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Abstract. An accelerated hybrid conjugate gradient algorithm is suggested in this paper. The 
parameter kβ  is computed as a convex combination of HS

kβ  (Hestenes-Stiefel [26]) and DY
kβ  

(Dai-Yuan [16]) formulae, i.e. (1 )C HS
k k k k

DY
kβ θ β θ β= − + . The parameter kθ  in the convex 

combination is computed in such a way so that the direction corresponding to the conjugate 
gradient algorithm is the Newton direction and the pair  to satisfy the modified secant 

condition given by Li, Tang and Wei [28],

( , )k ks y

1 ,k k kB s z+ =  where 
2( / )k k k kz y s sη= + k , 

1 12( ) ( )T
k k k k k kf f g gη + += − + + 1k k ks x x+s , = − k and 1 .k ky g g+= −  The algorithm 

uses the standard Wolfe line search conditions. Numerical comparisons with conjugate gradient 
algorithms show that this hybrid computational scheme outperforms a variant of the hybrid 
conjugate gradient algorithm given by Andrei [8], in which the pair  satisfies the 

classical secant condition 

( , )k ks y

1k k kB s y+ = , as well as some other conjugate gradient algorithms 
including Hestenes-Stiefel and Dai-Yuan. A set of 750 unconstrained optimization problems are 
used, some of them from the CUTE library [13]. 
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1. Introduction 
Let us consider the nonlinear unconstrained optimization problem 
                                                             { }min ( ): ,nf x x R∈                                                (1.1) 

where : nf R → R  is a continuously differentiable function, bounded from below. As we 
know, for solving this problem starting from an initial guess 0

nx R∈  a nonlinear conjugate 

gradient method generates a sequence { }kx  as 

                                                               1k k k kx x dα+ = + ,                                                   (1.2) 
where 0kα >  is obtained by line search and the directions  are generated as kd
                                                    1 1k k k kdd g β+ += − + 0 0g,  d = − .                                     (1.3) 
In (1.3) kβ  is known as the conjugate gradient parameter, 1k ks x x+ k= −  and . 

Consider 

( )k kg f x= ∇

.  the Euclidean norm and define 1k ky g g+ k= − . The line search in the conjugate 
gradient algorithms is often based on the standard Wolfe conditions: 
                                                 ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                    (1.4) 

                                                 ( )T
k k k k k

T
kf x d d gα σ∇ + ≥ d ,                                             (1.5) 
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where  is a descent direction and kd 0 1.ρ σ< ≤ <  Different conjugate gradient algorithms 
correspond to different choices for the scalar parameter kβ  (see [25]). The methods of 
Fletcher and Reeves (FR) [22], of Dai and Yuan (DY) [16] and the Conjugate Descent (CD) 
proposed by Fletcher [21]: 

1 1
T

FR k k
k T

k k

g g
g g

β + += ,   1 1
T

DY k k
k T

k k

g g
y s

β + += ,   1 1
T

CD k k
k T

k k

g g
g s

β + +=
−

 

have strong convergence properties, but they may have modest practical performance due to 
jamming. On the other hand, the methods of Polak – Ribière [33] and Polyak (PRP) [34], of 
Hestenes and Stiefel (HS) [26] or of Liu and Storey (LS) [30]: 

1 ,
T

PRP k k
k T

k k

g y
g g

β +=    1 ,
T

HS k k
k T

k k

g y
y s

β +=    1
T

LS k k
k T

k k

g y
g s

β +=
−

 

may not always be convergent, but they often have better computational performances. 
In this paper we focus on hybrid conjugate gradient methods. These algorithms have 

been devised to use the attractive features of the above conjugate gradient algorithms. They 
are defined by (1.2) and (1.3) where the parameter kβ  is computed as projections or as 
convex combinations of different conjugate gradient algorithms, as in Table 1. 

 
Table 1. Hybrid conjugate gradient algorithms.  

Nr. Formula Author(s) 

 1. { }{ }, ,hDY DY HS DY
k k kmax c minβ β β= kβ , 

(1 ) /(1 )c σ σ= − +  

Hybrid Dai-Yuan [17] 
(hDY) 

2. { }{ }0, ,hDYz HS DY
k kmax minβ β= kβ  Hybrid Dai-Yuan zero 

[17] (hDYz) 

3. { }{ }, ,GN FR PRP FR
k k kmax minβ β β= − kβ  Gilbert and Nocedal 

[23] (GN) 

4. { }{ }0, ,HuS PRP FR
k kmax minβ β= kβ  Hu and Storey [27] 

(HuS) 

5. 
0 ,

otherwise

PRP PRP FR
TaS k k
k FR

k

kβ β β
β

β
⎧ ≤ ≤

= ⎨
⎩

 
Touati-Ahmed and 
Storey [38] (TaS) 

6. { }{ }0, ,LS CD LS CD
k kmax minβ β− = kβ  Hybrid Liu-Storey, 

Conjugate-Descent  
(LS-CD) 

7. (1 )C HS DY
kk k k kβ θ β θ β= − + 0 1kθ< <,  , 

1

1

T
k k

k T
k k

s g
g g

θ +

+

= −  

Andrei [8] 
Convex combination of 
HS and DY with 
Newton direction. 
Secant condition. 

8. (1 )AC PRP DY
kk k k kβ θ β θ β= − + 0 1kθ< <,  , 

1 1

1 1 1

( )( ) ( )( .
( )( ) ( )(

T T T T
k k k k k k k k

k T T T T
k k k k k k k k

y g y s y g g g
y g y s g g g g

θ + +

+ + +

−
=

−
)
)

 

Andrei [6, 9] 
Convex combination of 
PRP and DY with 
conjugacy condition 

9. (1 )AN PRP DY
k k k k kβ θ β θ β= − + 0 1kθ< <,  , 

2
1 1 1

2 2
1 1

( ) ( )(
.

