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Abstract. An accelerated hybrid conjugate gradient algorithm is suggested in this paper. The

parameter ﬂk is computed as a convex combination of ﬂkHs (Hestenes-Stiefel [26]) and ,BkDY

(Dai-Yuan [16]) formulae, i.c. B =(1—6)A" +6 B . The parameter 6, in the convex
combination is computed in such a way so that the direction corresponding to the conjugate
gradient algorithm is the Newton direction and the pair (S,, Y, ) to satisfy the modified secant

2
condition given by Li, Tang and Wei [28],B,,,S, =2Z,, where Z, =Y, + (1, /”Sk ” )S .

T .
no=2(f, —f.)+(9+9.,) Sc» Sx =X, —% and ¥, =0,,,—0,. The algorithm
uses the standard Wolfe line search conditions. Numerical comparisons with conjugate gradient
algorithms show that this hybrid computational scheme outperforms a variant of the hybrid

conjugate gradient algorithm given by Andrei [8], in which the pair (Sk, yk) satisfies the

classical secant condition Bk 15« = Yk » as well as some other conjugate gradient algorithms

including Hestenes-Stiefel and Dai-Yuan. A set of 750 unconstrained optimization problems are
used, some of them from the CUTE library [13].

MSC: 49M07, 49M10, 90C06, 65K
Keywords: Unconstrained optimization, hybrid conjugate gradient method, Newton direction,
numerical comparisons

1. Introduction
Let us consider the nonlinear unconstrained optimization problem

min{ f(x):xeR"}, (1.1)
where f :R" — R is a continuously differentiable function, bounded from below. As we
know, for solving this problem starting from an initial guess X, € R" a nonlinear conjugate
gradient method generates a sequence {Xk} as

X =X+, d,, (1.2)

where @, >0 is obtained by line search and the directions d, are generated as
Aot =04 + B, do=-0,. (1.3)
In (1.3) B, is known as the conjugate gradient parameter, S, = X,,, —X, and g, = Vf(X,).
Consider |||| the Euclidean norm and define y, = g, ., — 0, . The line search in the conjugate

gradient algorithms is often based on the standard Wolfe conditions:
f(x + e d) - f(x) < par 9. d,, (1.4)
vi(x, +a,d)'d, >cg,d,, (1.5)



where d, is a descent direction and 0 < p < o <1. Different conjugate gradient algorithms

correspond to different choices for the scalar parameter f, (see [25]). The methods of

Fletcher and Reeves (FR) [22], of Dai and Yuan (DY) [16] and the Conjugate Descent (CD)
proposed by Fletcher [21]:
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have strong convergence properties, but they may have modest practical performance due to
jamming. On the other hand, the methods of Polak — Ribiére [33] and Polyak (PRP) [34], of
Hestenes and Stiefel (HS) [26] or of Liu and Storey (LS) [30]:
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may not always be convergent, but they often have better computational performances.

In this paper we focus on hybrid conjugate gradient methods. These algorithms have
been devised to use the attractive features of the above conjugate gradient algorithms. They

are defined by (1.2) and (1.3) where the parameter S, is computed as projections or as

convex combinations of different conjugate gradient algorithms, as in Table 1.

Table 1. Hybrid conjugate gradient algorithms.

Nr. Formula Author(s)
hDY _ DY ;i HS DY Hybrid Dai-Yuan [17]
.| A _max{cﬂk min{ B, B }} R
c=(-0)/(1+0)
hDYz _ : HS DY Hybrid Dai-Yuan zero
2| P _max{o,mm{ R }} [17] (hDY2)
GN _ _ pFR ¢ PRP FR Gilbert and Nocedal
3. | B _max{ A ,mln{ LB }} 23] (GN)
4. S = max{O,min{ s kFR}} ?;u%r;d Storey [27]
PRP PRP FR Touati-Ahmed and
0< < R
5 TS = ¢k 22 ' A Storey [38] (TaS)
R otherwise
LS-CD _ ; LS pCD Hybrid Liu-Storey,
6. k = Mmax {0’ min { k 2Pk }} Conjugate-Descent
(LS-CD)
71 BS=1-0)B" +0.8°, 0<6, <1 Andrei [8]
ﬂk ( k )ﬂk kﬂk ’ k ’ Convex combination of
S0, HS and DY with
Hk - gT g Newton direction.
k Jk+1 Secant condition.
8. AC _(1-0)8 +0 8" 0<6O <1 Andrei [6, 9]
k ( . k )'BKT k'BkT ’ . k= Convex combination of
_ M 980 = Vi 99 9i) PRP andDYV‘(’iiﬂ}
k™ T T T T : conjugacy condition
(Ye 9DV )~ (9419494 9) ey
9. AN _ 1V +0.8% . 0<0O <1 Andrei [6]
k ( k )ﬂk kﬂk , ’ k ’ Convex combination of
T T T T :
. (yk Oy — Sk gk+1)||gk ” _(gk+1 Yi )(yk Sk) ;RP anddDY V.mh
K = > 3 = T . ewton direction
||gk+l|| ||gk ” (Gt Y)Y S)

The hybrid computational schemes perform better than the classical conjugate gradient
algorithms [5, 10]. In [8] we have presented a hybrid conjugate gradient algorithm as a
convex combination of the Hestenes-Stiefel and the Dai-Yuan algorithms, where the



parameter in convex combination is computed in such a way so that the direction
corresponding to the conjugate gradient algorithm to be the Newton direction and the pair

(S¢,Y,) to satisfy the secant condition. Numerical experiments with this computational

scheme proved to outperform the Hestenes-Stiefel and the Dai-Yuan conjugate gradient
algorithms, as well as some other hybrid conjugate gradient algorithms [8]. In this paper,
motivated by a result given by Li, Tang and Wei [28] concerning a better approximation of

SIV2 f(X,,)S, using the modified secant condition, we present another variant of the hybrid

conjugate gradient algorithm for unconstrained optimization which performs much better and
it is more robust than the variant using the classical secant condition.

