scaled memoryless BFGS preconditioned conjugate gradient SCALCG algorithm by
Andrei [3-5] with Wolfe line se descent directions. Also, the directions
generated by the CG_DESCEN nt algorithm by Hager and Zhang [16]
satisfies the sufficient descent conditions, independent by the accuracy of line search.
Now, by the Wolfe line search (2.3) and (2.4) we can compute k

kd is a des ple, the Da

conjugate gradient al , β

arch always generate
T conjugate gradie

α with which the following
point k k kz x dα= + is determined. The first Wolfe condition (2.3) shows that the steplength

0,kα > satisfies:

() () () .T
k k k k k k kf z f x d f x g dα ρα= + ≤ +

With these, let us introduce the accelerated conjugate gradient algorithm by means of the
following iterative scheme:
 1k k k k kx x dη α= ++ , (3.1)
where 0k

η > is a parameter which follows to be determined in such a manner as to improve

the behavior of the algorithm. Now, we have:

()22 21() () () .
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dα α α α+ = + + ∇ +

 3

On the and, for 0other h η > we have:

()22 2 21() () Tf x d f x g dηα ηα+ = + + () .
2

T
k k k k k k k k k k k k kd f x d o dη α ηα∇ +

With these we can write:
 (),k k k kf f x d k k kx d () ()ηα+ α η= + +Ψ (3.2)

where
2 2 21() (1) () (1)

2
T T

k η ηΨ = k k k k k k kd f x d g dα η α− ∇ + −

 () ()22 .k k k k k ko d o dη α α α α+ − 2

 (3.3)

Let us denote:
0,T

k k k ka g dα= ≤
2 2 () ,T

k k k k kb d f x dα= ∇

()2 .k k ko dε α=

Observe that 0ka ≤ since kd is a d nescent direction a d for convex functions
Therefore,

 0.kb ≥

2 21() (
2k k1) (1) .k k k k kb aη ηΨ = η η α ε α ε− + − + − (3.4)

b

Now, we see that () 2)k k k k ka(η α ε η′Ψ = + + and () 0k mη′Ψ = where

 .
2

k
m

k k

a
b

η
kα ε

= −
+

 (3.5)

ka ≤ Therefore, assu t ,bObserve that k′Ψ = ming tha k(0) 0. 2 0k k ()k ηΨα ε+ > then is a
with minimum value in point mηconvex quadratic function and

2))kε((2() 0.k k k
k m

a b αη + +
Ψ = − ≤

2(2)k k kb α ε+
Considering mη η= in (3.2) and since 0kb ≥ , we see tha for evt ery k

2((2))() () ()
2(2)

k k k k
k m k k k k k k k k

k k k

a b ,f x d f x d f x d
b

α εη α α α
α ε

+ +
+ = + − ≤ +

+

which is a po mprovement of the values of function ssible i f (when (2)k k k ka b 0α ε+ + ≠).
Therefore, using this simple multiplicative modification of the stepsize kα as k kη α where

/(2)k m k k k ka bη η α= = − + ε we get:
2

1
((() () () T k

k k k k k k k k k
a bf x f x d f x g dη α ρα+

+
= + ≤ +

2))k k kα ε+
−

2(2)k k kb α ε+
2((ka b 2))() (),

2(2)
k k k

k k k
k k k

f x a f x
b

α ε ρ
α ε

⎤+
= − − ≤⎥+⎣ ⎦

 (3.6)

since is a descent direction).
Now, neglecting the contribution of

⎡ +
⎢

0,ka ≤ (kd

kε in (3.6), we still get an improvement on the function

values as
2

1() ()k k
() ().

2
k k

k k
k

a bf x f x+ ≤ − ⎢ a f x
b

ρ
⎡ ⎤+

− ≤⎥
⎣ ⎦

 (3.7)

 4

In order to get the algorithm we hav to determine a way for kb computation. For this, at
point z

e

kx dk k= α+ we have:

2 21() () ,k k() ()
2

T T
k k k k k k k k kf z x d= � f x d f x g d d fα α α+ = + + ∇

where kx� is a point on the line segment connecting kx and .z n the other hand, at point

k

O

k kx z dα= ave: − we h

2 21() () () () ,
2

T T
k k k k z k k k k kf x f z d f z g d d f x dα α α= − = − + ∇

where ()f z= ∇ and zg kx is a point on the line seg ent con ecting km n x and .z Having in
character oview the local f searching and that the distance between kx and z is small enough,

we can consider .k k kx x x= =� So, adding the above equalities we get:

 b y dα= − (3.8) ,T
k k k k

where .k k z Observe that the computation of kb needs an additional evaluation of
the gradient in point .z Therefore, neglecting the contribution of k

y g g= −
ε and considering in our

algorithm /k m ka bkη η= the following algorithm can be presented= − , .

ated conjuga

Acceler te gradient algorithm (ACG)
Step 1. Select a starting point 0x dom f∈ and compute: 0 0()f f x= and 0 0().g f x= ∇

0.k =
tep 2. stopping the iterations. If the test is satis

Set 0 and
Test a criterion for fied, then stop;

0d g= −
S

otherwise continue with step 3.
arch conditioStep 3. Using the Wolfe line se ns determine the steplength .kα

Com k kxStep 4. pute: dkz α= + ()zg f z= ∇ and z, .k ky g g= −

Step 5. Compute: T
k k k ka g dα= , and T

k k k kb y dα= − .
If 0,kb ≠ then compute Step 6. a b/k k kη = − and update the variables as

1k k k k kx x dη α= + , otherwise update the variables as k k k+ 1 kx x dα+ = + . Compute

1kf + and g ky g1.k+ Compute g+1k k= − k and 1 .k ks x x+= −

Step 7. Determine kβ according to the conjugate gradient in use.
mpute thStep 8. Co e search direction as: 1 1k k k kdd g β+ += −

Step 9. Restart criterion. If

+ .
2

1 0.2T
kg g g+ > then set d1k k+ g1 1k k+ += − .

Step 10. Consider ■

ju n be immediately particularized from ACG by
skipping steps 4 and 5 and by modifying step 6 where the variables are updated. In step 7,

he parameter

1+ and go to step 2. k k=

The con gate gradient algorithm (CG) ca

where t conjugate gradient kβ is computed we can consider the formula
d conjug we have selected for acceleration. For

g g y dβ =

β

correspon ing to the ate gradient algorithm
example, we can consider the Dai and Yuan [11] 1 1 /k k k k k+ + , the BFGS
preconditioned conjugate gradient SCALCG [3-5], Polak-Ribière-Polyak [21, 22]

1 /T T
k k k k ky g g gβ += , Dai and Liao [10] 1() /T T

k k k k kg y ts y d+= − (0)t > , or any other
conjugate gradient we want to accelerate.
It is well known that if

T T

k

f is bounded along the direction then there a stepsize kkd exists α
satisfying the Wolfe line search conditions (2.3) and (2.4). In our algorithm when the Powell

 5

restart condition is satisfied, then we restart the algorithm with the negative gradient 1.kg +−
ssumptions, the Wolfe rt criterion are

sufficient to prove the global convergence o
Under reasonable a conditions and the Powell resta

f the algorithm.
The first trial of the step length crucially affects the practical behavior of the algorithm. At
every iteration 1k ≥ the starting guess for the step kα in the line search is computed as

1 1 / .k k kd dα − − This selection was used for the first time by Shanno and Phua in CO
[25]. It is also considered in SCALCG [3-5].

Observe that if

NMIN

k k ka b> , then 1.η > In this case k k kη α α> and it is also possible

that 1k kη α ≤ o 1.kr k η α > Hence, the steplength k kη α can be greater than 1. On the other

hand, if , then 1.kk ka b≤ η ≤ In this case ,k k kη α α≤ so the steplength k kη α is reduced.

Therefore, if k ka b≠ , then 1kη ≠ and the steplength kα computed by ons will

be mod

Wolfe conditi

ified, by its increasing or its reducing through factor .kη

 ctingNegle kε in (3.4), we see that (1) 0kΨ = and if / 2,k ka b≤ then

(0) / 2 0k kΨ = ≤ 1.kka b− − and η < Therefore, for any [0,1]η∈ , 0.()k ηΨ ≤ As a
consequence f (0,or any 1), η∈ ollows that () ().k k k kf x d f xη it f α+ < In this case, for any

[0,1]η∈ , .k k kη α α≤ However, in our algorithm we selected k mη η= as the point achieving
the minimum value of ().k ηΨ

formly convex functions, we prove the linear convergence of the
acceleration scheme. hat a function

In the following, for uni

Recall t f is uniformly convex on the level set

{ }0: () ()S x x f x= ≤ hat f if there is a positive constant m such t

21() () () ()
2

Tf y f x f x y x m y x≥ +∇ − + −

for all , .x y S∈ For uniformly convex functions it is easy to prove that

()2 *() 2 () ()f x m f x x∇ ≥ − , f

for all ,x S∈ where *x is a local solution of (1.1) [9].