( )( )

T T T T
k k k k k k k k k

k T T
k k k k k k

y g s g g g y y s

g g g y y s
θ + + +

+ +

− −
=

−

)
 

Andrei [6] 
Convex combination of 
PRP and DY with 
Newton direction 

 
The hybrid computational schemes perform better than the classical conjugate gradient 
algorithms [5, 10]. In [8] we have presented a hybrid conjugate gradient algorithm as a 
convex combination of the Hestenes-Stiefel and the Dai-Yuan algorithms, where the 
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parameter in convex combination is computed in such a way so that the direction 
corresponding to the conjugate gradient algorithm to be the Newton direction and the pair 

 to satisfy the secant condition. Numerical experiments with this computational 
scheme proved to outperform the Hestenes-Stiefel and the Dai-Yuan conjugate gradient 
algorithms, as well as some other hybrid conjugate gradient algorithms [8]. In this paper, 
motivated by a result given by Li, Tang and Wei [28] concerning a better approximation of 

 using the modified secant condition, we present another variant of the hybrid 
conjugate gradient algorithm for unconstrained optimization which performs much better and 
it is more robust than the variant using the classical secant condition.  

( , )k ks y

2
1( )T

k ks f x s+∇ k

The structure of the paper is as follows. Section 2 introduces our hybrid conjugate 
gradient algorithm, AHYBRIDM as a convex combination of HS and DY algorithms with 
modified secant condition. Section 3 presents the convergence of this hybrid conjugate 
gradient computational scheme and in section 4 the algorithm and its acceleration is shown. In 
section 5 some numerical experiments and performance profiles of Dolan-Moré [20] 
corresponding to this new hybrid conjugate gradient algorithm are given. The performance 
profiles correspond to a set of 750 unconstrained optimization problems in the CUTE test 
problem library [13] as well as some other ones presented in [7]. It is shown that this hybrid 
conjugate gradient algorithm outperforms the classical HS and DY conjugate gradient 
algorithms and also the some other conjugate gradient algorithms including hybrid variants 
hDY, hDYz, GN and LS-CD.  
 
2. A hybrid conjugate gradient algorithm as a convex combination  
     of HS and DY algorithms with modified secant condition 
Our algorithm generates the iterates  computed by means of the recurrence (1.2), 
where the stepsize 

0 1 2, , ,x x x …
0kα >  is determined according to the Wolfe line search conditions (1.4) 

and (1.5), and the directions  are generated by the rule: kd
                                                 , 1 1

C
k k k ksd g β+ += − + 0 0d g= −

k k k k

,                                        (2.1)  
where  

                            (1 )C HS DY
k

1 1(1 )
T T
k k k k

k kT
k k k k

g y g g
y s y s

θ θ 1
T

+ + += − +                   (2.2) β θ β θ β= − +

and kθ  is a scalar parameter satisfying 0 1kθ≤ ≤  which is to be determined. Observe that if 

0kθ = , then C H
k k

Sβ β= , and if 1kθ = , then  On the other hand, if .C D
k kβ β= Y 0 1kθ< < , 

then C
kβ  is a convex combination of HS

kβ  and .DY
kβ   

The HS method has the property that the conjugacy condition  always 

holds, independent of the line search. With an exact line search, 
1 0T

k ky d + =
HS P
k k

RPβ β= . Therefore, the 
convergence properties of the HS methods are similar to the convergence properties of the 
PRP method. As a consequence, by Powell’s example [36], the HS method with an exact line 
search may not converge for general nonlinear functions. The HS method has a built-in restart 
feature that addresses directly to the jamming phenomenon. Indeed, when the step 1k kx x+ −  

is small, then the factor  in the numerator of 1k ky g g+= − k
HS
kβ  tends to zero. Hence, HS

kβ  
becomes small and the new direction 1kd +  is essentially the steepest descent direction 1.kg +−  
The performance of HS method is better than the performance of DY [5, 10]. 

On the other hand, the DY method always generates descent directions, and in [14] 
Dai established a remarkable property for the DY conjugate gradient algorithm, relating the 
descent directions to the sufficient descent condition. It is shown that if there exist constants 
γ 1  and γ 2  such that γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ ( , )0 1 , there exists a 
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constant such that the sufficient descent condition c > 0 g d c gi
T

i ≤ −
2

i holds for at least 

⎣ ⎦pk  indices i k∈ [ , ],0 where ⎣ ⎦j  denotes the largest integer ≤ j.  
Therefore, we combine these two methods in a convex combination manner in order 

to have a good algorithm for unconstrained optimization. From (2.1) and (2.2) it is obvious 
that  

                                   1 1
1 1 (1 )

T T
k k k k

k k k k kT T
k k k k

y g g gd g s
y s y s

θ θ+ +
+ += − + − + 1

ks+ .                          (2.3) 

Our motivation is to choose the parameter kθ  in such a way so that the direction  given 
by (2.3) to be the Newton direction. Therefore, from the equation 

1kd +

2 1 1 1
1 1 1( ) (1 )

T T
k k k k

k k k k k kT T
k k k k

y g g g 1
kf x g g s

y s y s
θ θ− + +

+ + +−∇ = − + − + s+ , 

after some algebra we get: 

                            

2 21
1 1 1 1

21 1 1
1

( ) ( )
.

( )

T
T T Tk k
k k k k k k kT

k k
k T T

Tk k k k
k k kT T

k k k k

y gs f x g s g s f x s
y s

g g y g s f x s
y s y s

θ

+
+ + + +

+ + +
+

∇ − − ∇
=

⎡ ⎤
− ∇⎢ ⎥

⎣ ⎦

k

)k

                    (2.4) 

However, in this formula the salient point is the presence of the Hessian. One of the first 
conjugate gradient algorithm using the Hessian was given by Daniel [19] where 

. For large-scale problems, choices for the update 
parameter that do not require the evaluation of the Hessian matrix are often preferred in 
practice to the methods that require the Hessian.  

2 2
1( ( ) ) /( ( )T T

k k k k k kg f x d d f x dβ += ∇ ∇

 As we know, for quasi-Newton methods an approximation matrix kB  to the Hessian 
2 ( )kf x∇  is used and updated so that the new matrix 1kB +  satisfies the secant condition 

1k k kB s y+ = . Therefore, in order to have an algorithm for solving large-scale problems in [8] 
it is assumed that the pair  satisfies the secant condition. This leads us to a hybrid 
conjugate gradient algorithm, called HYBRID (see [8]), where:  

( , )k ks y

                                                               1

1

T
k k

k T
k k

s g
g g

θ +

+

= − .                                                      (2.5) 

Zhang, Deng and Chen [39] proved that if ks  is sufficiently small, then 
32

1( ) (T T
k k k k k ks f x s s y O s+∇ − = )

1
. Therefore, the direction (2.3) and (2.5), where 

0 kθ< < , is an approximation of the Newton direction. Observe that if 0 1kθ< < , then our 
direction can be expressed as:  
                                                             1 1 ,k k kd Q g 1+ + += −                                                     (2.6) 
where 