The structure of the paper is as follows. Section 2 introduces our hybrid conjugate
gradient algorithm, AHYBRIDM as a convex combination of HS and DY algorithms with
modified secant condition. Section 3 presents the convergence of this hybrid conjugate
gradient computational scheme and in section 4 the algorithm and its acceleration is shown. In
section 5 some numerical experiments and performance profiles of Dolan-Moré [20]
corresponding to this new hybrid conjugate gradient algorithm are given. The performance
profiles correspond to a set of 750 unconstrained optimization problems in the CUTE test
problem library [13] as well as some other ones presented in [7]. It is shown that this hybrid
conjugate gradient algorithm outperforms the classical HS and DY conjugate gradient
algorithms and also the some other conjugate gradient algorithms including hybrid variants
hDY, hDYz, GN and LS-CD.

2. A hybrid conjugate gradient algorithm as a convex combination
of HS and DY algorithms with modified secant condition
Our algorithm generates the iterates X, X, X,,... computed by means of the recurrence (1.2),

where the stepsize «, >0 is determined according to the Wolfe line search conditions (1.4)

and (1.5), and the directions d, are generated by the rule:

At = =0k +IBI<CSk . dy=-0,, (2.1)
where
T T
ﬂf — (1_6k )ﬂkHS +0kﬂkDY — (1_6k) gk;l yk + ek gk+_}—gk+l (22)
yk Sk yk Sk

and @, is a scalar parameter satisfying 0 <@, <1 which is to be determined. Observe that if
6, =0, then ,Bkc = kHS , and if 6, =1, then ﬂkc = kDY. On the other hand, if 0 <6, <1,
then /3 is a convex combination of B> and SBC".

The HS method has the property that the conjugacy condition y[dk ., =0 always

holds, independent of the line search. With an exact line search, I = B . Therefore, the

convergence properties of the HS methods are similar to the convergence properties of the
PRP method. As a consequence, by Powell’s example [36], the HS method with an exact line
search may not converge for general nonlinear functions. The HS method has a built-in restart

feature that addresses directly to the jamming phenomenon. Indeed, when the step X, ., — X,
is small, then the factor Y, = g,,, — 0, in the numerator of S* tends to zero. Hence, B°

becomes small and the new direction d,,, is essentially the steepest descent direction —(, ..

The performance of HS method is better than the performance of DY [5, 10].

On the other hand, the DY method always generates descent directions, and in [14]
Dai established a remarkable property for the DY conjugate gradient algorithm, relating the
descent directions to the sufficient descent condition. It is shown that if there exist constants

y, and y, such that y, < Hgku <y, for all K, then for any p € (0,1), there exists a



2
constant C > 0 such that the sufficient descent condition g, d, < _CHgiH holds for at least

\_ ka indices i € [0,k], where \_ jj denotes the largest integer < J.
Therefore, we combine these two methods in a convex combination manner in order

to have a good algorithm for unconstrained optimization. From (2.1) and (2.2) it is obvious
that

yTg + gT+ g +
deyi =—0n +1-6,) ;;Skkl S + 0, kyis:: LS, . (2.3)

Our motivation is to choose the parameter 6, in such a way so that the direction d,,, given
by (2.3) to be the Newton direction. Therefore, from the equation
Y9 0.1
2 - k Yk k+1 9k
-v-f (XkH) O = Ok t (l_ek)T—Hsk + ‘9k %Sk >
Yi Sk Yi S

after some algebra we get:

T

Yi Gk

ngz f (X)) G _Slgkﬂ - kT “ ngz F (XS

- k >k

6, = o g Vo . (2.4)
|: k+_}_ k+l kT k+1 j|sl'v2 f (Xk+l)sk
Yi Sk Yic Sk
However, in this formula the salient point is the presence of the Hessian. One of the first
conjugate gradient algorithm using the Hessian was given by Daniel [19] where
B =9,V f(x)d)/(d,V*f(x)d,). For large-scale problems, choices for the update
parameter that do not require the evaluation of the Hessian matrix are often preferred in
practice to the methods that require the Hessian.

As we know, for quasi-Newton methods an approximation matrix B, to the Hessian

Vi (X,) is used and updated so that the new matrix B, , satisfies the secant condition
B, .S = Y, - Therefore, in order to have an algorithm for solving large-scale problems in [8]

it is assumed that the pair (S,,Y,) satisfies the secant condition. This leads us to a hybrid
conjugate gradient algorithm, called HYBRID (see [8]), where:

S,
O, =——KZkd (2.5)
“ gggkﬂ

Zhang, Deng and Chen [39] proved that if ||Sk || is sufficiently small, then
SIsz(XkH)Sk—Ska:O(||Sk||3). Therefore, the direction (2.3) and (2.5), where

0 <6, <1, is an approximation of the Newton direction. Observe that if 0 <6, <1, then our

direction can be expressed as:

dk+1 = _Qk+lgk+1’ (2.6)

where

SV, S

Qk+1 =1- T + T
YiSe  Yi Sk

is a rank two approximation to the inverse of the Hessian. It is worth saying that the matrix

