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Abstract
Using the numerical computational evidence of the MINOS package, for a number

of linear programming problems of NETLIB collection, into an empirical study referring to
the number of iterations, we conjecture its quasi-linear complexity. Empirically we
conjecture that the number of iterations of MINOS, for solving linear programming
problems with �  constraints and �  variables, is quasi-linear in � �+ .

1. Introduction

The MINOS package of Murtagh and Saunders [1978, 1982, 1995] is one
of the most respected packages dedicated for solving linear and nonlinear
optimization problems. The system permits the solution of large-scale problems in
the folowing area of continous optimization: linear programming, unconstrained
optimization, linearly constrained optimization and nonlinear constrained
optimization. The algorithms implemented in MINOS are: the simplex method
[Dantzig, 1963], the quasi-Newton method [Davidon, 1959], the reduced-gradient
method [Wolfe, 1962], and the projected Lagrangian method [Robinson, 1972],
[Rosen and Kreuser, 1972].

MINOS is designed for solving the large-scale optimization problems
expressed in the following standard form:
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where the vectors � � � � � �  
[ \ [ \

� � � � � � �
� �

and the matrices 
 
 

� � �
� � are

constant, � �� �  is a smooth scalar function, and 	 �� � is a smooth vector function.
The components of  �  are called the nonlinear variables. The components of  �

the linear variables. As we can see the constraints of the problem are separated
into nonlinear constraints and linear ones respectively. In this form (1) represents
one of the most general continous optimization problem.

If in (1) the functions � �� �  and 	 �� �  are absent, then the problem is a
linear program. MINOS solves linear programs by implementing the primal
simplex algorithm using a sparse LU factorization of the basis with Markowitz
ordering scheme and Bartels-Golub updates.

If in (1) the nonlinearities are present only in the objective function by the
term � �� � , then the problem is a linearly constrained nonlinear program. For
these problems MINOS implements a reduced-gradient algorithm in conjunction
with a quasi-Newton algorithm. In this case the variables of the problem are
partitioned in basic, nonbasic and superbasic variables. The superbasic variables
represents a set of independent variables that are free to move in any direction in
order to improve the value of the objective, or to reduce the sum of infeasibilities.
The basic variables can be modified in order to satisfy the linear constraints of the
problem. At a solution, the basic and superbasic variables lie between their
bounds, while the nonbasic variables are equal to one of their bounds.

If the problem (1) contains nonlinear constraints, then MINOS implemnts
a projected augmented Lagrangian algorithm, where a sequence of major
iterations are performed, each one involving the solution of a linearly constrained
subproblem. Each subproblem contains the original linear constraints and bounds
on variables, as well as the linearized versions of the nonlinear constraints. Thus,
the 	 �� � in (1) is replaced by its linear approximation at the current point:
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where �
N

is the estimate of the nonlinear variables at the � − th iteration, and
� �

N
� �  is the Jacobian of the function. The subproblem considered at each major

iteration is:
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The objective in (2) is an augmented Lagrangian, λ
N

 is an estimation of the
Lagrange multipliers associated to nonlinear constraints, and ρ  is a penalty
parameter. For solving (2) MINOS uses the reduced-gradient algorithm where
� �

N
� �  and 


L
 are treated as sparse matrices.
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The complexity study of  MINOS algorithm, i.e. the determination of a
closed formula predicting the number of iterations necessary to be taken to get a
solution with a prespecified accuracy, is not an easy task. In this paper we consider
the complexity of MINOS for solving linear programming problems from an
empirical viewpoint. The idea is to analyse the results of MINOS package,
referring to the number of iterations for solving a number of linear programming
problems, into the context of the essence of simplex algorithm. Section 2 contains
some aspects on the complexity of simplex algorithm. Using 119 linear
programming problems from Netlib collection, and taking into account the
principle of the simplex algorithm, in section 3, we conjecture that the complexity
of MINOS package is quasi–linear in � �+ �

2. Some aspects on the complexity of simplex algorithm

As we know linear programming considers the optimization of a linear
function over a feasible set defined by a finite number of inequalities:

                              { }��� � � 
� � �7 � � �≤ ≥ 	   � � Q∈ ,  � �P∈ �                      (3)

If  { }� � 
� � �= ≤ ≥� � �	  the feasible region, has vertices and if (3) has

optimal solutions, then there is a vertex which is the optimum for (3). Each vertex
of ; has at least �  restrictions which are active. Each edge of ;  has at least

Q −�  active restrictions. The problem seems to be trivial, since we need to
examine a finite number of vertices of the polyhedron ; , but when we are faced
with large-scale problems, (3) turns out to be very challenging.