Proposition 3.1. Suppose that f is a uniformly convex function on the level set , and

satisfies the sufficient descent condition

S kd
2

1 ,T
k k kg d c g< − where , and 1 0c >

2 2
2k kd c≤ , where 2 0.c > Then the sequence geg nerated by ACG converges linearly to

*,x solution to problem (1.1).

Proof. From (3.6) we have that 1() ()k kf x f x+ ≤ for all Since .k f is bound elow, it

lim(() ()) 0.f x f x

ed b
follows that

k kk +→∞ 1− =

, since f is uniformly convex there exists positive constants and m ,M such that
ose that 2

Now
()mI f x MI≤ ∇ ≤ on .S Supp kkx d Sα+ ∈ an k m kd x d Sη α+ ∈ for all 0.α >

We have:
2()() ()

2
.k

k m k k k
k

a bf x d f x d
b

η α α +
+ ≤ + − k

 6

()k kf x dα+ : But, from uniform convexity we have the following quadratic upper bou d on n
221() (f x d f x Mα+ ≤) .

2
T

k k k k k kg d dα α+ +

Therefore,
2 22

1 2
1() ()
2k k k k kf x d f x c g Mc gα α α+ ≤ − +

22

1 2
1() .
2k kf x c Mc gα α⎡ ⎤= + − +⎢ ⎥⎣ ⎦

Observe that for c Mc1 20 /(),α≤ ≤ 2 1
1 2

1
2 2

cc Mcα α α− + ≤ − which follows from the

convexity of . 2
1 2(/ 2)c Mcα α− + Using this result we get:

2 2
1 1

1()k k () ()
2k k k kf x d f gα+ ≤ x c g f x cα ρ α− ≤ − ,

since 1/ 2.ρ <
From propo with a value 0.sition 2.1 the Wolfe line search terminates α γ≥ >

Therefore, for 1 20 /(c Mc),α≤ ≤ this provides a lower bound on the decrease in the function
,f i.e.

2

1() ()k k k kf x d f x c gα ρ γ+ ≤ − . (3.9)
 other hand,

On the

42 22 2

22 1 2 1
22

()() () .k
k

Mc c ga b Mc c g
c

α α γ
α

−+ −
≥ (3.10)

22
2 22

k k

k k
b MMc g

≥

Considering (3.9) and (3.10) we get:

2)c2 22 1

1
2

() () .
2k m k k k k

Mcx d f x c g g
Mc

γη α ρ γ −
+ ≤ − − (3.11) (f

Therefore
2

22 1
1

2

()() () .
2k k mf x f x η α− + k k

Mc cd c g
Mc

γρ γ
⎡ ⎤−

≥ +⎢ ⎥
⎣ ⎦

) 0kx + → and as a consequence goes to zero, i.e. But, () (kf x f− 1 kg kx converges to *.x

()kf x is a nonincreasing sequence, it follows that ()kf x converges to Having in view that
*().f x From (3.11) we see that

2

22 1
1 1

2Mc⎣ ⎦

Combining this with

()() () .
2k k k

Mc cf x f x c gγρ γ+

⎡ ⎤−
≤ − +⎢ ⎥ (3.12)

2 *2 (() ())km f x f x≥ − and subtracting *

kg f from both sides of
we conclude:

(3.12)