(2.7)

Q,., was first proposed by Perry [32]. He arrived to this matrix by adding a correction term
to the matrix modifying ¢, in the direction corresponding to the HS method. A major

difficulty with this approach is that the matrix Q,,, defined by (2.7) is not symmetric and

hence not positive definite. Thus the corresponding directions are not necessarily descent and
numerical instability can result. This is the price we must pay for using the secant equation in



(2.4) to get (2.5). With exact line searches (S, d,,, =0), d.,, =—Q,,,0,., reduces to the

Hestenes and Stiefel method. In [8] we have computational evidence that our HYBRID
algorithm is top performer versus HS, DY, hDY and hDYz conjugate gradient algorithms.

Li, Tang and Wei [28] expanded the secant condition and obtained a modified secant
condition which uses both the gradients and the function values in two successive points as:

Bk+lsk =24, L =Y +ﬁsk > (2.8)
k

where 77, = 2(f, — f.,)+(9, + 9,.,)" S, . Obviously, from (2.8) we get
S¢B...S, =S¢ Yy +7- 2.9)

Theorem 2.1. If f(x) is a smooth general nonlinear function, then when ||Sk || —0,
3
SIVZ f (X )8 — SI Y = O(”Sk ” )>

ngz f (Xk+1)sk - s; Z, = O(”Sk ”4)-

The proof is similar to that given in Theorem 1.1 by Zhang, Deng and Chen [39] and is
omitted here. m

Therefore, the quantity SZ Z, given by the modified secant condition (2.8) approximates the

second-order curvature S; V> f (X, ,,)S, with a higher precision than the quantity s, Y, does.

This is a very good motivation to use it in (2.4). For this purpose, in order to unify both
approaches, we consider a slight modification of the modified secant condition (2.8) as

B,.,Sx = Z,, where

0o}
Z, =Yt Ukz S
Sl

and O > 0 is a scalar parameter. This leads us to another hybrid conjugate gradient algorithm
(1.2), (2.1) and (2.2), where

Sy S k Sk (2.10)
gg Oin t g;gkﬂ on,
+1
ygsk

Therefore, motivated by the theorem 2.1, the direction (2.3) and (2.10), where 0 < 6, <1,isa
better approximation of the Newton direction than that given by using (2.5) in (2.4). Now,
using (2.10) in (2.3) we get
T T
Y 9 s —|1- on, Sk Gk
k
Yy Sy + 677, ||Sk ”2 Y Sic + 67

de,, =0, + Sy (2.11)

Theorem 2.2. Assume that f is a convex function and ¢, in algorithm (1.2) and (2.3), where
6, is given by (2.10), is determined by the Wolfe line search (1.4) and (1.5). If 0< 6, <land

5<|s, ||2 /7, then the direction d,, given by (2.11) is a descent one.

Proof. From (2.11) we get



(y;—gkﬂ)(sl—gkﬂ) . S | (S¢9,.0)

Ok w1k O+ . (2.12)
k+1 k 1= || k 1|| y;(rsk +577k ||Sk ||2 y'kl'sk +577k
The second term in (2.12) can be written as
(Ye 9.)(8¢ Gir) _ (Y 9o Vi Sic + 57 )(S Gyr) _
Yy Sy + 677, (Y S¢ +67,)°
[(Ye S, +577k)gk+1]T[(S:gk+1)yk] (YeSc +m)° ”ng” +(8, 91)” ”yk”
(Y S +6m,)° 2(Y, s +om,)°
8l 2

_” . 2 n ( k ?k+1) ||Yk||2 ) (2'13)

2 2(Y, S +0m)
Now, using (2.13) in (2.12) we get

5. S’ |, (Sc9e)’[ly
gk+1dk+1 ”ng” N ( kgk 1) k Jk+1 || k” (214)

||Sk ||2 Yie Sic + 7 2(Yk S +61)"
From Wolfe line search and (2.9) observe that y; S, + 07, > 0. Besides, 1— 37, /”Sk ||2 > 0.

Observe that the last term in (2.14) tends to zero very fast. Therefore, g, ., d, , <0, ie. d,,
is a descent direction. m

Remark 1. Since the last term in (2.14) tends to zero very fast, it can be neglected. Besides,

_ 577k (S:gk-ﬂ)z
||Sk||2 Y S + 67,

, satisfies the sufficient descent condition ngdk g < —c||gk als

observe that

also tends to zero very fast. Therefore, the direction

d

constant, and C =~ 1/2.

ke where C is a positive

As above, observe that if 0 <6, <1, then our direction can be expressed as:

s = Qe Girs (2.15)
where
T T
Qu=1-— S (1— Ol ] - 2% (2.16)
Yy S + 077, Sk S ) Vi Sk 01,

is again another rank two approximation to the inverse of the Hessian. Since the matrix Gk "

defined by (2.16) is not symmetric and hence not positive definite, again the corresponding
directions are not necessarily descent and numerical instability can result. However, this is

more elaborated than Q, ,, in (2.7). Observe that for 5 =0, Q,,, =Q,,,.

