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Abstract. Conjugate gradient methods are important for large-scale unconstrained 
optimization. This paper proposes an acceleration of these methods using a modification of 
steplength. The idea is to modify in a multiplicative manner the steplength kα , computed 

by Wolfe line search conditions, by means of a positive parameter kη , in such a way to 
improve the behavior of the classical conjugate gradient algorithms. It is shown that for 
uniformly convex functions the convergence of the accelerated algorithm is still linear, but 
the reduction in function values is significantly improved.  Numerical comparisons with 
some conjugate gradient algorithms using a set of 750 unconstrained optimization 
problems, some of them from the CUTE library, show that the accelerated computational 
scheme outperform the corresponding conjugate gradient algorithms. 
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1. Introduction 
For solving the unconstrained optimization problems 
                                                                  min ( )

nx R
f x

∈
,                                                           (1.1) 

where : nf R → R is a continuously differentiable function, bounded from below, one of the 
most elegant and probably the simplest methods are the conjugate gradient methods. For 
solving this problem, starting from an initial guess 0

nx R∈ , a nonlinear conjugate gradient 

method, generates a sequence { }kx  as: 

                                                               1k k k kx x dα+ = + ,                                                   (1.2) 
where 0kα >  is obtained by line search, and the directions  are generated as: kd
                                                    1 1k k k kdd g β+ += − + 0 0g,  d = − .                                     (1.3) 
In (1.3) kβ  is known as the conjugate gradient parameter, 1k ks x x+ k= −  and .  
The search direction , assumed to be a descent one, plays the main role in these methods. 
On the other hand, the stepsize 

( )k kg f x= ∇

kd

kα  guarantees the global convergence in some cases and is 
crucial in efficiency. Plenty of conjugate gradient methods are known, and an excellent 
survey of these methods, with a special attention on their global convergence, is given by 
Hager and Zhang [17]. Different conjugate gradient algorithms correspond to different 
choices for the scalar parameter .kβ  Line search in the conjugate gradient algorithms often is 
based on the standard Wolfe conditions. A numerical comparison of conjugate gradient 
algorithms (1.2) and (1.3) with Wolfe line search, for different formulae of parameter kβ  
computation, including the Dolan and Moré performance profile, is given in [2].  



It is common to see that in conjugate gradient algorithms the search directions tend to 
be poorly scaled and as a consequence the line search must perform more function evaluations 
in order to obtain a suitable steplength .kα  In conjugate gradient methods the steplengths 
differ from 1 in a very unpredictable manner. They can be larger or smaller than 1 depending 
on how the problem is scaled. This is in very sharp contrast to the Newton and quasi-Newton 
methods, including the limited memory methods, which accept the unit steplength most of the 
time along the iterations, and therefore usually they require only few function evaluations per 
search direction. Numerical comparisons between conjugate gradient methods and limited 
memory quasi Newton method by Liu and Nocedal [19] show that the later are more 
successful [2]. One explanation of efficiency of this limited memory quasi-Newton method is 
given by its ability to accept unity steplengths along the iterations.  

The purpose of this paper is to present an acceleration of the conjugate gradient 
algorithms. The idea is to modify the steplength kα  (computed by means of Wolfe line search 
conditions) by means of a positive parameter kη , in a multiplicative manner, in such a way to 
improve the behavior of these algorithms. We show that the resulting algorithm is linear 
convergent, but the reduction in function value is significantly improved. An acceleration of 
gradient descent algorithm with backtracking for unconstrained optimization is given in [1]. 

The structure of the paper is as follows. Section 2 is presenting the line search 
methods of Goldstein [15] and Wolfe [26], and proves that these computational schemes 
generate steplengths bounded away from zero. Section 3 presents the general accelerated 
conjugate gradient algorithm. This algorithm can be particularized using different formula of 

kβ  computation. For uniformly convex functions we prove that if the direction satisfied the 
sufficient descent condition and it is bounded, then the convergence of the accelerated 
algorithm is at least linear. Some numerical results and comparisons including the Dolan and 
Moré [13] performance profiles are given in section 4. 
 