In 1947 Dantzig articulated the simplex method for linear programming
which was the first practical approach for solving these problems and which
remains widely used today. Basically, the simplex method has two phases. The
first phase determine an initial vertex � �

�
∈ �  The second one construct a

sequence of vertices � � � �
V� �

� � � �� ∈ such that for L V= −� � �� � ��  the vertices

�
L
and �

L+� are adjacent, and � � � �7

L

7

L
< +� � If �

V
is optimal, or at �

V
 it is evident

that an optimal solution does not exist, then stop. It is quite clear that both phases
are similar and there is a freedom „how to determine the successor vertex“, if there
are more than one possibility. The rule of selecting the vertex along the iterations,
known as the rule of pivoting, determine the variant of the simplex algorithm. It is
known that the most difficult step is the pivoting rule. The most known pivoting
rules can be clasified in the following three categories:
A) Variants of simplex considering information on the shape of ; and the

     objective:
1. Rule of greatest improvement. Choose the edge which gives the maximal

improvement in the objective function value.
2. Steepest edge of Goldfarb and Reid. Choose that incident improving edge

with smallest angle to the gradient of the objective.
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B) Variants of the simplex considering only the objective:
3. Dantzig’s rule. Take that edge coresponding to the most negative reduced

cost.

4.
Parametric rule (shadow-vertex algorithm). This is the parametric
objective simplex algorithm by providing all optimal vertices to the family
of objectives � �� � �7+ λ .

C) Variants of the simplex using combinatorial rules:
5. Bland’s rule: The current vertex � satisfies exactly �  constraints with

equality, i.e. it lies at the intersection of �  faces of the polytope. Any
adjacent vertex � lies on � 
� of these faces. Therefore, when moving
from �  to � , exactly one constraints is loosened from tightness. Choose
that vertex � so that the constraint that is loosened has least index.

6. Rule of justice. Consider that edges that had been active very rarely.
7. Random pivot selection. Select randomly one of the improving edges.

Thus, the simplex algorithm is defined by the pivot rule – the way which decides
which vertex of the polyhedron is selected when there are many to choose from.
There is no deterministic pivot rule under which the simplex algorithm is known to
take a subexponential number of iterations. For every deterministic pivot rule it is
possible to build up a family of polytopes on which the simplex algorithm takes an
exponential number of iterations. (See the papers: [Klee and Minty, 1972],
[Jeroslow, 1973], [Avis and Chvatal, 1978], [Goldfarb and Sit, 1979], [Murty,
1980], [Kalai, 1992], [Matousek, Sharir and Welzl, 1996].) A survey and a unified
procedure for construction of these polytopes is given in [Amenta and Ziegler,
1999]. The numerical behavior of simplex algorithm is very intriguing, being
remarcably efficient in practice, while having no polynomial time worst–case
complexity. 

In 1979, Khachiyan used the ellipsoid algorithm to linear programming
and proved that it always is convegent in time polynomial in � , �  and / –
number of bits needed to represent the problem in computer. However, with all the
efforts, in practice, the ellipsoid algorithm was not competitive with the simplex
method.

The interior–point method introduced in 1984 by Karmarkar, which was
the origin of a real revolution in mathematical programming, proved to be
polynomial in � , �  and /  and was developed in numerous variants that are
competitives with and occasionally superior to the simplex method in practice
(specially for large–scale problems).

In spite of more than 60 years of attempts to unseat it, the simplex method
remains the most popular method for solving linear programs.  However, there are
no satisfactory theoretical explanation of its excellent performance.