With exact line searches (S, g, ,, = 0), the direction d, ., reduces to

T
d _ Y Gk S
k+l = gk+1 y;’sk +577k
which is a modification of the Hestenes and Stiefel method. Besides, if 6 =0, then we get

exactly the Hestenes and Stiefel method.
The parameter 6, given by (2.10) can be outside the interval [0,1]. However, in

k

order to have a real convex combination in (2.2) the following rule is considered: if 6, <0,

then set &, =0 in (2.2), i.e. B =B™; on the other hand if &, >1, then take 6, =1 in



(2.2), ie. BC =B>". Therefore, under this rule for &, selection, the direction d,,, in (2.3)
combines the HS and DY algorithms in a convex way.

3. Convergence analysis
In the following we consider that g, # 0 forall K >1. Assume that:

(i)  The level set S Z{XG R": f(x)< f(xo)} is bounded, i.e. there is a constant D such

that |x| < D forall xeS.

(i) In a neighborhood N of S, the function f is continuously differentiable and its
gradient is Lipschitz continuous, i.e. there exists a constant L >0 such that
IVE(x)—-VE(y)|<L|x—y]| forall x,yeN.

Under these assumptions on f there exists a constant I' >0 such that ||Vf (X)” <TI" for all

X €S. In order to prove the global convergence, we assume that the step size ¢, in (1.2) is

obtained by the strong Wolfe line search, that is,

F (X +ad) - f(x) < pa9cd,, 3.1
VE (%) d | < ogid,. (32)
where p and o are positive constants such that 0 < p <o <1.

Dai et al. [18] proved that for any conjugate gradient method with strong Wolfe line search
the following general result holds:

Lemma 3.1. Suppose that the assumptions (i) and (ii) hold and consider any conjugate
gradient method (1.2) and (1.3), where d, is a descent direction and ¢, is obtained by the

strong Wolfe line search (3.1) and (3.2). If

1
> =0, (3.3)
ko1 ||dk||2
then
liminf |g,[=0. = (34)
k—o0

To prove the global convergence of the algorithm we need the following estimates. By the
mean value theorem we have:

me=2(f = f )+ (9 + 900" s,
=2VE (5T (% = %) + (VE (X )+ V(X)) s,
=-Vf (fk )T Sk~ Vi (égk )T Skt \4 (Xk )T St Vi (Xk+1 )T Sk
= (VF (%)= VE(E)+ VI (%)= VE (&))" s,
where & =X, +(1-7)X,,, and 7 € (0,1). From the Lipschitz continuity we have:

7] < ([VF 060 = VEEO+VE (6c) = VE S]]
S(L”Xk =&+ L% =& ||)||sk||
= ( L= 2) % =X |+ L7 X0y =%, ”)”Sk ”
=L(-7)|s | +Lefs| =L]s] - (3.5)

On the other hand
‘y-krsk +577k‘ < ‘ylsk‘+5|77k|



<Ividlsdl+ o< Llscl +oufs = La+as " (3.6)

Global convergence for uniformly convex functions. Suppose that 0 <8, <1. For uniformly

convex functions which satisfy the above assumptions (i) and (ii) we can prove that the norm
of d,,, generated by (2.3) and (2.10) is bounded above. Thus, by Lemma 3.1 we can prove

the global convergence of the algorithm.
As we know, if f is a uniformly convex function, then there exists a constant £ >0 such

that

(VEX) - VE(Y) (x—y) = p|x—y * forany X,y €S. (3.7)

Equivalently, this can be expressed as

f(x)> f(y)+Vf(y)T(x—y>+§||x—y
From (3.7) and (3.8) it follows that

2, forany X,y e S. (3.8)

yise = ulls (3.9)
fo—f >—0r.s, +§||sk I (3.10)

Obviously, from (3.9) and (3.10) we get:
ullsd’ < visc<Ls (3.11)

ie. u<L.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold and f is a uniformly convex
function. Consider the algorithm (1.2), (2.3) and (2.10), where 0< 6, <1, d,,, is a descent
direction and ¢, is obtained by the strong Wolfe line search (3.1) and (3.2). If L = u, then
for any ¢ >0 the algorithm satisfies &im g, =0.If L>u, thenfor 0<S5<L/(L-p) the
algorithm satisfies lim g, =0.

Proof. Using the above relations (3.10) and (3.11) we have

yISk +017, = ygsk +26(f - f,)+o(g, + gk+1)T S
2
> Yy S, +26(=0y,.5, +§”Sk” )+8(9 +Gi1)" S
2
= Yy S, —260y,.5, +5/J||Sk ” +50, S, + 59,5,

5
=(1-8)yis +ouls |’ = 1-8)y]s, +T”yISk
~(1-5+ Ly, 6.12)

Now, if L=, then forall § >0, y, s, + 067, > ,u”sk ?ie. Yi S +0m, > m||sk ? | where

m= .

On the other hand, if L > g, then for 0 <06 <

1 , the coefficient of the right hand side of
—H
2 , where

(3.12) is positive, that is Y} S, + 07, > (1—5+5Tﬂ)ﬂ||5k *ie. yls, +6m, > m|s,

m:(1—5+5T’u),u.