2. Line search 
For implementing the algorithm (1.2) one of the crucial elements is the stepsize computation. 
Many procedures have been suggested. In the exact line search the step kα  is selected as: 
                                                       

0
arg min ( ),k k kf x d

α
α α

>
= +                                           (2.1) 

where  is a descent direction. In some very special cases (quadratic problems, for example) 
it is possible to compute the step 

kd

kα analytically, but for the vast majority of cases it is 

computed to approximately minimize f  along the ray { }: 0k kx dα α+ ≥ ,  or at least to 

reduce f  sufficiently. In practice the most used are the inexact procedures. A lot of inexact 
line search procedures have been proposed: Goldstein [15], Armijo [7], Wolfe [26], Powell 
[24], Dennis and Schnabel [12], Fletcher [14], Potra and Shi [23], Lemaréchal [18], Moré and 
Thuente [20], Hager and Zhang [16], and many others. The line search in conjugate gradient 
algorithms is often based either on the Goldstein’s conditions [15]: 
                                                              (

where
1 2( ) ( )T T

k k k k k k k k k kg d f x d f x g dρ α α ρ α≤ + − ≤ , 2.2) 

 1
2 120 1ρ ρ< < < <  and 0,kα >  or the Wolfe conditions [26]: 

                                               ( ) ( ) ,T
k k k k k k kf x α ρ+                              (2.3) 

                             

d f x g dα− ≤         

                                                                                     (2.4) 1 ,T T
k k k kg d g dσ+ ≥

where 0 1/ 2 1.ρ σ< < ≤ < proposition shows that  The following α  satisfying the 
Goldste arch conditions is bounded away from zero (see also [16]). 
 

in or the Wolfe line se

roposition 2.1. Assume that  is a descent direction and P kd f∇  satisfies the Lipschitz 

condition ( ) ( )k kf x f x L x x∇ −∇ ≤ −  for all x  on the line segment connecting kx  and 
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1,kx +  where L is a positive constant. If the line search satisfies the Goldstein conditions (2.2), 
then 

                                                         1(1 ) .k k
k

g dρα −
≥                                                   (2.5) 2

T

k
L d

If the line search satisfies the Wolfe conditions (2.3) and (2.4), then 

                                                         2k
k

L d
(1 ) .

T
k kg dσα −

≥                                                    (2.6) 

 
e satisfied, then usin

we get: 
                                  )g d f x d f xρ α α≤ + −  

                                      k k k

Proof. If the Goldstein conditions ar g the mean value theorem from (2.2) 

  1 k k k k k k k

              T

( ) (T

  ( ) kf x dα ξ= ∇ + d 22T ,k k k k kg d L dα α≤ +  

where (0, ).kξ α∈  Fro lym this inequality we get immediate  (2.5). 

 from both sides of (2.4) and using the Lipschitz condition 
 

Now, to prove (2.6) subtract T
kg dk

we get:
2

1( ( ) .T
k k k k k kd g g d L dσ α+− ≤ − ≤  

But, kd  is a descent direction 

1) T
kg

and since 1σ < , we get immediately (2.6). ■ 
 
Therefore α  satisfying the Goldstein or the Wolfe line search conditions is bo
from 

unded away 
zero, i.e. there exists a positive constant γ , such that .α γ≥  

 
3. Accelerated conjugate gradient algorithms 
In this section let us present the accelerated conjugate gr t  adien algorithms for solving the 

hat the function unconstrained optimization problem (1.1). Suppose t f  is twice continuously 
differentiable. At the iteration 1,2,...k =  we know ,kx  ,kf  kg  and 