                                                         1

T T
k k k k

k T T
k k k k

s y s sQ I
y s y s+ = − +                                              (2.7) 

is a rank two approximation to the inverse of the Hessian. It is worth saying that the matrix  
 was first proposed by Perry [32]. He arrived to this matrix by adding a correction term 

to the matrix modifying in the direction corresponding to the HS method. A major 
difficulty with this approach is that the matrix 

1kQ +

1kg +

1kQ +  defined by (2.7) is not symmetric and 
hence not positive definite. Thus the corresponding directions are not necessarily descent and 
numerical instability can result. This is the price we must pay for using the secant equation in 
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(2.4) to get (2.5). With exact line searches ( 1 0T
k ks g + = ), 1 1k kd Q g 1k+ + += −  reduces to the 

Hestenes and Stiefel method. In [8] we have computational evidence that our HYBRID 
algorithm is top performer versus HS, DY, hDY and hDYz conjugate gradient algorithms. 
 Li, Tang and Wei [28] expanded the secant condition and obtained a modified secant 
condition which uses both the gradients and the function values in two successive points as: 

                                               1 ,k k kB s z+ =   2
k

k k
k

z y s
s

k
η

= + ,                                          (2.8) 

where 12( ) ( )T
k k k k k 1 kf f g gη + += − + + s . Obviously, from (2.8) we get 

                                                         1 .T T
k k k k k ks B s s y η+ = +                                                   (2.9) 

 
Theorem 2.1. If ( )f x  is a smooth general nonlinear function, then when 0,ks →  

32
1( ) ( )T T

k k k k k ks f x s s y O s+∇ − = ,  
42

1( ) (T T
k k k k k ks f x s s z O s+∇ − = ).

k

 
The proof is similar to that given in Theorem 1.1 by Zhang, Deng and Chen [39] and is 
omitted here. ■ 
 
Therefore, the quantity  given by the modified secant condition (2.8) approximates the 

second-order curvature  with a higher precision than the quantity  does. 
This is a very good motivation to use it in (2.4). For this purpose, in order to unify both 
approaches, we consider a slight modification of the modified secant condition (2.8) as 

T
k ks z

2
1( )T

k ks f x s+∇ T
k ks y

1 ,k k kB s z+ =  where  

2
k

k k
k

z y s
s

k
δη

= +  

and 0δ ≥  is a scalar parameter. This leads us to another hybrid conjugate gradient algorithm 
(1.2), (2.1) and (2.2), where 

                                             

1
1

1
1

1
.

T
Tk k k
k k kT T

k k k k
k T

T k k
k k kT

k k

y gs g
s s y s

g gg g
y s

δη δη
θ

δη

+
+

+
+

⎛ ⎞
− −⎜ ⎟

⎝ ⎠=
+

                                 (2.10) 

Therefore, motivated by the theorem 2.1, the direction (2.3) and (2.10), where 0 1kθ< < , is a 
better approximation of the Newton direction than that given by using (2.5) in (2.4). Now, 
using (2.10) in (2.3) we get 

                            1 1
1 1 21

T T
k k k k k

k k kT
k k k k k kk

y g s gd g s
y s y ss

δη
δη δη
+ +

+ +

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟+ +⎝ ⎠

kT s                    (2.11) 

 
Theorem 2.2. Assume that f is a convex function and kα  in algorithm (1.2) and (2.3), where 

kθ  is given by (2.10), is determined by the Wolfe line search (1.4) and (1.5). If 0 1kθ< < and 
2 /ks kδ η≤  then the direction 1kd +  given by (2.11) is a descent one. 

 
Proof. From (2.11) we get 
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2

2 1 1 1
1 1 1 2

( )( ) ( )1
T T T

T k k k k k k k
k k k T T

k k k k k kk

y g s g s gg d g
y s y ss

δη
δη δ

+ + +
+ + +

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟+ +⎝ ⎠ η

.           (2.12) 

The second term in (2.12) can be written as 

1 1 1 1
2

( )( ) ( )( )( )
( )

T T T T T
k k k k k k k k k k k

T T
k k k k k k

y g s g y g y s s g
y s y s

δη
δη δη

+ + + ++
= =

+ +
 

2 22 2
1 11 1

2 2

( ) ( )[( ) ] [( ) ]
( ) 2( )

T TT T T
k k k k k k kk k k k k k k

T T
k k k k k k

y s g s g yy s g s g y
y s y s

δηδη
δη δη

+ ++ + + ++
≤ =

+ +
 

                                                    
22

2 1
1 2

( )1 .
2 2(

T
k k k

k T
k k k

s g y
g

y s δη
+

+ +
+ )

                                          (2.13) 

Now, using (2.13) in (2.12) we get 

                  
222

2 11
1 1 1 2 2

( )( )1 1 .
2 2

TT
k k kT k k k

k k k T T
k k k k k kk

s g ys gg d g
y s y ss

δη
δη δη

++
+ + +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟≤ − + − +

⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠ ( )
         (2.14) 

From Wolfe line search and (2.9) observe that 0T
k k ky s δη+ ≥ . Besides, 21 /k ksδη− ≥ 0.  

Observe that the last term in (2.14) tends to zero very fast. Therefore,  i.e. 1 1 0,T
k kg d+ + ≤ 1kd +  

is a descent direction. ■ 
 
Remark 1. Since the last term in (2.14) tends to zero very fast, it can be neglected. Besides, 

observe that 
2

1
2

( )1
T

k k k
T
k k kk

s g
y ss

δη
δη
+

⎛ ⎞
⎜ ⎟−
⎜ ⎟ +⎝ ⎠

 also tends to zero very fast. Therefore, the direction 

 satisfies the sufficient descent condition 1kd + 1 1 1 ,T
k k kg d c g+ + +≤ −  where  is a positive 

constant, and   

c
1/ 2.c ≈

As above, observe that if 0 1kθ< < , then our direction can be expressed as:  

                                                             1 1 ,k k kd Q g 1+ + += −                                                   (2.15) 
where 

                                       1 1
T T

k k k k k
k T T T

k k k k k k k k

s y s sQ I
y s s s y s

δη
δη δ+

⎛ ⎞
= − + −⎜ ⎟+ +⎝ ⎠ η

                       (2.16) 

is again another rank two approximation to the inverse of the Hessian. Since the matrix 1kQ +  
defined by (2.16) is not symmetric and hence not positive definite, again the corresponding 
directions are not necessarily descent and numerical instability can result. However, this is 
more elaborated than  in (2.7). Observe that for 1kQ + 0,δ =  1 1.k kQ Q+ +=   

With exact line searches ( ), the direction 1 0T
k ks g + = 1kd +  reduces to 

1
1 1

T
k k

k k T
k k k

y gd g
y s δη

+
+ += − +

+ ks , 

which is a modification of the Hestenes and Stiefel method. Besides, if 0,δ =  then we get 
exactly the Hestenes and Stiefel method. 