Now, from (2.11) we have:

yz gk+1 577k SI gk+1
d =|— —cxIKl g —(1—
o] gk+l+YI3k+5f7k ‘ { ||sk||2 yis, +6m, "
e 1yellgeal s, |+t ||sk||||gk+1|| Is.]. G.13)
‘Yk S + 01 ‘ ” ” Vi Sk +577k‘

But, from (3.5) it follows that
Con |, ol ouls]

Il s I

From (3.13), having in view the Lipschitz continuity, (3.14) and the above estimation on
T
Yy S + 01, we get:

=1+6L. (3.14)

L||gk+1|| 2 577 ||gk+l|| 2
[df| <191+ [l +1 == s
T s sl | mils
1+0L
< ||gk+1|| +— ||gk+l || ||gk+l ||
s(l+£+1+§|‘)r. (3.15)
m m

This relation shows that

2
1 m
> 1=,
é”dk”2 [(m+|_+1+5|_)rjé ”

Therefore, from Lemma 3.1 we have liminf ||gk|| =0, which for uniformly convex function
k—o

is equivalent to lim g,=0.m
—®©

Observe that for L > u, >1. Theorem 3.1 says that there is a constant o >1

L—u
such that for any & <&, we have &im g, =0.

Global convergence for general nonlinear functions. From (2.11) we see that if 0 <6, <1,
then

T T
ﬂl? _ Tyk Ot 1— 577k2 Tsk Qi _ (3.16)
Yy S¢ + 01, ||Sk || Yy S + 01,
For general nonlinear functions, we replace (3.16) by:
T T
B =maX{Tyk¢,0}— 1- 577'(2 Tskgk“ (3.17)
Yy S + 07, ||Sk || Yic S + 01,

and prove that the corresponding algorithm with strong Wolfe line search is globally
convergent. Assume that the direction d, ,, satisfies the descent condition (see Theorem 2.2)
g-kr+ldk+l <0. (318)

To prove the global convergence by contradiction we assume that there is a positive constant
¥ such that

|9, || 7 forall k>0. (3.19)



Our analysis of (1.2), (2.1) and (3.17) for general nonlinear functions follows the insights
developed by Gilbert and Nocedal in their analysis of the PRP+ conjugate gradient scheme
[23] or that given by Hager and Zhang of their CG_DESCENT algorithm [24].

Lemma 3.2. Suppose that the assumptions (i) and (ii) hold and consider the conjugate
gradient algorithm (1.2), where 0<6, <1, the direction d,,, given by (2.1) and (3.17)

satisfies the descent condition (3.18) and ¢, is obtained by the strong Wolfe line search
conditions (3.1) and (3.2). If (3.19) holds and ¢ is chosen so that

0<s<_ 170
(1+0-2p)
then d,,, # 0 and
> W, —w [ <o, (3.20)

k=1
where w, =d, /||dk||.

Proof. Obviously, by (3.18) we have d, # 0. Therefore, W, is well defined. Now, from
(3.19) and Lemma 3.1 it follows that

ZL@%

k>0 dk”2
otherwise (3.4) holds, contradicting (3.19). In the following we write:
=80 B (3.21)
where:
Cl _ yl-<rgk+l
. =max {—yg s + o7 ,0}, (3.22)
on S|
c2__|1_ 29k ket (3.23)
k [ IISkIIZJVISk”’?k
Define:
Vier =G + B S (3.24)
fk+1=—”2;k“ : (3.25)
k+1
_ e 19 >0 3.26
Tkar = Pk ||dk+1 =U. (3.26)
Therefore, we have
W, = dk+1 :_gk+1+ kClSk+ kczsk
T fdal [dc.
_ "%t S ac "dk” Sk
|d. © il

= T T T W

Now, since ||Wk || = ||Wk+1|| =1, it follows that

2 _ 2 _ 2 2 T 2 2 2
||rk+1 ” = ||Wk+1 ~ T G W, ” = ||Wk+1 ” — 20 W W+ T, Oy ”Wk ”

10



_ 2 o) T 2 2 2 _ 2
_”Wk” = 2T W W+ T O ||Wk+1 = z'k+10‘ka+1_Wk” .

Therefore,
” K+l ” ||Wk+1 ~ T O Wy ” = ||Tk+1akwk+1 — W, ”
Since 7,,, =20 we get
||Wk+1 — W ” < ”(1 + T @ )Wy — W )”
= ||Wk+1 + T AWy — W — T o W ”
< ||Wk+1 Then Wy ” ||Tk+1aka+l W, ” = 2” K1 ” (3.27)
Now, we evaluate the quantity yk S, +0mn,. Using the strong Wolfe conditions we have:
Vi S +0m, =Y, S +28(f, — . )+3(09, +9p.1)" S,
> Y S = 2800, S + (9 + iat)' S
= (G = 9) S —29P9c S, + (9, +9y,1)' S,
= (14 6)9y.,8 +(5 —28p -1 gy s,
> (1+68)09, s, +(5—25p—-1)g; 5,

=[(1+0'—2p)5—(1—0')]ggsk. (3.28)
We know that @, s, =a,d,d, <0. Therefore, if 0£5<1_—O-, then there is a
(1+o0-2p)
constant M >0 such that
Y, S, +0n, >—-Mg, s, >0. (3.29)
From the definition of V, ,, it follows that
||Vk+1 ” = H_gk+l +B7°s, H < ||gk+1 ||+‘ﬂkcz‘”sk ”
577k ‘Sl;rgkﬂ
=(lg,..[+I1 S
” k 1” ”Sk” ‘ylsk+5f7k‘” k”
_on O"Sk gk‘
<[ g [+
|| k 1” ||Sk|| ‘Sk gk‘” ||
Therefore, using (3.14) we have
Vo | <9+ 1+ Lé)ﬁ”sk |<T+@+ Lé)ﬁ D. (3.30)

With the above estimates we get:

S = 4l =43 d

k=1 k=1 k1 (|d ||

2
1
<4 F+(1+L5)—DJ —
[ M ; d,[’

i.e. (3.20) holds, which completes the proof. m

3>

This Lemma shows that asymptotically the search directions generated by the algorithm
change slowly. Using Lemma 3.2 and assuming that d, satisfies the sufficient descent

condition (see remark 1)

ged, <—c|g |’ (3.31)
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where C > 0 is a constant, we can establish the following lemma showing that ,Bkc " satisfies a
slightly different form of Property (*). The Property (*), first derived by Gilbert and Nocedal
[23], shows that S, in conjugate gradient algorithms will be small when the step S, is small.
For example, ,BkPRP has this property, this explaining the efficiency of the PRP conjugate
gradient algorithm. Suppose that the step length ¢, obtained by the strong Wolfe conditions

(3.1) and (3.2) is bounded away from zero, i.e. there is a positive constant @ > 0 such that
o, = w. Dai and Liao [15] proved that this property is responsible for the global convergence

of conjugate gradient algorithms.

Lemma 3.3. Suppose that the assumptions (i) and (ii) hold and consider the conjugate
gradient algorithm (1.2), where 0<6, <1, the direction d,,, given by (2.1) and (3.17)

satisfies the sufficient descent condition (3.31) and ¢, is obtained by the strong Wolfe line

search conditions (3.1) and (3.2) with o, 2 w. If 0< 5<1_—0 then there exist the
(1+0-2p)
constants b >1 and & > 0 such that
85| < (3.32)
and
1
s <& =8¢ < (3.33)
for all k.
Proof. From (3.29), (3.31) and (3.19) we get:
Vi S, + 07, = -Mg]s, > Mco|g, [ = Mcay’. (3.34)
Now, from (3.17), using (3.14) we have:
‘ Yk Oy _on, || slgku |
Yk S + 01y, ||Sk ||2 H Y S + 67 ‘
‘YK Oyn|+ A+ 5L)‘Sk Oy
Mcawy’
llgeal+ +6L) s g
Mcwy’
L +1+0L L+1+4L
ol < e 2Eor=h a9
Without loss of generality we can define b such that b > 1. Let us define:
[ Mooy )1
C“’g_((L+1+5|_)rj D’ (3:36)

Obviously, if s, < &, from the fourth inequality in (3.35) we have
‘ﬂkc (L+1+§L)F l
Mcawy’ b
Therefore, for b and & defined in (3.35) and (3.36) respectively, (3.32) and (3.33) hold. m

The Property (*) presented in Lemma 3.3 can be used to show that if the gradients are
bounded away from zero and (3.32) and (3.33) hold, then a finite number of steps S, cannot

12



be too small. Therefore, the algorithm makes a rapid progress to the optimum. Indeed, for
7 >0 and a positive integer A let us define the set of indices:

Kio={ieN":k<i<k+A-L[s [>7},

where N'is the set of positive integers. The following Lemma is similar to Lemma 3.5 in
[15] and to Lemma 4.2 in [23].

Lemma 3.4. Suppose that all the assumptions of Lemma 3.3 are satisfied. Then there is a
7 >0 such that for any Ae N™ and any index k,, there is an index k >k, such that

Ki|>ar2.

Using Lemma 3.2 and Lemma 3.4 we can prove the global convergence theorem for method
(1.2), (2.1) and (3.17). The theorem is similar to Theorem 3.6 in Dai and Liao [15] or to
Theorem 3.2 in Hager and Zhang [24] and the proof is omitted here.

Theorem 3.2. Suppose that the assumptions (i) and (ii) hold and consider the conjugate
gradient algorithm (1.2), where 0< 6, <1, the direction d,,, given by (2.1) and (3.17)

satisfies the sufficient descent condition (3.31) and ¢, is obtained by the strong Wolfe line

search conditions (3.1) and (3.2). If 0< & < _ 170 then liminf|g,[=0. =
(1+o0-2p) ke

Since p and o are given in the Wolfe line search conditions, it follows that the upper bound
of O established in the Theorem 3.2 is smaller than 1.

4. The AHYBRIDM algorithm

In [31] Nocedal pointed out that in conjugate gradient methods the step lengths may differ
from 1 in a very unpredictable manner. They can be larger or smaller than 1 depending on
how the problem is scaled. This is in very sharp contrast to the Newton and quasi-Newton
methods, including the limited memory quasi-Newton methods, which accept the unit
steplength most of the time along the iterations, and therefore usually they require only few
function evaluations per search direction. Numerical comparisons between conjugate gradient
methods and the limited memory quasi Newton method by Liu and Nocedal [29], show that
the latter is more successful [5, 10]. One explanation of efficiency of this limited memory
quasi-Newton method is given by its ability to accept unity step lengths along the iterations.
In this section we take advantage of this behavior of conjugate gradient algorithms and
consider an acceleration scheme we have presented in [1, 11]. Basically the acceleration
scheme modifies the step length ¢, in a multiplicative manner to improve the reduction of

the function values along the iterations (see [1] and [11]). In accelerated algorithm instead of
(1.2) the new estimation of the minimum point is computed as

X =X + A4 dy 4.1)
where
a
A =——%, 4.2)
b,

a =a9,d, b=-a(9,-9,)'d,,9,=Vf(z) and z=x_+a,d,. Hence, if b, #0,
then the new estimation of the solution is computed as X,,, =X, + 4., d,, otherwise

X, = % +a,d, . Therefore, using the definitions of g,, S, , Y, and the above acceleration
scheme (4.1) and (4.2) we can present the following hybrid conjugate gradient algorithm.