1 1,k k k kd g dβ − −= − + where 1kβ −  is computed according to the conjugate gradient algorithm 
we consider to accelerate.  Suppose that cent direction. For exam i-Yuan 

gorithm 1 1 / ,T T
k k k k kg g y d+ += with a standard Wolfe line search [11] 

and the scaled memoryless BFGS preconditioned conjugate gradient SCALCG algorithm by 
Andrei [3-5] with Wolfe line se  descent directions. Also, the directions 
generated by the CG_DESCEN nt algorithm by Hager and Zhang [16] 
satisfies the sufficient descent conditions, independent by the accuracy of line search. 
Now, by the Wolfe line search (2.3) and (2.4) we can compute k

kd  is a des ple, the Da

conjugate gradient al , β

arch always generate
T conjugate gradie

α  with which the following 
point k k kz x dα= +  is determined. The first Wolfe condition (2.3) shows that the steplength 

0,kα >  satisfies: 

( ) ( ) ( ) .T
k k k k k k kf z f x d f x g dα ρα= + ≤ +  

With these, let us introduce the accelerated conjugate gradient algorithm by means of the 
following iterative scheme: 
                                                          1k k k k kx x dη α= ++ ,                                            (3.1) 
where 0k

        
η >  is a parameter which follows to be determined in such a manner as to improve 

the behavior of the algorithm. Now, we have: 

( )22 21( ) ( ) ( ) .
2

T T
k k k k k k k k k k k k kf x d f x g d d f x d o dα α α α+ = + + ∇ +  
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On the and, for 0other h η >  we have: 

( )22 2 21( ) ( ) Tf x d f x g dηα ηα+ = + + ( ) .
2

T
k k k k k k k k k k k k kd f x d o dη α ηα∇ +  

With these we can write: 
  ( ),k k k kf f x d                                      k k kx d ( ) ( )ηα+ α η= + +Ψ                                  (3.2) 

where 
2 2 21( ) ( 1) ( ) ( 1)

2
T T

k η ηΨ = k k k k k k kd f x d g dα η α− ∇ + −  

    ( ) ( )22 .k k k k k ko d o dη α α α α+ −                                            2   

                                                        

                                 (3.3) 

Let us denote: 
0,T

k k k ka g dα= ≤  
2 2 ( ) ,T

k k k k kb d f x dα= ∇  

( )2 .k k ko dε α=                                                          

Observe that 0ka ≤  since kd  is a d nescent direction a d for convex functions
Therefore, 

 0.kb ≥  

2 21( ) (
2k k1) ( 1) .k k k k kb aη ηΨ = η η α ε α ε− + − + −                           (3.4) 

b

                                 

Now, we see that ( ) 2 )k k k k ka(η α ε η′Ψ = + +  and ( ) 0k mη′Ψ =  where 

                                                           .
2

k
m

k k

a
b

η
kα ε

= −
+

                                                   (3.5) 

ka ≤  Therefore, assu t ,bObserve that k′Ψ = ming tha k(0) 0.  2 0k k ( )k ηΨα ε+ >  then  is a 
with minimum value in point mηconvex quadratic function  and 

2))kε( ( 2( ) 0.k k k
k m

a b αη + +
Ψ = − ≤  

2( 2 )k k kb α ε+
Considering mη η=  in (3.2) and since 0kb ≥ , we see tha for evt ery k  

2( ( 2 ))( ) ( ) ( )
2( 2 )

k k k k
k m k k k k k k k k

k k k

a b ,f x d f x d f x d
b

α εη α α α
α ε

+ +
+ = + − ≤ +

+
 

which is a po mprovement of the values of function ssible i f  (when ( 2 )k k k ka b 0α ε+ + ≠ ). 
Therefore, using this simple multiplicative modification of the stepsize kα  as k kη α  where 

/( 2 )k m k k k ka bη η α= = − + ε  we get: 
2

1
( (( ) ( ) ( ) T k

k k k k k k k k k
a bf x f x d f x g dη α ρα+

+
= + ≤ +

2 ))k k kα ε+
−  

                              

2( 2 )k k kb α ε+
2( (ka b 2 ))( ) ( ),

2( 2 )
k k k

k k k
k k k

f x a f x
b

α ε ρ
α ε

⎤+
= − − ≤⎥+⎣ ⎦

                              (3.6) 

since  is a descent direction). 
Now, neglecting the contribution of 

⎡ +
⎢

0,ka ≤  ( kd

kε  in (3.6), we still get an improvement on the function 

                

values as 
2

1( ) ( )k k
( ) ( ).