The complexity study of simplex algorithm, defined as the number of
iterations (pivoting) as a function of the dimensions of the problem ( �  and � ),
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classify in two main directions: a controlled numerically one and a theoretical
oriented study, respectively. An excellent survey of the efficiency of the simplex
algorithm was given by Shamir [1987].

The computational experience accumulated along the five decades on the
behavior of the simplex algorithm in practice, in different implementation formule,
is vast. For the very beginning it has been noted that the primal simplex algorithm
needs �P  up to �P  iterations to get a solution. Based on empirical experience

with “thousands” of practical problems, Dantzig [1963, pp.160] conclude:
„For an � -equation problem with �  different variables in

the final basic set, the number of iterations may run anywhere
from �  as a minimum to �P  and rarely to �P�  The number

is usually less than � �� �  when there are less than 50

equations and 200 variables (to judge from informal empirical
observations).“

This is an empirical result in which the numerical effort of the first phase is
included. Dantzig follows:

„It has been conjectured that, by proper choice of the
variables to enter the basic set, it is possible to pass from any
basic feasible solution to any other in �  or less pivot steps,

where each basic solution generated along the way must be
feasible.“

This is known as Hirsch’s conjecture, given by Hirsch in 1957, being independent
of the techniques for pivot selection:

„in a convex region in � �−  dimensional space defined by �

halfspaces, is �  an upper bound for the minimum length

chain of vertices joining two given vertices? “

Wolfe and Cutler [1963], Marsten [1974], Goldfarb and Reid [1977], Ho
and Loute [1983] consider the behavior of simplex algorithm on a limited number
of LP problems. Their conclusion is that the number of pivot steps is usually
between �  and �P  when � ��  is about 3. Only very seldom does the number of
iterations exceed ��P�  When � ��  increases, then the number of iterations
seems to increase slowly [Shamir, 1987]. More recent numerical experiments
given by Bixby [1992, 2002] with CPLEX on 90 Netlib [Gay, 1985] linear
programming problems shows that for 72 of them (i.e. 80%), the number of total
iterations was at most 3 times the numer of rows. For unbalanced �  and �

problems the number of iterations is larger [Todd, 2002].
Using a probabilistic approach Kuhn and Quandt [1963], Avis and Chvátal

[1978] and Dunham, Kelly and Tolle [1977] consider the analysis of the simplex
algorithm when the problem data are randomly generated according to some
predetermined distribution. Although the numerical experiments documented in
the above mentionaed papers differ in many respects, Ron Shamir [1987] comes to
the following overall conclusion:
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„the average number of  pivots appears to be a slightly
superlinear function of one dimension of the problem, and a
sublinear, slowly increasing function of the other dimension“.
With other words „the smaller dimension �  (the dimension of the

polyhedra) enters the mean value function of the number of
iterations in a slightly superlinear way, and the larger dimension
�  (the number of inequality constraints including the sign-one)

has only a significantly sublinear influence“

Bordwardt, Damm, Donig and Joas [1993] tested seven variants of simplex
algorithm with the above mentioned pivoting rules under three rotation-symmetric
distributions: uniform distribution on � Q , uniform distribution on the full unit ball

of � Q and uniform distribution on the unit sphere of � Q , respectively. Their
conclusion is that the best performance shows the rule of steepest ascent. This
algorithm is slightly better than the rule of greatest improvement. These two
variants show a very good performance when the current vertex is far away from
the optimal one. The worse performance is associated with the combinatorial
variants. Among them the best is the random choice, followed by the rule of justice
and finally by the Bland’s rule.