,* *
1() () (() ())k kf x f x c f x f x+ − ≤ −

where
2

2 1
1

2

1.
2Mc

<⎥
⎦

Therefore, ()k

()1 2 Mc cc m c γρ γ
⎡ ⎤−

= − +⎢
⎣

f x converges to *()f x at least as fast as a geometric series with a factor that
depends on eter the param ρ in the first Wolfe condition and the ounds and m ,Mb i.e. the

ence is at least linear. ■ converg

 7

4. Numerical results and comparisons
In this section we report some numerical results obtained with a Fortran implementation of
conjugate gradient algorithms and their accelerated variants. All codes are written in Fortran

d wit ompil

eriments with the number of variables

and compile h f77 (default c er settings) on a Workstation Intel Pentium 4 with 1.8
GHz. We selected a number of 75 large-scale unconstrained optimization test functions in
generalized or extended form [6] (some from CUTE library [8]). For each test function we
have considered ten numerical exp

1000,2000,...,10000.n = In the following we present the numerical performance of CG and
ACG codes corresponding to different formula for kβ computation. All algorithms
implement the Wolfe line search conditions with 0.0001ρ = and 0.9σ = , and the same

stopping criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute component of a vector.

 The comparisons of algorithms are given in the following context. Let f i
ALG1 and

lue found by ALG1 and ALG2, for problem i = 1 750, , ,…
respectively. We say that, in the particular problem i, the performance of ALG1 was better
than the performance of ALG2 if:

f i
ALG2 be the opti

mal va

f fi
AL

i
ALG2 310− <G1 −

evaluat

where

 (4.1)
and the number of iterations, or the number of function-gradient evaluations, or the CPU time
of ALG1 was less than the number of iterations, or the number of function-gradient

ions, or the CPU time corresponding to ALG2, respectively.
In the first set of computational experiments we accelerate the Dai and Yuan (DY)

conjugate gradient algorithm [11], kβ is computed as k Recall
ai-Yuan algorithm are

1 1 / .T T
k k k kg g y dβ + +=

that the directions generated by the D descent. Figure 4.1 illustrates the
Dolan and Moré [13] performance profiles of DY and accelerated DY.

Fig. 4.1. Performance profiles DY versus accelerated DY. CPU time metric.

 8

For each algorithm, we plot the fraction of problems for which the algorithm is within a factor
τ of the best cpu time. Relative to performance profiles, the top curve corresponds to the
method that solved the most problems in a time that was within a factor τ of the best time.
When comparing accelerated Dai-Yuan (DYACC) with Dai-Yuan (DY) (see Figure 4.1),
subject to the number of iterations, we see that DYACC
achieved the minimum number of iterations in 552 problems). DY was better in 41 problems
and they achieved the same number of iterations in 99 problems, etc. Out of 750 problems,
only for 692 problems does the criterion (4.1) hold. Observe that, subject to the number of
function and its gradient evaluations, DY was better in 400 problems. On the other hand,
DYACC was better only in 271 problems. This is because the accelerat sion of DY at
every iteration needs an extra gradient evaluation (only when

was better in 552 problems (i.e. it

ed ver
0kb ≠).

 In the second set of numerical experiments we consider the acceleration of scaled
memoryless BFGS preconditioned SCALCG conjugate gradient algorithm by Andrei [3-5].
Again this algorithm with Wolfe line search generates descent directions. Figure 4.2 presents
the performance profiles proposed by Dolan and Moré for the SCALCG and accelerated
SCALCG.

Fig. 4.2. Performance profiles SCALCG versus accelerated SCALCG. CPU time metric.

 In the third set of numerical experiments we accelerate the Polak-Ribière-Polyak
(PRP) conjugate gradient algorithm [21, 22]. In this algorithm the search direction is
computed as in (1.3), where k The convergence of the PRP method for
general nonlinear functions is uncertain. Even for strongly convex functions, the PRP method
may not generate descent directions with inexact line search. However, the PRP method has a
built-in restart feature that addresses to jamming. Figure 4.3 presents the Dolan and Moré
performance profiles for the PRP and accelerated PRP. The accelerated version of PRP
proved to be more efficient than the classical PRP, at least for this set of 622 unconstrained
optimization problems.

1 / .T T
k k k ky g g gβ +=

 9

Fig. 4.3. Performance profiles PRP versus accelerated PRP. CPU time metric.

[10]

where k k k k k k+

Finally, we accelerate the Dai and Liao (DL) conjugate gradient algorithm
T Tg y ts y dβ = − , (1).t

,

1() / = Figure 4.4 presents the Dolan and Moré
performance profiles of DL and accelerated DL.

Fig. 4.4. Performance profiles DL versus accelerated DL. CPU time metric.