The parameter kθ  given by (2.10) can be outside the interval [0 . However, in 
order to have a real convex combination in (2.2) the following rule is considered: if 

,1]
0,kθ ≤  

then set 0kθ =  in (2.2), i.e.  on the other hand if ;C HS
k kβ β= 1kθ ≥ , then take 1kθ =  in 
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(2.2), i.e.  Therefore, under this rule for .C DY
k kβ β= kθ  selection, the direction  in (2.3) 

combines the HS and DY algorithms in a convex way.  
1kd +

 
3. Convergence analysis 
In the following we consider that 0kg ≠  for all . Assume that: 1k ≥
(i) The level set { }0: ( ) ( )nS x R f x f x= ∈ ≤  is bounded, i.e. there is a constant D such 

that x D≤  for all .x S∈  
(ii) In a neighborhood  of , the function N S f is continuously differentiable and its 

gradient is Lipschitz continuous, i.e. there exists a constant  such that 0L >
( ) ( )f x f y L x∇ −∇ ≤ − y , for all , .x y N∈  

Under these assumptions on f  there exists a constant 0Γ ≥  such that ( )f x∇ ≤ Γ  for all 

.x S∈  In order to prove the global convergence, we assume that the step size kα  in (1.2) is 
obtained by the strong Wolfe line search, that is, 
                                             ( ) ( ) T

k k k k k k k ,f x d f x g dα ρα+ − ≤                                        (3.1) 

                                              1( )T T
k k k .kf x d g dσ+∇ ≤                                                         (3.2) 

where ρ  and σ  are positive constants such that 0 1.ρ σ< ≤ <  
Dai et al. [18] proved that for any conjugate gradient method with strong Wolfe line search 
the following general result holds: 
 
Lemma 3.1. Suppose that the assumptions (i) and (ii) hold and consider any conjugate 
gradient method (1.2) and (1.3), where  is a descent direction and kd kα  is obtained by the 
strong Wolfe line search (3.1) and (3.2). If 

                                                               2
1

1
k kd≥

= ∞∑ ,                                                        (3.3) 

then 
                                                             liminf 0.k

k
g

→∞
=  ■ 4) 

 

                                                   (3.

o prove the global convergence of the algorithm we need the following estimates. By the 

) ( )T
k k k

T
mean value theorem we have: 
                        2(k k k 1 1f fη + += − g g s+ +  

   k 1 12 ( ) ( ) ( ( ) ( ))T T
k k k k kf x x f x f x sξ + += ∇ − + ∇ +∇                           

1( ) ( ) ( ) ( )T T T
k k k k k k k

T
kf s f s f x s f xξ ξ += −∇ −∇ +∇ +∇  s

                            ( )1( ) ( ) ( ) ( ) ,T
k k k k kf x f f x f sξ ξ+= ∇ −∇ +∇ −∇  

where 1(1 )k k kx xξ τ= + τ +−  and (0,1).τ ∈  From the Lipschitz continuity we have: 

( )1( ) ( ) ( ) ( )k k k k k kf x f f x f sη ξ ξ+ ∇ −∇+≤ ∇ −∇  

                                      ( )1k k k k kL x L x sξ ξ+≤ − + −  

                                      ( )1 1(1 ) k k k k kL x x L x xτ τ+ += − − + −  s

                                      2 2(1 ) .k kL s L s L sτ τ= − + = 2
k                                              (3.5) 

On the other hand 
Ty s T
k k k k k ky sδη+ ≤ δ η+         
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2 2

k k k k ky s L s L sδ η δ≤ + ≤ + 2(1 ) .kL sδ= +                         (3.6) 

lobal convergence for uniformly convex functions. Suppose that 
 
G 0 1kθ< < . For uniformly 
convex functions which satisfy the above assumptions (i) and (ii) we can prove that the norm 
of 1kd +  generated by (2.3) and (2.10) is bounded above. Thus, by Lemma 3.1 we can prove 
the global convergence of the algorithm. 
As we know, if f  is a uniformly convex function, then there exists a constant 0µ >  such 
that 
        2T( ( ) ( )) ( ) ,f x f y x y x yµ∇ −∇ − ≥ −  for any                     , .x y S∈                      (3.7) 

can be expressed as Equivalently, this 
2( ) ( ) ( )T ( ) ,

2
f x f y f y x y x yµ

≥ +∇ − + −  for any                          , .x y S∈                (3.8) 

3.8) it follows that From (3.7) and (
2 ,T

k ky s ksµ≥                                                                   (3.9)                                                   

2 .1 1 2
T

k k k k kf f g s sµ
+ +− ≥ −

) we get: 

+                                          (3.10)                                                   

Obviously, from (3.9) and (3.10
2 2T

ksµ k k ky s L s≤ ≤ ,                                             (3.11)                                                        

i.e. .Lµ ≤  
 

heT orem 3.1. Suppose that the assumptions (i) and (ii) hold and f  is a uniformly convex 
function. Consider the algorithm (1.2), (2.3) and (2.10), where 0 1kθ< < , 1kd +  is a descent 
direction and kα  is obtained by the strong Wolfe line search (3 .2 ,L.1) and (3 ). If µ=  then 
for any 0δ ≥   algorithm satisfies lim 0.kk

g
→∞

the =  If ,L µ>  then for 0 / )L (Lδ µ≤ ≤ −  the 

algorithm satisfies lim 0.kg =  

Proof. Using the ab s
k→∞

ove relation  (3.10) and (3.11) we have 
T s               1 12 ( ) ( )T T

k k k k k k k k ky s y s f f g gδη δ δ+ ++ = + − + + k

2
1 12 ( ) ( )

2
T T
k k k k k k k ky s g s s g g sTµδ δ+ +≥ + − + + +  

                                
2

1 12T T T T
k k k k k k k k ky s g s s g s g sδ δµ δ δ+ += − + + +  

                                
2(1 ) T

k k ky s sδ δµ= − + (1 ) T T
k k k ky s y s

L
δµδ≥ − +  

                                 (1 ) .T
k ky s

L
δµδ= − +                                                                           (3.12) 

Now, if ,L µ=  then for all 0δ ≥ , 
2 ,sδη µ+ ≥ i.e. T

k k k ky s 2 ,Ty s m sδη+ ≥  where k k k k

.m µ=  

On the other hand, if ,L µ≥  then for 0 L
L

δ
µ

≤ <
−

, the coefficient of the right hand side of 

(3.12) is positive, that is 
2(1 ) ,T

k k k ky s s
L
δµδη δ µ+ ≥ − + i.e. 