13



Step 1. Initialization. Select X, € R",8 >0 and the parameters 0< p <o <1. Compute
f(x,) and g,. Consider d, =—@, . Set &, = 1/||go|| and k =0.
Step 2. Test for continuation of iterations. If g, || <107, then stop.

Step 3. Line search. Compute ¢, >0 satisfying the Wolfe line search conditions (1.4) and

(1.5).
Step 4. Compute: z=X, +¢,d,, g, =Vf(z) and y, =0, - 0,.

Step 5. Compute: &, =, g, d, ,and b, =—a, y, d, .
Step 6. Acceleration scheme. If b, # 0, then compute A, =—a, /b, and update the variables

as X, =X, +4,,0d,, otherwise update the variables as X,,, = X, +¢,d,. Compute f, ,

and @,,,. Compute S, =X,,; =Xy, ¥, =09y, — 9y and 73, = 2( fk - fk+1)+(gk + gk+1)T Sy -

;
Step 7. 6, parameter computation. If g, g, ., +%5ﬂk =0, then set §, =0, otherwise
k “k

compute 6, as in (2.10).
Step 8. B conjugate gradient parameter computation. If 0 < 6, <1, then compute fC as in
(2.2).1f 6, > 1, thenset BC = BP'. If 6, <0, thenset B = B°.

Step 9. Direction computation. Compute d =—g, ., + A°S, . If the restart criterion of Powell

‘glllgk‘ 2 0'2||gk+1||2 (4'3)

is satisfied, then restart, i.e. set d,,, =—0,,, otherwise define d, , =d . Compute the initial

guess o, =, _, Hdm H / Hdk , set K =K +1 and continue with step 2. ®

It is well known that if f is bounded along the direction d, then there exists a stepsize &,
satisfying the Wolfe line search conditions (1.4) and (1.5). In our algorithm, when the Powell
restart condition is satisfied, then we restart the algorithm with the negative gradient — Q,,,.
More sophisticated reasons for restarting the algorithms have been proposed in the literature
[35], but we are interested in the performance of a conjugate gradient algorithm that uses this
restart criterion. Under reasonable assumptions, conditions (1.4), (1.5) and (4.3) are sufficient
to prove the global convergence of the algorithm.

The first trial of the steplength crucially affects the practical behavior of the
algorithm. At every iteration K > 1 the starting guess for the steplength ¢, in the line search

is computed as &, _, Hdkf1 H2 / Hdk H2 This selection was used for the first time by Shanno and

Phua in CONMIN [37]. It was also considered in the packages: SCG by Birgin and Martinez
[12] and in SCALCG by Andrei [2,3,4].

5. Numerical experiments

In this section we report the computational performance of a Fortran implementation of the
AHYBRIDM algorithm on a set of 750 unconstrained optimization test problems. We
selected 75 large-scale unconstrained optimization problems in extended or generalized form.
Each problem is tested 10 times for a gradually increasing number of variables:
n=1000,2000,...,10000 (see [7]). Comparisons with other conjugate gradient algorithms,
including the performance profiles of Dolan and Moré [20] are presented. All algorithms
implement the Wolfe line search conditions with o =0.0001 and 0 =0.9. The same

stopping criterion ||gk ||OO <107 is used, where ||||oo is the maximum absolute component of a

vector, and 0 =1. The comparisons of algorithms are given in the following context. Let
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fAC and f"® be the optimal value found by ALGl and ALG2, for problem
i=1,...,750, respectively. We say that in the particular problem i the performance of
ALG] was better than the performance of ALG2 if:

fiALGl _ fiALG2 < 1073 (51)
and the number of iterations, or the number of function-gradient evaluations, or the CPU time
of ALG1 was less than the number of iterations, or the number of function-gradient

evaluations, or the CPU time corresponding to ALG2, respectively. In this numerical study
we declare that a method solved a particular problem if the final point obtained had the lowest

functional value among the tested methods (up to 107 tolerance as it was specified in (5.1)).
Clearly, this criterion is acceptable for users who are interested in minimizing functions and
not in finding critical points.

All codes are written in double precision Fortran and compiled with 77 (default
compiler settings) on an Intel Pentium 4, 1.8GHz workstation. All these codes are authored by
Andrei.

In the first set of numerical experiments we compare the performance of
AHYBRIDM with the HYBRID conjugate gradient algorithm presented in [8]. Figure 1
shows the Dolan and Moré CPU performance profiles of AHYBRIDM versus HYBRID.

1+ \
095F .
0ol AHYBRIDM
HYBRID
085F .
0.8 AHYBRIDM HYBRID = A
Hiter ar7 58 78
07e L #fg 261 410 22 |
' cpu 225 125 363
07k ‘ -
CPU time metric, 713 problems
U_EE 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

Fig. 1. Performance based on CPU time. AHYBRIDM versus HYBRID [8].