The left side of these Figures (small values of)τ gives the percentage of the test problems,
out of 750, for which an algorithm is more succe l; the right side (large values of ssfu)τ gives

 10

the percentage of the test problems that were successfully solved by each of the algorithms.
Mainly, the right side represents a measure of an algorithm’s robustness. Observe that the
accelerated variants outperform the corresponding conjugate gradient algorithms in the vast
majority of problems, and the differences are substantial. Besides, the accelerated variants are
more robust than the corresponding original conjugate gradient algorithms we considered
here.

Since both the conjugate gradient algorithms DY, SCALCG, PRP and DL(t=1) and
their accelerated variants use the same search direction (as dictated by the procedure for

kβ selection), these algorithms only differ in their choice of the steplength. From the Tables
in the above Figures it appears that the accelerated variants generate a better steplength, on
average. Since the accelerated conjugate gradient algorithms performs well in the cpu time
metric for all values of τ , we conclude that the overall poor performance of the original
conjugate gradient algorithms is connected with the poor performance of the line search. In
particular, to ensure descent the line search in conjugate gradient algorithms must achieve
sufficient accuracy. In accelerated variants this is compensated by this simple modification of
the steplength through .kη
It is worth seeing that from the first Wolfe condition (2.3) we have
 .k () () T

k k k k k kf x d f x g dα ρα+ ≤ + (4.2)

Observe that along the iterations in (4.2) is of a small order of magnitude, its
contribution to reduce the function values along the direction being almost insignificant.

ince the c

T
k kg d

k

onjugate gradient method uses only the linear approximation of
d

f tS o find the
earch

tion of

s direction, ignoring completely the second order term, we expect that the direction
generated will not be very effective, if the second order term contributes significantly to the
descrip ,f even for relatively small values of .kα On the other hand, for accelerated
conjugate gradient this is compensated by modifying the steplength in order to destroy the
premature orthogonality of search directions to gradient. Besides,

2()() ()

2
k k

k m k k k k
k

a bf x d f x a
b

η α ρ +
+ ≤ + − . (4.3)

Although the contribution of kaρ to reducing the function values is small, the term

0 gives the possibility of a substantial progress towards minimum.
n (4.3) is independent of parameter

2() /(2)k k ka b b+ ≥
Observe that the last term i ρ from the Wolfe conditions.
However, the price we must pay for this acceleration sche of the conjugate gradient
algorithms is an additional evaluation at each iteration of the gradient of the function

me
.f

Observe that subject to the number of function and its gradient evaluations the classical
conjugate gradient algorithms are better. However, the accelerated conjugate gradient
variants, by modifying the steplength in such a manner to emphasize the reduction of function
values, determine a better trajectory of optimization.

5. Conclusions
Intensive numerical experiments with different variants of conjugate gradient algorithms
proved that the step length may differ from 1 up to two orders of magnitude, being larger or
smaller than 1, depending on how the problem is scaled. Moreover, the sizes of the step
length tend to vary in a totally unpredictable way. This is in sharp contrast with the Newton
and quasi-Newton methods, as well as with the limited memory quasi-Newton methods,
which usually admit the unit step length for most of the iterations, thus requiring only very
few function fficiency of

n by its ability to accept unity steplengths
 evaluations for step length determination. One explanation of the e

the limited memory quasi-Newton method is give
along the iterations.

 11

In this paper we take the advantage of this behavior of conjugate gradient algorithms and
suggest an acceleration procedure of conjugate gradient algorithms by modifying the
steplength kα (computed by means of the Wolfe line search conditions) through a positive
parameter kη , in a multiplicative manner, like 1k k k k kx x dη α+ = + , in such a way as to
improve the reduction of the function’s values along the iterations. It is shown that for
uniform

DY

 njugate gradient algorithms for unconstrained optimization.
-416.

ryless BFGS preconditioned conju
ization Metho

ce

 university Press, 2004.
10. Dai, Y.H., and Liao, L.Z., New conjugacy conditions and related nonlinear conjugate

 Appl. Math. Optim., 43 (2001) pp. 87-101.
11. Dai, Y.H., and Yuan, Y., A nonlinear conjugate gradient method with a strong global

12. Dennis, J.E. and S
Nonlinear Equati

r

., A view of line search. In Optimization and Optimal Control, Edited by

(1969), pp.94-112.

ly convex functions the acceleration scheme is linear convergent, but the reduction in
function value is significantly improved. Numerical experiments proved that the accelerated

, SCALCG, PRP and DL outperform the corresponding conjugate gradient algorithms on a
set of 750 large-scale unconstrained optimization problems.