2 ,T
k k k ky s m sδη+ ≥  where 

(1 ) .m
L
δµδ µ= − +  
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Now, from (2.11) we have: 

1 1
1 1 21

T T
k k k k k

k k kT T
k k k

k
k kk

y g s gd g s s
y s ss

δη
δη δη
+ +

⎛
⎜ ⎟= − + − −
⎜ ⎟+ +⎝ ⎠

 

                                   

ky+ +

⎞

1 1
1 21k k k kk

k kT T
k k k k k kk

y g s g
g s

y s y ss
δη

δη δη
+ +

+≤ + + −
+ + ks .             (3.13) 

t 

                                            

But, from (3.5) it follows tha

 
2

2 2 21 1 1 1k kk

k k k

L s
L

s s s

δ η δδη .δ− ≤ + ≤ + = +              (3.14) 

ew the Lipschitz continuity, (3.14) and the above estim

        

From (3.13), having in vi ation on 
Ty sk k kδη+  we get: 

2 21 1
1 1 2 21k kk

k k k
k k k

L g g
d g s s

m s s m s
δη+ +

+ +≤ + + −  2 k

                                         1 1 1k k km m
1L Lg g gδ

+ + +
+

≤ + +  

                           
1(1 ) .L L

m m
δ+

≤ + + Γ                                                                               (3.15) 

This relation shows that 
2

2
1 1

1 1 .
( 1 )k kk

m
m L Ld δ≥ ≥

⎛ ⎞
≥ = ∞⎜ ⎟+ + + Γ⎝ ⎠

∑ ∑  

Therefore, from Lemma 3.1 we have liminf 0,k
k

g
→∞

=  which for uniformly convex function 

 ■ 

Observe that for 

is equivalent to lim g = 0.kk→∞

L µ> , 1L
L µ

>
−

. Theorem 3.1 says that there is a constant 1δ >  

such that for any ,δ δ≤  we have glim 0.kk→∞
=   

nce for ge l nonlinear functions. From (2.11) we see that if 
 
Global converge nera 0 1kθ< < , 
then 

                                       1 1
21 .

T T
k k k

k

y g s g
y s

δηC k k
k T T

k k k k kk
y ss

β
δη δη
+ +

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟+ +⎝ ⎠

                             (3.16) 

or general nonlinear functions, we replace (3.16) by: F

                              1 1max ,0 1
T T

C k k k k ky g s gδηβ 2k T T
k k k k k kk

y s y ssδη δη
+ + +

⎛ ⎞⎧ ⎫
⎜ ⎟+ +⎩ ⎭ ⎝ ⎠

       (3.17

gorithm with strong Wolfe line search is globall
the direction

⎜ ⎟= − −⎨ ⎬               ) 

and prove that the corresponding al y 
convergent. Assume that  1kd +  satisfies the descent condition (see Theorem 2.2) 

                                                                1 1 0.T
k kg d+ + ≤                                                        (3.18) 

To prove the global convergence by contradiction we assume that there is a positive constant 
γ  such that 

kg γ≥  for all                                                (3.19) 0.k ≥                                                         
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Our analysis of (1.2), (2.1) and (3.17) for general nonlinear functions follows the insights 
developed by Gilbert and Nocedal in their analysis of the PRP+ conjugate gradient scheme 
[23] or that given by Hager and Zhang of  [24].  
 

 their CG_DESCENT algorithm

gradient algorithm (1.2), where 
Lemma 3.2. Suppose that the assumptions (i) and (ii) hold and consider the conjugate 

0 1kθ< < , the direction 1kd +  given by (2.1) and (3.17) 
8) andsatisfies the descent condition (3.1 k α  is obtained by the strong Wolfe line s  

conditio
earch

ns (3.1) and (3.2). If (3.19) holds and δ  is chosen so that 
10

(1 2 )
σδ

σ ρ
−

≤ <
+ −

 

then  and 

 

 1 0kd + ≠

                                                         
2 ,kw w1

1
k

k
+

≥

− < ∞∑                                              (3.20) 

where 

  

/ .k k kw d d=  
 
Proof. Obviously, by (3.18) we have 0.kd ≠  Therefore, is well defined. Now, from 
(3.19) and Lemma 3.1 it follows that 

kw  

2
0

1 ,
k kd≥

< ∞∑  

otherwise (3.4) holds, contradicting (3.19). In the following we write: 
                                  1 2 ,C C C

k k kβ β β+ = +                                                                            (3.21) 
here: w

                                                1 1maxC k
k

g
β + ,0 ,

T
k

T
k k k

y
y s δη

⎧ ⎫
= ⎨ ⎬+⎩ ⎭

                                           (3.22) 

                                                2 1
21 .

T
C k k ks gδηβk T

k k kk
y ss δη⎜ ⎟ +⎝ ⎠

+
⎛ ⎞
⎜ ⎟= − −                                       (3.23) 

                                             ks                                               (3.24) 

         

Define: 
2

1 1 ,C
k k kv g β+ += − +             

1
1

1

,k
k

k

vr
d

+
+

+

=                                                                 

         

                                            (3.25) 

1
1

1

0.kC
k k

k

d
d

τ β+
+

= ≥                                                         

e, we have 

                                       (3.26) 