The theoretical study of simplex’s complexity is based on the study of
polyhedra on one hand, and on a probabilistic analysis on the other hand. Any
explanation of simplex algorithm begins with the study of polytopes and
polyhedra. McMullen [1970] showed that an � − dimensional polytope with � −
facets has at least
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vertices. Klee [1974] extended this result to unbounded polyhedra.
The success of the simplex method can be explained by the theoretical

study of the diameter of the polyhedron corresponding to the constraints of the
problem. This is the largest number of edges in a shortest path joining two of its
vertices. Then, the best number of iterations for the worst linear programming
problem is given by the largest diameter of the corresponding polyhedron.
Considering � � �� � �  the largest diameter of a � − dimensional polyhedron with
�  facets, Hirsch conjectured that � � � � �� � � �≤ −  Excepting the case

P Q− ≤ �  and Q = ��  the Hirsch’s conjecture is still open. The best bounds on the

diameter are � � � �P� � � ≤ −
� �  given by Larman [1970], and � � � � P� � � ORJ≤ +�  of

Kalai and Kleitman [1992]. However, the existence of such of a short path does
not imply that the simplex algorithm will find it.

Klee and Minty gave the first example of a polytope for which the simplex
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algorithm with standard pivoting rule take an exponential number of iterations.
Kalai [1992] and Matousek, Sharir and Welzl [1996] proved that the best bound of
the iterations number for the simplex with random pivot rule is

( )�� ���� � �� � �  where .  is a constant. To our knowledge, the best analysis

of random pivot rules shows a �2 Q� � time [Kalai, 1992].
The idea of probabilistic analysis is to study a deterministic variant of the

simplex algorithm to solve random problem-instances. Two stochastic models are
known: Sign-Invariance Model (SIM) and Rotation-Symmetry Model (RSM). A
sign matrix is a diagonal matrix with +�  or −�  on the diagonal. For problem (3)
with data � � � �
 � �  the sign-invariance model consider another problem as:

� � � �� 
� � � � �7� � � � . The rotational-symmetry model considers [ ]� = �� �� � ��  and
the rows � �

P� � �� of the matrix $  and �  be distribuited independently,

identically and symmetrically under rotations on { }� Q − 	 �

A number of average–case analyses of the simplex algorithm using boths
models have been performed. For example, Borgwardt [1980] proved that the
simplex algorithm with the shadow vertex pivot rule runs in expected polynomial
time for polytopes whose constraints are drawn independently from spherically
symmetric distributions. For the problem

                                    { }��� � � 
� � � � � �7 Q P� � �≤ ∈ ∈ ,                                (4)

where �  is positive, the average number of pivot steps is

( )� � � Q� � ��� ¤ � [Borgwardt, 1999]. Using different distributions for fixed �  and
� → ∞ , the expected number of pivot steps � �

P Q� � � , where 6  is the number of

shadow-vertices is as follows (see  the papers of Borgwardt, [1977, 1987] and
Küfer , [1996]).

• Gaussian distribution on � Q � �
P Q� ∼  ��� � ��� �� �

• Uniform distribution on the
full unit ball of � Q �

�
P Q� ∼  � � Q� � ��� � �

+

• Uniform distribution on the
unit sphere of � Q �

�
P Q� ∼  � � Q� � ��� � �

−

Using a SIM probabilistic model, and a different pivot rule, Smale [1983]
proved bounds on the expected running time of Lemke’s self–dual parametric
simplex algorithm on linear programming problems chosen from a spherically–
symmetric distribution (Gaussian distribution centered at the origin). For the
problem

                                { }��� � � 
� � � � � � �7 Q P� � � �≤ ≥ ∈ ∈	                           (5)

for every fixed ��  the average number of pivots given by Smale is

( )� � � � �
P Q

Q Q

�

� �

� � � � ��� � �= + +
+

� �
�

 (� �� � is an exponential function of �� )
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Smale’s bound is not polinomial, but when � → ∞�  for fixed �� it is better than
that of Borgwardt. Megiddo [1986] improved the analysis of Smale.