2
k k

k k
k

a bf x f x+ ≤ − ⎢ a f x
b

ρ
⎡ ⎤+

− ≤⎥
⎣ ⎦

                             (3.7)                    
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In order to get the algorithm we hav to determine a way for kb  computation. For this, at 
point z

e 

kx dk k= α+  we have: 

2 21( ) ( ) ,k k( ) ( )
2

T T
k k k k k k k k kf z x d= �  f x d f x g d d fα α α+ = + + ∇

where kx�  is a point on the line segment connecting kx  and .z  n the other hand, at point 

k

O

k kx z dα= ave: −  we h

2 21( ) ( ) ( ) ( ) ,
2

T T
k k k k z k k k k kf x f z d f z g d d f x dα α α= − = − + ∇  

where ( )f z= ∇  and zg kx  is a point on the line seg ent con ecting km n x  and .z  Having in 
character oview the local f searching and that the distance between kx  and z is small enough, 

we can consider .k k kx x x= =�  So, adding the above equalities we get: 

                                                              b y dα= −                                                        (3.8) ,T
k k k k

where .k k z  Observe that the computation of kb  needs an additional evaluation of 
the gradient in point .z  Therefore, neglecting the contribution of k

y g g= −
ε  and considering in our 

algorithm /k m ka bkη η=  the following algorithm can be presented= − , . 

ated conjuga
 
Acceler te gradient algorithm (ACG) 
Step 1. Select a starting point 0x dom f∈  and compute: 0 0( )f f x=  and 0 0( ).g f x= ∇  

0.k =  
tep 2.  stopping the iterations. If the test is satis

Set 0  and 
Test a criterion for fied, then stop; 

0d g= −
S

otherwise continue with step 3. 
arch conditioStep 3. Using the Wolfe line se ns determine the steplength .kα  

Com k kxStep 4. pute: dkz α= + ( )zg f z= ∇  and z, .k ky g g= −  

Step 5. Compute: T
k k k ka g dα= , and T

k k k kb y dα= − . 
If 0,kb ≠  then compute Step 6. a b/k k kη = −  and update the variables as 

1k k k k kx x dη α= + , otherwise update the variables as k k k+ 1 kx x dα+ = + . Compute 

1kf +  and g  ky g1.k+  Compute g+1k k= − k and 1 .k ks x x+= −  

Step 7. Determine kβ  according to the conjugate gradient in use. 
mpute thStep 8. Co e search direction as: 1 1k k k kdd g β+ += −

Step 9. Restart criterion. If 

+ . 
2

1 0.2T
kg g g+ >  then set d1k k+ g1 1k k+ += − . 

Step 10. Consider  ■ 

ju n be immediately particularized from ACG by 
skipping steps 4 and 5 and by modifying step 6 where the variables are updated. In step 7, 

he  parameter 

1+  and go to step 2. k k=
 
The con gate gradient algorithm (CG) ca

where t  conjugate gradient kβ  is computed we can consider the formula 
d  conjug  we have selected for acceleration. For 

g g y dβ =

β

correspon ing to the ate gradient algorithm
example, we can consider the Dai and Yuan [11] 1 1 /k k k k k+ + , the BFGS 
preconditioned conjugate gradient SCALCG [3-5], Polak-Ribière-Polyak [21, 22] 