Therefor
1 2

1 1
1

k k
k

d sw + =  
1 1

C C
k k k k

k k

g s
d d

β β+ +

+ +

− + +
=

                                                   
2

11

1 1

C
kCk k k k

k
k k k

s
d d d

β β+

+ +

+
= +  

k

dg s−

                                                    r w1 1 .k k kτ α+ ++  =

1 1,kw w=Now, since k+ =  it follows that 
 

2 2
1 1 1k k k k kwr w τ α+ + += − 2 22 2

1 1 1 12 T
k k k k k k kw w wτ α τ α+ + + += − +  kw
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2 22 2
1 1 1 12k kw τ= − T

k k k k k kw wα τ α+ + + ++ w                              
2

1 1 .k k k kw wτ α+ += −  
Therefore, 

1kr w+ = 1 1 1 1 .k k k k k k k kw w wτ α τ α+ + + +− = −  

0Since 1kτ + ≥  we get 

              1 1 1(1 )( )k k k k k kw w w wτ α+ + +− ≤ + −    

1 1 1 1k k k k k k kw w wτ α τ α+ + + += + − −  kw                                   

1 1 1 1 12 .k k k k k k k k kw w w w rτ α τ α+ + + + +≤ − + − =                                                          (3.27) 

aluate the quantity

  

 .T
k k ky s δη+Now, we ev  Using the strong Wolfe conditions we have: 

k k k k k k k k ky s y s f f g g sδη δ δ+ ++ = + − + +  

                    )T

                                 T
ks+ +  

              )T T
k k k kg s g sδ δ δρ+= + + − −  

              T

1 12 ( ) ( )T T T
k

                              12 (T T
k k k k k k ky s g s g g sδρ δ +≥ − + +  

                 −1 1( ) 2 ( )T T
k k k k k k kg g s g s g gδρ δ+ += −

                                    11(1 ) ( 2
(1 ) ( 2 1)T

k k k kg s g sδ σ δ δρ≥ + + − −                                      

            [ ](1 2 ) (1 ) .T
k kg s                                     (3                                      σ ρ δ σ= + − − − .28) 

We know that  Therefore, if 0.T T
k k k k kg s g dα= <

10 ,
(1 2 )

σδ
σ ρ
−

≤ <
+ −

 then there is a 

 
constant 0M >  such that  

 0.T T
k k k k ky s Mg sδη+ ≥ − >                                                                                              (3.29) 

llows that From the definition of 1kv +  it fo
2

1kv + = 1
C

k kg sβ+− + k
2

1
C

k k kg sβ+≤ +  

                                                1
1 2 T

kk y ss
1

T
k kk

k k
k k

s g
g sδη

δη
+

+= + −
+

 

1 21                                                .g s≤ +  

Therefo

T
k kk

k kT
k kk

s g

M s gs

σδη
+ −

                              

re, using (3.14) we have 

1 1 (1 ) (1 ) .k k kv g L s L D
M M
σ σδ δ+ +≤ + + ≤ Γ + +                    (3.30) 

With the above estimates we get: 
2

2 2
1 2

1 1

4 4 k
k k k

k k k k

v
w w r

d
+

≥ ≥

− = =∑ ∑ ∑                                  
1≥

          
2

2
1

14 (1 )
k k

L D
M d
σδ

≥

⎛ ⎞ ,≤ Γ + + < ∞⎜ ⎟
⎝ ⎠

∑                                                   

i.e. (3.20) holds, which completes the proof. ■ 

asymptotically the search directions generated by
.2 and assuming that  satisfies the sufficient descent 

                          

 
This Lemma shows that  the algorithm 

kdchange slowly. Using Lemma 3
condition (see remark 1) 
                                    

2T
k k kg d c g≤ − ,                                                  (3.31) 
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where  is a constant, we can establish the following lemma showing that 0c > C
kβ
+  satisfies a 

). The Property (*), first derived by Gilbert and Nocedal slightly different form of Property (*
[23], shows that kβ  in conjugate gradient algorithms will be small when the step  is small. 

or example,
ks

PRPF  k

gradient algorithm. Suppose that the step length k

β  has this property, this explaining the efficiency of the PRP conjugate 
α  obtained by the strong Wolfe conditions 

(3.1) and (3.2) is bounded away from zero, i.e. there is a positive constant 0ω >  such that 
.kα ω≥  Dai and Liao [15] proved that this prope  is responsible for the global convergence rty

of conjugate gradient algorithms. 
 
Lemma 3.3. Suppose that the assumptions (i) and (ii) hold and consider the conjugate 
gradient algorithm (1.2), where 0 1kθ< < , the direction 1kd +  given by (2.1) nd (3.17) 
satisfies the sufficient descent condition (3.31) and k

a
α  is obtained by the strong Wolfe line 

search conditions (3.1) and (3.2) with .kα ω≥  If  
10

(1 2 )
σδ

σ ρ
−

≤ <
+ −

 then there exist the 

constants 1b >  and 0ξ >  such that  

                                                                   C+
k bβ ≤                                                           (3.32) 

nd  a

 
1C

k b
β                                                        ks ξ +≤ ⇒       

 
 get: 

       

≤                                           (3.33) 

for all .k  

Proof. From (3.29), (3.31) and (3.19) we
                            2 2.T T

k k k Mgk k ky s s Mc g Mcδη+ ≥ − ω ωγ≥ ≥                             (3.34) 
Now, from (3.17), using (3.14) we have: 

1 1
21

T T
C k k k k k
k T T

k k k

y g s g
y s y ss

δηβ
k k k kδη δη

+ + +≤ + −
+ +

 

                             1 1
2

(1 )T T
k k k ky g L s g

Mc
δ

ωγ
+ ++ +

≤                    

1 (1k ky g + +
≤ 1

2

) k kL s g
Mc

δ
ωγ

++
                                                

                                               12

1L L
k ks g

Mc
δ

2

1 .L L D b
Mc

δ
ωγ

+ +
≤ Γ ≡

ωγ +
+ +

≤                   (3.35) 

Without loss of generality we can define  such that  Let us define: 

                                                        

b 1.b >
22 1 .