Another model of random linear programming problems was studied
independently by Haimovich [1983] and Adler [1983]. They consider the
maximum subject to the matrices $ , of the expected time taken by parametric
simplex algorithms to solve linear programs for which the directions of the
inequalities are chosen at random. They proved that parametric simplex algorithm
takes an expected linear number of steps to go from the vertex corresponding to
the minimum the objective function to the vertex corresponding to the maximum
of the objective function. Haimovich combined the pivot rule of Borgwardt with a
more general version of Smale’s probabilistic model, and proved that the average
number of pivots is linear and can be bounded by:
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In fact, Haimovich [1983] obtained some better bounds:
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Recently, Spielman and Teng [2003] proposed an analysis, called
smoothed analysis, based on Gaussian perturbations of inputs to algorithms, and
measure the running times in terms of their input size and the standard deviation of
the Gaussian perturbations. In fact, the smoothed analysis is an interpolation
between worst case and average case analysis, i.e. combines the worst case
��� � �

[
� �  with the average case ��� � �

U
� �  as ��� ��� � � ��

[ U
� ��+ where �  is

a perturbation. They consider the maximum over 
  and \  of the expected
running time of the simplex algorithm on problems of the form:

{ }���  � 
 ! � � "7 �� � � � �+ ≤ +
where 
  and \  are arbitrary and *  and "  are matrix and vector of
independently chosen Gaussian random variables of mean 0 and standard deviation

σ� � � � ����� � �
L L L

In these circumstances they proved that a two–phase shadow–
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vertex simplex method to solve such a linear program is polynomial in � �σ  and

the dimensions of 
 . The smoothed analysis exploits the geometric properties of
the condition number of a matrix.

All these efforts show a frustration and an inconsistency between the
exponential worst–case behavior of the simplex method and its everyday
practicality. More than this, the average–case analysis of the simplex algorithm, on
different random linear programms hypothesis are very unlike, mainly because the
hypothesis of randomness are not at all so present in real problems as it is
supposed. Real large–scale linear programming problems always are sparse and in
many cases the nonzero elements of the activity matrix have unity values. All these
characteristics of real linear problems are not considered in any probabilistic
hypothesis of the above analysis.

In these circumstances it is necessary to consider another approach in
which the numerical evidence of the implementation of the simplex method is
placed on the first place. To verbalize: using computational evidence how many
iterations, on average, do we expect a package implementing the simplex method
to take for solving a linear programming problem with �  constraints and �

variables ? The idea is to try to find a closed formula for the number 7 of
iterations, as a function of the dimensions of the problem, using only the results of
computational experiments with simplex packages, and taking into account the
internal mechanisms of the simplex algorithm.

Considering the dynamics of the simplex algorithm (no matter which
variant) we see that at each iteration the algorithm selects the corresponding primal
nonbasic variable to enter the basis, and a leaving variable is chosen by means of
ratio test. After pivoting the the coefficient of the variable that exited the basis is
positive (assuming the nondegeneracy of the problem). Therefore, the whole effect
of one pivoting in the simplex algorithm is to change the sign of one of the
negative values from a list of � �+  values. In fact this is the essence of the
simplex algorithm. Every variant of the simplex algorithm try to solve in an
efficient manner the degeneracy and concentrates on this idea of sign changing.

Without lost of generality we can assume that out of � �+  values
� � �� �+ �  are negative. So, for nondegenerate linear programming problems we
can expect, (i.e. we conjecture) that the simplex algorithm will take � � �� �+ �

iterations, on average.
Numerical experiments of Vanderbei [1996] with a primal-dual simplex

method on 69 Netlib linear programming problems show that the total number of
iterations for this variant of simplex algorithm is:

� � �≈ +	 ��� � ���� � � �

which is very close to � � � �� �+ � The conclusion given by Vanderbei is that for

nondegenerate linear problems the number of iteration of any version of simplex
method seems to be linear in � �+ [Vanderbei, 1996, pp.187].

More recent experiments by Andrei [2003] with LPAKO primal simplex
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[Park, et all, 1998] and GLPK [Makhorin, 2002] on a different number of Netlib
problems shows that the total number of iterations corresponding to these packages
can be approximated by the function:

                                                   � � �≈ +�α β� � �                                               (6)

where the parameters α  and β  , as well as the number of problems considered
are given as:

Package # problems α β
LPAKO 55 -2.38199 1.078104

CPLEX 1.1 38 -1.175938 0.992153
PD (Vanderbei) 69 -1.03561 1.05151

GLPK 94 -1.459651 1.0205

So, based on empirical evidence, it is strongly supported that the number of
iterations for the primal simplex method is quasi-linear in � �� �+ . The

coefficient �α is a constant, the value of which is dependent by the degeneracy of
the problems.  From the above table it follows that the CPLEX package ranks first
in this list. In the following we shall consider the analysis of MINOS package.