When comparing AHYBRIDM with HYBRID (Figure 1) subject to the CPU time metric we
see that AHYBRIDM is top performer, i.e. the convex combination of HS and DY as
expressed in (2.2) and (2.10) is more successful and more robust than the same convex
combination using (2.5). We see that subject to the number of iterations, AHYBRIDM was
better in 577 problems (i.e. it achieved the minimum number of iterations in 577 problems),
HYBRID was better in 58 problems and they achieved the same number of iterations in 78
problems, etc. Observe that out of 750 problems used in this numerical experiment only 713
satisfy (5.1). The percentage of the test problems for which a method is the fastest is given on
the left axis of the plot. The right side of the plot gives the percentage of the test problems that
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were successfully solved by the HYBRID and AHYBRIDM algorithms, respectively. Mainly,
the right side is a measure of the robustness of an algorithm. Observe that the modified secant

condition (2.8) is effective and gives a better approximation of s, V> f (X, ,,)S, by S, Z, than
the one given by SI Y- Besides, the acceleration scheme used in AHYBRIDM algorithm has

a major role. It is worth saying that in unconstrained optimization all the efforts concentrate
on the search direction computation. In our approach, besides this, we try to improve the

algorithms by modifying the steplength ¢, (computed by the Wolfe line search conditions)
through an acceleration scheme.

The second set of numerical experiments refers to the comparisons of AHYBRIDM
with the HS and the DY algorithms, respectively. Figure 2 presents the Dolan and Moré CPU
time performance profiles of these algorithms.

AHYBRIDM AHYBRIDM

Hestenes-Stiefel (HS) Dai-Yuan (DY)

AHYBRIDM HS = AHYBRIDM DY =

DR Hiter 578 51 83 08f #iter 581 55 76
#g 286 401 25 #ig 297 393 22
orst cpu 224 129 359 | el cpu 236 112 364

CPU time mefric, 712 problems CPU time metric, 712 problems

0 2 4 6 & 10 12 14 16 0 2 4 6 & 10 12 14 16

Fig. 2. Performance based on CPU time. AHYBRIDM versus HS and DY.

From the plots in Figure 2 we see that AHYBRIDM is again top performer. We see that this
convex combination of HS and DY algorithms combined with the acceleration scheme lead us
to a more efficient conjugate gradient algorithm. Both the modified secant condition (2.8) and
the acceleration scheme (4.1)-(4.2) implemented in AHYBRIDM are important ingredients in
getting an efficient conjugate gradient algorithm.

In the third set of numerical experiments we compare AHYBRIDM with PRP (Polak-
Ribiere-Polyak) and LS (Liu and Storey) classical conjugate gradient algorithms. Figure 3
presents the Dolan and Moré performance profiles of these algorithms.

AHYBRIDM

AHYBRIDM

Polak-Ribiere-Polyak (PRP) | Liu-Storey (LS)

UL AHYBRIDM PRP = 1 08 AHYBRIDM LS =
Hiter 577 47 83 #iter 582 49 79

o075k #g 305 378 24 - #fg 308 379 23
cpu 245 120 342 L cpu 240 117 353

CPU time metric, 707 problems

CPU time metric, 710 problems

0 2 s 6 8 m 2 " 16 R 5 7 E F o o i o
Fig. 3. Performance based on CPU time. HYBRIDM versus PRP and LS.

In the fourth set of numerical experiments we compare AHYBRIDM with the hybrid
conjugate gradient algorithms hDY, hDYz, GN and LS-CD (see Table 1) as in Figures 4.
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AHYERIDM AHYBRIDM

hybrid Dai-Yuan (hDY) hybrid Dai-Yuan zero (hDYz)

08l AHYBRDM rOY = 0l i}
gter 556 50 85 ey | YERDM DYz 2
| #0 202 35 24| I
075 075 #g 202 ars 24
cpu 234 93 364 (I B

CPU time metric, 691 problems

CPU time metric, 691 problems

095}

0af AHYBRIDM

AHYBRIDM

hybrid Liu-Storey,

0851
Conjugate Descent {LS-CD) 7

Gilbert-Nocedal (GN)

08

AHYBRIDM  GN = 7 L 1
ser 519 51 80 08 AHYBRDM LSCD =
075t #fg 307 383 20 ] #Hiter 576 54 80
cpu 243 17 350 075 #g 300 390 20 g
07 cpu 226 114 370
CPU time metric, 710 problems 0.7 4

CPU time metric, 710 problems

2 4 6 8 10 12 14 16

0.65
0

2 4 6 8 10 12 14 16

Fig. 4. Performance based on CPU time. HYBRIDM versus hDY, hDYz, GN and LS-CD.

Observe that AHYBRIDM is top performer among the conjugate gradient algorithms and the
differences are substantial.

In all our numerical experiments we have considered 0 =1. However, the upper
bound obtained in Theorem 3.1 for uniformly convex functions or that obtained in Theorem
3.2 for general nonlinear functions does not necessarily contain this value for &. Therefore,
further theoretical investigations must be done in order to get the optimal value for ¢. For
0 =0 we get an accelerated variant of HYBRID algorithm presented in [8].

6. Conclusion
A large variety of conjugate gradient algorithms is well known. In this paper we have

presented a new hybrid conjugate gradient algorithm in which the parameter /3, is computed

. . HS DY . . . .
as a convex combination of A, and S, . The parameter in convex combination is

computed in such a way so that the direction corresponding to this algorithm to be the Newton
direction. Using the modified secant condition we get an algorithm which generates descent
direction and proved to be more efficient than the algorithm based on the classical secant
condition. For uniformly convex function our algorithm is globally convergent. For general
nonlinear functions we proved the global convergence of a variant of the algorithm using the
strong Wolfe line search.

The performance profile of our algorithm was higher than those of the well established
conjugate gradient algorithms HS and DY and also of the PRP and LS and of the known
hybrid variants hDY, hDYz, GN and LS-CD for a set of 750 unconstrained optimization
problems. Additionally the proposed hybrid conjugate gradient algorithm is more robust than
the HS and DY conjugate gradient algorithms.
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