( 1 )
Mc

L L D
ωγξ
δ

⎛ ⎞
≡ ⎜ ⎟+ + Γ⎝ ⎠

                                        (3.36) 

Obviously, if ks ξ≤ , from the fourth inequality in (3.35) we have 

2

( 1 ) 1 .C
k

L L
Mc b

δβ ξ
ωγ

+ + + Γ
≤ =  

Therefore, for b  and ξ  defin  (3.33) hold. ■ ed in (3.35) and (3.36) respectively, (3.32) and
 

used to show that if the gradients are 
bounded away from zero and (3.32) and (3.33) hold, then a finite number of steps  cannot 
The Property (*) presented in Lemma 3.3 can be 

ks
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be too small. Therefore, the algorithm makes a rapid progress to the optimum. Indeed, for 
0τ >  and a positive integer ∆  let us define the set of indices: 

{ }*
, 1k i: 1, ,K i N k i k sτ τ∆ −

where *N is the he following Lemma is si

= ∈ ≤ ≤ + ∆ − >  

milar to Lemma 3.5 in 
and to Lemma 4.2 in [23]. 

 a 

set of positive integers. T
[15] 
 
Lemma 3.4. Suppose that all the assumptions of Lemma 3.3 are satisfied. Then there is

0τ >  such that for any  and any index , there is an index  such that *N∆∈ 0k 0k k≥

, / 2.kKτ
∆ > ∆  

 
Using Lemma 3.2 and Lemma 3.4 we can prove the global convergence theorem for method 

 (2.1) and (3.17). The eorem is similar to Theorem 3(1.2), th .6 in Dai and Liao [15] or to 
Theorem 3.2 in Hager and Zhang [24] and the proof is omitted here. 

m 
e

 
Theore 3.2. Suppose that the assumptions (i) and (ii) hold and consider the conjugate 
gradient algorithm (1.2), wher  0 1kθ< < , the direction 1kd +  given by (2.1) and (3.17) 
satisfies the sufficient descent condition (3.31) and kα  is obtained by the strong Wolfe line 

h conditions (3.1) and f searc  (3.2). I
10

(1 )2
σδ

σ ρ
−

≤ <  then liminf g  0.kk→∞
=  ■

+ −
 
Since ρ  and σ  are given in the Wolfe line search conditions, it follows that the upper bound 
of δ  established in the Theorem 3.2 is smaller than 1.  
 
4. The AHYBRIDM algorithm 

e iterations, and therefore usually they requ only few 
tion. Numerical com s between conju  gradient 

ethods and the limited memory quasi Newton method by Liu and Nocedal [29], show that 
e o

f conjugate gradient algorithms and 
presented in [1, 11]. Basically the acceleration 

In [31] Nocedal pointed out that in conjugate gradient methods the step lengths may differ 
from 1 in a very unpredictable manner. They can be larger or smaller than 1 depending on 
how the problem is scaled. This is in very sharp contrast to the Newton and quasi-Newton 
methods, including the limited memory quasi-Newton methods, which accept the unit 
steplength most of the time along th ire 
function evaluations per search direc parison gate
m
the latt r is m re successful [5, 10]. One explanation of efficiency of this limited memory 
quasi-Newton method is given by its ability to accept unity step lengths along the iterations. 
In this section we take advantage of this behavior o
consider an acceleration scheme we have 
scheme modifies the step length kα  in a multiplicative manner to improve the reduction of 
the function values along the iterations (see [1] and [11]). In accelerated algorithm instead of 
(1.2) the new estimation of the minimum point is computed as  
                                                           1k k k k kx x dλ α+ = + ,                                                   (4.1) 
where  

                                                                   k
k

k

a
b

λ = − ,                                                         (4.2) 

,T
k k k ka g dα=  ( ) ,T

k k k z kb g g dα= − − ( )zg f z= ∇  and k k kz x dα= + . Hence, if 0,kb ≠  
then the new estimation of the solution is computed as 1k k k k kx x dλ α+ = + , otherwise 

1k k k kx x dα+ = + . Therefore, using the definitions of gk , sk , yk and the above acceleration 
scheme (4.1) and (4.2) we can present the following hybrid conjugate gradient algorithm. 
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nStep 1. Initialization. Select 0x R∈ , 0δ ≥  and the parameters 0 1.ρ σ< ≤ <  Compute 

0( )f x  and  Consider . Set  0.g 0 0d g= − 0 01/ gα =  and 0.k =  

 Step 2. Test for continuation of iterations. If 610kg −
∞
≤

Step 3. Line search. Compute 

, then stop. 

0kα >  satisfying the Wolfe line search conditions (1.4) and 
(1.5). 
Step 4. Compute: k k kz x dα= + , ( )zg f z= ∇  and ky g g .k z= −

Step 5. Compute: T
k k k ka g dα= , and T

k k k kb y dα= − . 
tep 6. Acceleration scheme. If 0,

 

kb ≠  then compute /k ka bkλ = −S  and update the variables 
as 1k k k k kx x dλ α+ = + , otherwise update the variables as 1k k kx x kdα+ = + . Compute 1kf +  

1.k+  Co pute ks x= − kyand m k x+ , 1k kg g+g 1 k = −  a k k knd k k 1 12( ) ( )T
kf f g g+ += − + + . sη

Step 7. kθ  parameter computation. If 1
1 0Tg g δη

T
k kg g +

k k kT
k ky s+ + = , then set 0kθ = , otherwise 

te kθcompu  as in (2.10). 

Step 8. C
kβ  conjugate gradien C

kβt parameter computation. If , 0 1kθ< <  then compute  as in 

(2.2). If 1kθ ≥ , th .Yβ  Ien set C D
k kβ = f  0,kθ ≤  then set S .C H

k kβ β=  

Step 9. Direction computation. C  1d g β+= − + estart criterion of Powell 

                          

ompute ks . If the r

                               

C
k k

20.2T
kg g g≥                        (4

is sat d, then rest
1 1k k+ +                            .3) 

isfie art, i.e. set 1 1k kd g+ += −  otherwise define 1kd d+ = . Compute the initial 

α α k k kd d= − −1 1 / ,  set k k k=guess +1 and continue with s
 

tep 2.  

It is well known that if f is bounded along the direction  then there exists a stepsizedk  α k  
satisfyin he Wolfe line search conditions (1.4) and (1.5). orithm, when the Powell 
restart conditi algorithm

g t In our alg
on is satisfied, then we restart the  with the negative gradient − +gk 1 .  

More sop gorithms  phisticated reasons for restarting the al have been roposed in the literature 
ance of a conjugat

ssumptions, conditio
he algorithm.  

. At every iteration 

[35], but we are interested in the perform e gradient algorithm that uses this 
restart criterion. Under reasonable a ns (1.4), (1.5) and (4.3) are sufficient 
to prove the global convergence of t

The first trial of the steplength crucially affects the practical behavior of the 
algorithm k ≥ 1 the starting guess for the steplength α k in the line search 

 computed as α k k kd d− −1 1 2 2
/ .is  This selection was used for the first time by Shanno and 

It nez

problems in extended or generalized form. 
Each p

ee [7
profiles 

Phua in CONMIN [37].  was also considered in the packages: SCG by Birgin and Martí  
[12] and in SCALCG by Andrei [2,3,4]. 
 