3. Complexity of MINOS package for Linear
               Programming

MINOS is able to solve large-scale linear programming problems using an
advanced implementation of the primal simplex method2 . In MINOS the simplex
method is implemented in a very sophisticated manner, so the theoretical study of
the complexity of MINOS is not easy. Therefore, we shall consider an empirical
study of its complexity.

The problem considered here is as follows: using numerical evidence how
many iterations, on average, do we expect the MINOS method to take for solving a
linear programming problem with �  constraints and �  variables ? The idea is to
try to find a closed formula for the number 7 of iterations using only the results of
computational experiments with MINOS.

As we know the simplex algorithm, as implemented in MINOS, selects a
nonbasic variable to enter the basis, and the leaving variable is determined by a
ratio test. After the pivot, the variable that exited now appears as a nonbasic
variable with a positive reduced cost (in case of nondegeneracy). Hence, the idea
of one pivot of the simplex algorithm in MINOS is to change the sign of one of the
negative values from a list of � �+  values into a positive one. In a more general

                                                          
2 
0DQ\ WKDQNV WR 3URIHVVRU 0LFKDHO 6DXQGHUV ZKR JDYH PH WKH PRGHUQ 0,126 ����

YHUVLRQ OLEUDU\�
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context we can expect, on the average, that the number of the iterations should be a
fraction .  of � �+ . Therefore, we can conjecture that 7  can be approximated
by a function of the form:

                                               � � � �≈ +α β� � ,                                                 (7)

where α  and β  is a pair of real numbers. Our goal is to find the values of these
parameters that best fits the data obtained from a set of empirical observations
refering to the computational behavior of MINOS.

Table 1 shows the number of iterations of MINOS for solving a number of
119 test linear programming problems of NETLIB [Gay, 1985].

Table 1. Characteristics of the problems
and the number of iterations with MINOS.

Name � � iter Name � � iter
25fv47 822 1571 7025 pcb3000 3961 6810 10869
adlittle 57 97 100 pds-2 2954 7535 3074
afiro 28 32 9 perold 626 1376 4095
agg 489 163 103 pilot 1442 3652 16273

agg2 517 302 152 pilot4 411 1000 1412
agg3 517 302 172 pilotja 941 1988 6669
band 126 129 26 pilotnov 976 2172 2088

bandm 306 472 476 pilotwe 723 2789 4656
beaconfd 174 262 45 r05 5191 9500 1710

blend 75 83 79 recipe 92 180 27
bnl1 644 1175 1566 refine 30 33 26
bnl2 2325 3489 4972 rosen1 521 1024 2901

boeing1 352 384 517 rosen2 1033 2048 6059
boeing2 167 143 195 rosen3 2057 4096 12585
brandy 221 249 321 rosen7 265 512 711
capri 272 353 254 rosen8 521 1024 1700

cetsud 1907 3347 2567 rosen9 1033 2048 3084
ch 3853 5062 23306 rosen10 2057 4096 6730

co5 5879 7993 34355 sc105 106 103 27
cre-a 3517 4067 4015 sc205 206 203 52
cre-c 3069 3678 4337 sc50a 51 48 14
cq5 5150 7530 50423 sc50b 51 48 16

czprob 930 3523 1502 scagr25 472 500 499
cycle 1904 2857 2779 scagr7 130 140 100

d2q06c 2172 5167 45644 scfxm1 331 457 384
d6cube 416 6184 94360 scfxm2 661 914 733
degen2 445 534 1254 scfxm3 991 1371 1150
degen3 1504 1818 6918 scrs8 491 1169 769
e226 224 282 488 scsd1 78 760 425

etamacro 401 688 571 scsd6 148 1350 1142
fffff800 525 854 488 scsd8 398 2750 3028