1 /T T
k k k k ky g g gβ += , Dai and Liao [10] 1( ) /T T

k k k k kg y ts y d+= − ( 0)t > , or any other 
conjugate gradient we want to accelerate.  
It is well known that if 

T T

k

f  is bounded along the direction  then there a stepsize kkd  exists α  
satisfying the Wolfe line search conditions (2.3) and (2.4). In our algorithm when the Powell 
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restart condition is satisfied, then we restart the algorithm with the negative gradient 1.kg +−  
ssumptions, the Wolfe rt criterion are 

sufficient to prove the global convergence o
Under reasonable a conditions and the Powell resta

f the algorithm.  
The first trial of the step length crucially affects the practical behavior of the algorithm. At 
every iteration 1k ≥  the starting guess for the step kα  in the line search is computed as 

1 1 / .k k kd dα − −  This selection was used for the first time by Shanno and Phua in CO  
[25]. It is also considered in SCALCG [3-5].  

Observe that if 

NMIN

k k ka b> , then 1.η >  In this case k k kη α α> and it is also possible 

that 1k kη α ≤  o 1.kr k η α >  Hence, the steplength k kη α can be greater than 1. On the other  

hand, if ,  then 1.kk ka b≤ η ≤  In this case ,k k kη α α≤  so the steplength k kη α  is reduced. 

Therefore, if k ka b≠ , then 1kη ≠  and the steplength kα  computed by ons will 

be mod

Wolfe conditi

ified, by its increasing or its reducing through factor .kη  

 ctingNegle  kε  in (3.4), we see that (1) 0kΨ =  and if / 2,k ka b≤  then 

(0) / 2 0k kΨ = ≤ 1.kka b− −  and η <  Therefore, for any [0,1]η∈ , 0.( )k ηΨ ≤  As a 
consequence f (0,or any 1), η∈ ollows that ( ) ( ).k k k kf x d f xη it f α+ <  In this case, for any 

[0,1]η∈ , .k k kη α α≤  However, in our algorithm we selected k mη η=  as the point achieving 
the minimum value of ( ).k ηΨ   

formly convex functions, we prove the linear convergence of the 
acceleration scheme. hat a function 

 
In the following, for uni

Recall t f  is uniformly convex on the level set 

{ }0: ( ) ( )S x x f x= ≤ hat f  if there is a positive constant m  such t

21( ) ( ) ( ) ( )
2

Tf y f x f x y x m y x≥ +∇ − + −  

for all , .x y S∈  For uniformly convex functions it is easy to prove that 

( )2 *( ) 2 ( ) ( )f x m f x x∇ ≥ − , f

for all ,x S∈  where *x  is a local solution of (1.1) [9]. 
 
Proposition 3.1. Suppose that f  is a uniformly convex function on the level set , and 

satisfies the sufficient descent condition 

S kd  
2

1 ,T
k k kg d c g< −  where , and 1 0c >

2 2
2k kd c≤ , where 2 0.c >  Then the sequence geg nerated by ACG converges linearly to 

*,x  solution to problem (1.1). 
 
Proof. From (3.6) we have that 1( ) ( )k kf x f x+ ≤  for all  Since .k f  is bound elow, it 

lim( ( ) ( )) 0.f x f x

ed b
follows that 

k kk +→∞ 1− =  

, since f  is uniformly convex there exists positive constants  and  m ,M  such that 
ose that 2

Now
( )mI f x MI≤ ∇ ≤  on .S  Supp kkx d Sα+ ∈  an  k m kd x d Sη α+ ∈  for all 0.α >  

We have: 
2( )( ) ( )

2
.k

k m k k k
k

a bf x d f x d
b

η α α +
+ ≤ + −  k
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( )k kf x dα+ : But, from uniform convexity we have the following quadratic upper bou d on n
221( ) (f x d f x Mα+ ≤ ) .