5. Numerical experiments 
In this section we report the computational performance of a Fortran implementation of the 
AHYBRIDM algorithm on a set of 750 unconstrained optimization test problems. We 
selected 75 large-scale unconstrained optimization 

roblem is tested 10 times for a gradually increasing number of variables: 
1000,2000, ,10000n = …  (s ]). Comparisons with other conjugate gradient algorithms, 

including the pe of Dolan and Moré [20] are presented. All algorithms 
implement the Wolfe line search conditions with 0.0001

rformance 
ρ =  and 0.9σ = . The same 

stopping criterion 610kg −
∞
≤  is used, where .

∞
is the maximum absolute component of a 

vector, and 1.δ =  The comparisons of algorithms e foll t. Let  are given in th owing contex
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f i
ALG1 and f i

ALG2  be the optimal value found by ALG1 and ALG2, for problem 
i = 1 750, , ,…  respectively. We say that in the particular problem i  the performance of 
ALG1 was better than the performance of ALG2 if:  
                                                          f fi

ALG
i
ALG1 2 310− < −                                              (5.1) 

s, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. In this numerical study 
we declare that a method solved a particular problem if int ob ad the lowest 
functional value am ed methods (up t 30

and the number of iteration

 the final po ained h
ong the test o 1

t
 − tolerance as it was specified in (5.1)). 

Clearly, this criterion is acceptable for users who are interested in minimizing functions and 
indin al points.  

des are written in double precision Fortran and comp led with f77 (default 
compiler settings) on an Intel Pentium 4, 1.8GHz workstation. All these codes are authored by 
Andrei. 

not in f g critic
All co i

 

rical experiments we In the first set of nume  compare the performance of 
AHYBRIDM with the HYBRID conjugate gradient algorithm presented in [8]. Figure 1 
shows the Dolan and Moré CPU performance profiles of AHYBRIDM versus HYBRID.  
 

 
Fig. 1. Performance based on CPU time. AHYBRIDM versus HYBRID [8]. 

 
When comparing AHYBRIDM with HYBRID (Figure 1) subject to the CPU time metric we 
see that AHYBRIDM is top performer, i.e. the convex combination of HS and DY as 
expressed in (2.2) and (2.10) is more successful and more robust than the same convex 
combination using (2.5). We see that subject to the number of iterations, AHYBRIDM was 
better in 577 problems (i.e. it achieved the minimum number of iterations in 577 problems), 
HYBRID was better in 58 problems and they achieved the same number of iterations in 78 
problems, etc. Observe that out of 750 problems used in this numerical experiment only 713 
satisfy (5.1). The percentage of the test problems for which a method is the fastest is given on 
the left axis of the plot. The right side of the plot gives the percentage of the test problems that 
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were successfully solved by the HYBRID and AHYBRIDM algorithms, respectively. Mainly, 
the right side is a measure of the robustness of an algorithm. Observe that the modified secant 
condition (2.8) is effective and gives a better approximation of k  by  than 

the one given by  Besides, the acceleration scheme used in AHYBRIDM algorithm has 
a major role. ing that in unconstrained optimization all the efforts concentrate 
on the search putation. In our approach, besides this, we try to improve the 
algorithms by m the steplength 

2
1( )T

k ks f x s+∇  T
k ks z

 .T
k ks y

It is worth say
 direction com

odifying kα  (computed by the Wolfe line search conditions) 
through an acceleration scheme. 

The second set of numerical experiments refers to the comparisons of AHYBRIDM 
with the HS and the DY algorithms, respectively. Figure 2 presents the Dolan and Moré CPU 
time performance profiles of these algorithms. 

 

 
  

Fig. 2. Performance based on CPU time. AHYBRIDM versus HS and DY. 
 
From the plots in Figure 2 we see that AHYBRIDM is again top performer. We see that this 
convex combination of HS and DY algorithms combined with the acceleration scheme lead us 
to a more efficient conjugate gradient algorithm. Both the modified secant condition (2.8) and 
the acceleration scheme (4.1)-(4.2) implemented in AHYBRIDM are important ingredients in 
getting an efficient conjugate gradient algorithm. 
 In the third set of numerical experiments we compare AHYBRIDM with PRP (Polak-
Ribière-Polyak) and LS (Liu and Storey) classical conjugate gradient algorithms. Figure 3 
presents the Dolan and Moré performance profiles of these algorithms. 
 

 
Fig. 3. Performance based on CPU time. HYBRIDM versus PRP and LS.  

 
 In the fourth set of numerical experiments we compare AHYBRIDM with the hybrid 
conjugate gradient algorithms hDY, hDYz, GN and LS-CD (see Table 1) as in Figures 4. 
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Fig. 4. Performance based on CPU time. HYBRIDM versus hDY, hDYz, GN and LS-CD.  

 
Observe that AHYBRIDM is top performer among the conjugate gradient algorithms and the 
differences are substantial. 

In all our numerical experiments we have considered 1.δ =  However, the upper 
bound obtained in Theorem 3.1 for uniformly convex functions o  that obtained in Theorem 
3.2 for general nonlinear functions does not necessarily

r
 contain this value for .δ  Therefore, 

further theoretical investigations must be done in order to get the optimal value for .δ  For 
0δ =  we get an accelerated variant of HYBRID algorithm presented in [8]. 

 
6. Conclus
A large variety of conjugate gradient algorithms is well known. In this paper we have 

ion 

presented a new hybrid conjugate gradient algorithm in which the parameter kβ  is computed 

as a convex combination of HS
kβ  and .DYβ  The parameter in convex combination isk  

computed in such a way so that the direction corresponding to this algorithm to be the Newton 
direction. Using the modified secant condition we get an algorithm which generates descent 
direction and proved to be more efficient than the algorithm based on the classical secant 
condition. For uniformly convex function our algorithm is globally convergent. For general 
nonlinear functions we proved the global convergence of a variant of the algorithm using the 
strong Wolfe line search. 
The performance profile of our algorithm was higher than those of the well established 
conjugate gradient algorithms HS and DY and also of the PRP and LS and of the known 
hybrid variants hDY, hDYz, GN and LS-CD for a set of 750 unconstrained optimization 
problems. Additionally the proposed hybrid conjugate gradient algorithm is more robust than 
the HS and DY conjugate gradient algorithms.  
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