References
1. Andrei, N., An acceleration of gradient descent algorithm with backtracking for

unconstrained optimization, Numerical Algorithms, 42 (2006) pp. 63-73.
2. Andrei, N., Numerical comparison of conjugate gradient algorithms for unconstrained

optimization. Studies in Informatics and Control, 16 (2007) pp. 333-352.
3. Andrei, N., Scaled co

Computational Optimization and Applications, 38 (2007) 401
4. Andrei, N., Scaled memo gate gradient algorithm for

unconstrained optimization. Optim ds and Software, 22 (2007) 561-571.
5. Andrei, N., A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained

optimization. Applied Mathematics Letters, 20 (2007) 645-650.
6. Andrei, N., An unconstrained optimization test functions collection. Advan d Modeling

and Optimization. An Electronic International Journal, 10 (2008) 147-161.
7. Armijo, L., Minimization of functions having Lipschitz continuous first partial derivatives,

Pac. J. Math., 6 (1966) pp.1-3.
8. Bongartz, I., Conn, A.R., Gould, N.I.M., and Toint, P.L., CUTE: constrained and

unconstrained testing environments, ACM Trans. Math. Software, 21 (1995) pp.123-160.
9. Boyd, S., and Vandenberghe, L., Convex optimization. Cambridge

gradient methods.

convergence property, SIAM J. Optim., 10 (1999) pp. 177-182.
chnabel, R.B., Numerical Methods for Unconstrained Optimization and

ons, Prentice-Hall, Englewoods Cliffs, New Jersey, 1983.
13. Dolan, E., and Moré, J.J., Benchmarking optimization softwa e with performance profiles,

Math. Programming, 91 (2002) pp.201-213.
14. Fletcher, R., Practical Methods of Optimization, Wiley, New York, 1987.
15. Goldstein, A.A., On steepest descent, SIAM J. Control, 3 (1965) pp.147-151.
16. Hager, W.W. and Zhang, H., A new conjugate gradient method with guaranteed descent

and an efficient line search, SIAM Journal on Optimization, 16 (2005) pp. 170-192.
17. Hager, W.W. and Zhang, H., A survey of nonlinear conjugate gradient methods. Pacific

journal of Optimization, 2 (2006), pp.35-58.
18. Lemaréchal, C

Auslander, A., Oettli, W., and Stoer, J., Springer, Berlin, pp.59-78, 1981.
19. Liu, D.C. and Nocedal, J., On the limited memory BFGS method for large scale

optimization. Mathematical Programming, 45 (1989), pp.503-528.
20. Moré, J.J. and Thuente, D.J., On line search algorithms with guaranteed sufficient

decrease, Mathematics and Computer Science Division Preprint MCS-P153-0590,
Argonne National Laboratory, Argonne, 1990.

21. Polak, E., and Ribière, G., Note sur la convergence de directions conjuguée, Rev.
Francaise Informat Recherche Operationelle, 3e Année 16 (1969), pp.35-43.

22. Polyak, B.T., The conjugate gradient method in extreme problems. USSR Comp. Math.
Math. Phys., 9

 12

23. Potra, F.A. and Shi, Y., Efficient line search algorithm for unconstrained optimization,
Journal of Optimization Theory and Applications, 85 (1995) pp.677-704.

24. Powell, .J.D., Some global convergence properties of a variable-metric algorithm for
minimization without exact searches, SIAM-AM hia, 9 (1976) pp.53-72.

25. Shanno .F. and Phua, K.H., Algorithm 500, M onstrained multivariate
functions, ACM Trans. on Math. Soft., 2 (1976) pp.87-94.

26. Wolfe, P., Convergence conditions for ascent methods, SIAM Rev., 11 (1968) pp.226-
235.

 M
S Proc., Philadelp

, D inimization of unc

March 16, 2009
Published in:

---- --------------------
Applied Mathematics and Computation

--
Initial date submitted: April 18, 2008
First review: November 2, 2008
Accepted: March 10, 2009

 13