2
T

k k k k k kg d dα α+ +  

Therefore, 
2 22

1 2
1( ) ( )
2k k k k kf x d f x c g Mc gα α α+ ≤ − +  

                                                       
22

1 2
1( ) .
2k kf x c Mc gα α⎡ ⎤= + − +⎢ ⎥⎣ ⎦

 

Observe that for c Mc1 20 /( ),α≤ ≤  2 1
1 2

1
2 2

cc Mcα α α− + ≤ −  which follows from the 

convexity of . 2
1 2( / 2)c Mcα α− +  Using this result we get: 

2 2
1 1

1( )k k ( ) ( )
2k k k kf x d f gα+ ≤ x c g f x cα ρ α− ≤ − , 

since 1/ 2.ρ <   
From propo  with a value 0.sition 2.1 the Wolfe line search terminates α γ≥ >  

Therefore, for 1 20 /(c Mc ),α≤ ≤  this provides a lower bound on the decrease in the function 
,f  i.e.  

                                              
2

1( ) ( )k k k kf x d f x c gα ρ γ+ ≤ − .                                       (3.9) 
 other hand, 

 

On the

 
42 22 2

22 1 2 1
22

( )( ) ( ) .k
k

Mc c ga b Mc c g
c

α α γ
α

−+ −
≥                   (3.10) 

22
2 22

k k

k k
b MMc g

≥                         

Considering (3.9) and (3.10) we get: 

                          
2)c2 22 1

1
2

() ( ) .
2k m k k k k

Mcx d f x c g g
Mc

γη α ρ γ −
+ ≤ − −                 (3.11) (f

Therefore 
2

22 1
1

2

( )( ) ( ) .
2k k mf x f x η α− + k k

Mc cd c g
Mc

γρ γ
⎡ ⎤−

≥ +⎢ ⎥
⎣ ⎦

 

) 0kx + →  and as a consequence  goes to zero, i.e. But, ( ) (kf x f− 1 kg kx  converges to *.x  

( )kf x  is a nonincreasing sequence, it follows that ( )kf x  converges to Having in view that 
*( ).f x  From (3.11) we see that 

                                   
2

22 1
1 1

2Mc⎣ ⎦

Combining this with

( )( ) ( ) .
2k k k

Mc cf x f x c gγρ γ+

⎡ ⎤−
≤ − +⎢ ⎥                          (3.12) 

 
2 *2 ( ( ) ( ))km f x f x≥ −  and subtracting *

kg f  from both sides of 
we conclude: 

 
(3.12) 

,* *
1( ) ( ) ( ( ) ( ))k kf x f x c f x f x+ − ≤ −  

where  
2

2 1
1

2

1.
2Mc

<⎥
⎦

 

Therefore, ( )k

( )1 2 Mc cc m c γρ γ
⎡ ⎤−

= − +⎢
⎣

f x  converges to *( )f x  at least as fast as a geometric series with a factor that 
depends on eter  the param ρ  in the first Wolfe condition and the ounds  and m ,Mb  i.e. the 

ence is at least linear. ■ converg
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4. Numerical results and comparisons 
In this section we report some numerical results obtained with a Fortran implementation of 
conjugate gradient algorithms and their accelerated variants. All codes are written in Fortran 

d wit ompil

eriments with the number of variables 

and compile h f77 (default c er settings) on a Workstation Intel Pentium 4 with 1.8 
GHz. We selected a number of 75 large-scale unconstrained optimization test functions in 
generalized or extended form [6] (some from CUTE library [8]). For each test function we 
have considered ten numerical exp

1000,2000,...,10000.n =  In the following we present the numerical performance of CG and 
ACG codes corresponding to different formula for kβ  computation. All algorithms 
implement the Wolfe line search conditions with 0.0001ρ =  and 0.9σ = , and the same 

stopping criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute component of a vector. 