12

finnis 498 614 486 sctap1 301 480 243
fit1p 628 1677 843 sctap2 1091 1880 742
fit1d 25 1026 2411 sctap3 1481 2480 888

forplan 162 421 323 seba 516 1028 294
ganges 1310 1681 662 share1b 118 225 209

ge 10340 11098 14449 share2b 97 79 103
gfrd-pnc 617 1092 656 shell 537 1775 323
greenbea 2393 5405 26850 ship04l 403 2118 266
greenbeb 2393 5404 12774 ship04s 403 1458 180

grow7 141 301 111 ship08l 779 4283 438
grow15 301 645 285 ship08s 779 2387 256
grow22 441 946 412 ship12l 1152 5427 837
israel 175 142 282 ship12s 1152 2763 414
kb2 44 41 51 sierra 1228 2036 1080

ken-07 2427 3602 1826 stair 357 467 512
ken-11 14695 21349 15343 standata 360 1075 101

lotfi 154 308 200 standmps 468 1075 247
maros 847 1443 2225 stocfor1 118 111 56

maros-r7 3137 9408 2520 stocfor2 2158 2031 1925
modszk1 688 1620 1025 tuff 334 587 557

nesm 663 2923 3472 tora4 1179 5454 831
optanyrf 529 1077 3225 tsp42 43 861 283
p0201 134 201 225 vbnl5 2966 4130 5139
p0282 242 282 296 willett 185 494 390
p0291 253 291 91 woodlp 245 2594 755
p0248 177 548 429 woodw 1099 8405 3772

p05 5091 9500 1638 work1 45 78 45
p2756 756 2756 797 vtp 199 203 163

pcb1000 1566 2428 3255

m = number of constraints,
n = number of variables,
iter = number of iterations (MINOS, simplex primal).

Considering this set of 119 LP problems and using #� -regression technique, for

different values of parameter . , the following values of α  and β  have been
obtained, table 2:

Table 2. The values of α  and β .

. α β
2 -3.02155 1.18766
3 -1.9063 1.18766
5 -1.3013 1.18766
7 -1.0763 1.18766
8 -1.00718 1.18766
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Therefore, it seems that the best suited formula for 7  is:

                                                � � �≈ +�α β� � ,                                          (8)

where α = −� ����  and β =����� , showing that the number of iterations of

MINOS for solving linear problems is quasi-linear in � �+ , with a relatively
small coefficient.

Let us consider the behavior of the formula (8) for different numbers of LP
problems. Table 3 shows the values of α  and β  corresponding to some
number of LP problems from table 1.

Table 3. The values of α  and β .

# problems α β
50 -1.264688 1.294397
60 -1.100808 1.241885
70 -1.057952 1.230226
80 -1.142604 1.258767
90 -1.232220 1.280509
100 -1.172837 1.252718
119 -1.007185 1.187660

Therefore, we can conjecture that the number of iterations of MINOS
package for solving linear programming problems is quasi–linear in � �+ , with a
relatively small coefficient of proportionality. Clearly, this is an empirical result.
But, the main aspect which must be emphasized here is that the complexity
analysis of the MINOS is considered here into the direct connection with the
anatomy of the simplex algorithm. This suggest us to consider the algebraic
formula (8) as a prediction formula for the number of iterations.

4. Conclusion
Using an empirical approach we have established a closed formula giving

the number of iterations of the MINOS package for solving linear programming
problems. Basically, this is quasi–linear in � �+ . To emphasize this rezult more
numerical experiments with MINOS package must be done.

The theoretical analysis of MINOS algorithm remains a very difficult
undertaking. In this context it seems that the MINOS algorithm, like any other one,
remains unknown. This suggests us that the only approach we have to consider is
an empirical one. Clearly, in this case the analysis refers to the MINOS package,
not to the MINOS algorithm. However, this is not a big problem because we are
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most interested into the MINOS package, for solving real practical problems, than
the MINOS algorithm.
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