 The comparisons of algorithms are given in the following context. Let f i
ALG1 and 

lue found by ALG1 and ALG2, for problem i = 1 750, , ,…  
respectively. We say that, in the particular problem i,  the performance of ALG1 was better 
than the performance of ALG2 if:  
                                         

f i
ALG2 be the opti

                 

mal va

f fi
AL

i
ALG2 310− <G1 −

evaluat

where 

                                             (4.1) 
and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 

ions, or the CPU time corresponding to ALG2, respectively. 
In the first set of computational experiments we accelerate the Dai and Yuan (DY) 

conjugate gradient algorithm [11], kβ  is computed as k  Recall 
ai-Yuan algorithm are 

1 1 / .T T
k k k kg g y dβ + +=

that the directions generated by the D descent. Figure 4.1 illustrates the 
Dolan and Moré [13] performance profiles of DY and accelerated DY. 

 
Fig. 4.1. Performance profiles DY versus accelerated DY. CPU time metric. 
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For each algorithm, we plot the fraction of problems for which the algorithm is within a factor 
τ of the best cpu time. Relative to performance profiles, the top curve corresponds to the 
method that solved the most problems in a time that was within a factor τ  of the best time. 
When comparing accelerated Dai-Yuan (DYACC) with Dai-Yuan (DY) (see Figure 4.1), 
subject to the number of iterations, we see that DYACC  
achieved the minimum number of iterations in 552 problems). DY was better in 41 problems 
and they achieved the same number of iterations in 99 problems, etc. Out of 750 problems, 
only for 692 problems does the criterion (4.1) hold. Observe that, subject to the number of 
function and its gradient evaluations, DY was better in 400 problems. On the other hand, 
DYACC was better only in 271 problems. This is because the accelerat sion of DY at 
every iteration needs an extra gradient evaluation (only when

was better in 552 problems (i.e. it

ed ver
0kb ≠ ). 

 In the second set of numerical experiments we consider the acceleration of scaled 
memoryless BFGS preconditioned SCALCG conjugate gradient algorithm by Andrei [3-5]. 
Again this algorithm with Wolfe line search generates descent directions. Figure 4.2 presents 
the performance profiles proposed by Dolan and Moré for the SCALCG and accelerated 
SCALCG. 

 
Fig. 4.2. Performance profiles SCALCG versus accelerated SCALCG. CPU time metric. 

 
 In the third set of numerical experiments we accelerate the Polak-Ribière-Polyak 
(PRP) conjugate gradient algorithm [21, 22]. In this algorithm the search direction is 
computed as in (1.3), where k  The convergence of the PRP method for 
general nonlinear functions is uncertain. Even for strongly convex functions, the PRP method 
may not generate descent directions with inexact line search. However, the PRP method has a 
built-in restart feature that addresses to jamming. Figure 4.3 presents the Dolan and Moré 
performance profiles for the PRP and accelerated PRP. The accelerated version of PRP 
proved to be more efficient than the classical PRP, at least for this set of 622 unconstrained 
optimization problems.  

1 / .T T
k k k ky g g gβ +=
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Fig. 4.3. Performance profiles PRP versus accelerated PRP. CPU time metric. 

 
[10]

where k k k k k k+

Finally, we accelerate the Dai and Liao (DL) conjugate gradient algorithm 
T Tg y ts y dβ = − , ( 1).t

, 

1( ) / =  Figure 4.4 presents the Dolan and Moré 
performance profiles of DL and accelerated DL. 

 
Fig. 4.4. Performance profiles DL versus accelerated DL. CPU time metric. 

 
The left side of these Figures (small values of )τ gives the percentage of the test problems, 
out of 750, for which an algorithm is more succe l; the right side (large values of ssfu )τ  gives 
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the percentage of the test problems that were successfully solved by each of the algorithms. 
Mainly, the right side represents a measure of an algorithm’s robustness. Observe that the 
accelerated variants outperform the corresponding conjugate gradient algorithms in the vast 
majority of problems, and the differences are substantial. Besides, the accelerated variants are 
more robust than the corresponding original conjugate gradient algorithms we considered 
here. 

Since both the conjugate gradient algorithms DY, SCALCG, PRP and DL(t=1) and 
their accelerated variants use the same search direction (as dictated by the procedure for 

kβ selection), these algorithms only differ in their choice of the steplength. From the Tables 
in the above Figures it appears that the accelerated variants generate a better steplength, on 
average. Since the accelerated conjugate gradient algorithms performs well in the cpu time 
metric for all values of τ , we conclude that the overall poor performance of the original 
conjugate gradient algorithms is connected with the poor performance of the line search. In 
particular, to ensure descent the line search in conjugate gradient algorithms must achieve 
sufficient accuracy. In accelerated variants this is compensated by this simple modification of 
the steplength through .kη  
It is worth seeing that from the first Wolfe condition (2.3) we have 
                                            .k  ( ) ( ) T

k k k k k kf x d f x g dα ρα+ ≤ +                                       (4.2) 

Observe that along the iterations  in (4.2) is of a small order of magnitude, its 
contribution to reduce the function values along the direction  being almost insignificant. 

ince the c

T
k kg d

k

onjugate gradient method uses only the linear approximation of 
d

f  tS o find the 
earch 

tion of

s direction, ignoring completely the second order term, we expect that the direction 
generated will not be very effective, if the second order term contributes significantly to the 
descrip  ,f  even for relatively small values of .kα  On the other hand, for accelerated 
conjugate gradient this is compensated by modifying the steplength in order to destroy the 
premature orthogonality of search directions to gradient. Besides,   

                                      
2( )( ) ( )

2
k k

k m k k k k
k

a bf x d f x a
b

η α ρ +
+ ≤ + − .                              (4.3) 

Although the contribution of kaρ  to reducing the function values is small, the term 

0  gives the possibility of a substantial progress towards minimum. 
n (4.3) is independent of parameter 

2( ) /(2 )k k ka b b+ ≥
Observe that the last term i ρ  from the Wolfe conditions. 
However, the price we must pay for this acceleration sche  of the conjugate gradient 
algorithms is an additional evaluation at each iteration of the gradient of the function 

me
.f  

Observe that subject to the number of function and its gradient evaluations the classical 
conjugate gradient algorithms are better. However, the accelerated conjugate gradient 
variants, by modifying the steplength in such a manner to emphasize the reduction of function 
values, determine a better trajectory of optimization. 
 
5. Conclusions 
Intensive numerical experiments with different variants of conjugate gradient algorithms 
proved that the step length may differ from 1 up to two orders of magnitude, being larger or 
smaller than 1, depending on how the problem is scaled. Moreover, the sizes of the step 
length tend to vary in a totally unpredictable way. This is in sharp contrast with the Newton 
and quasi-Newton methods, as well as with the limited memory quasi-Newton methods, 
which usually admit the unit step length for most of the iterations, thus requiring only very 
few function fficiency of 

n by its ability to accept unity steplengths
 evaluations for step length determination. One explanation of the e

the limited memory quasi-Newton method is give  
along the iterations.  
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In this paper we take the advantage of this behavior of conjugate gradient algorithms and 
suggest an acceleration procedure of conjugate gradient algorithms by modifying the 
steplength kα  (computed by means of the Wolfe line search conditions) through a positive 
parameter kη , in a multiplicative manner, like 1k k k k kx x dη α+ = + , in such a way as to 
improve the reduction of the function’s values along the iterations. It is shown that for 
uniform

DY

 njugate gradient algorithms for unconstrained optimization. 
-416. 

ryless BFGS preconditioned conju
ization Metho

ce

 university Press, 2004. 
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ly convex functions the acceleration scheme is linear convergent, but the reduction in 
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, SCALCG, PRP and DL outperform the corresponding conjugate gradient algorithms on a 
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