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Abstract. A new adaptive scaled BFGS method for unconstrained optimization is presented. The 

third term in the standard BFGS update formula is scaled in order to reduce the large eigenvalues 

of the approximation to the Hessian of the minimizing function. Under the inexact Wolfe line 

search conditions, the global convergence of the adaptive scaled BFGS method is proved in very 

general conditions without assuming the convexity of the minimizing function. Using 80 

unconstrained optimization test functions with a medium number of variables, the preliminary 

numerical experiments show that this variant of the scaled BFGS method is more efficient than 

the standard BFGS update or than some other scaled BFGS methods.  
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1. Introduction  
One of the most efficient quasi-Newton methods for solving small and medium-size 

unconstrained optimization problems is the BFGS method [8, 18, 21, 33]. The theory behind this 

method and its global convergence are very well established [14, 15]. For convex minimization 

problems, using the exact line search or some special inexact line search, it has been proved that 

the BFGS method is globally convergent (see [10, 11, 16, 22, 30]). On the other hand, for non-

convex minimization problems, under the exact line search, the BFGS method and other methods 

in the Broyden class may fail [26]. Also, in [13] Yu-Hong Dai showed that the BFGS method 

may fail for non-convex functions with line searches that satisfy the Wolfe conditions [38, 39]. 

However, BFGS has very interesting properties and remains one of the most respectable quasi-

Newton methods for unconstrained optimization [19, 27]. 

As pointed out by Nocedal [27], an interesting property of the BFGS method is its self-

correcting quality. If the current inverse approximation to the Hessian kH  incorrectly estimates 

the curvature of the objective function, i.e. if this estimate slows down the iteration, then the 

Hessian approximation will tend to correct itself within a few steps. Another important property 

of BFGS explained by Nocedal [27] is that it better corrects small eigenvalues than large ones. 

Powell [32] proved that BFGS with Wolfe inexact line search is globally superlinear convergent 

for convex problems. On the other hand, Byrd and Nocedal [11] obtained global convergence of 

BFGS with backtracking line search. Under Wolfe inexact line search, Byrd, Nocedal and Yuan 

[10] established the global and the superlinear convergence of Broyden’s quasi-Newton methods 

on convex problems (excepting DFP method).  
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 However, intensive numerical experiments showed that the BFGS method may require a 

large number of iterations or function and gradient evaluations on some problems [20]. The 

sources of inefficiency of the BFGS method may be caused by a poor initial approximation to the 

Hessian or by the ill-conditioning of the Hessian approximations along the iterations, thus leading 

to a poorly defined search direction.  

In order to improve the performances of the BFGS method, the self-scaling BFGS 

methods have been derived, firstly suggested and analyzed for the minimization of the quadratic 

functions. Oren and Luenberger [29] scaled the Hessian approximation kB  before updating it, i.e. 

kB  is replaced by ,k kB  where k  is a self-scaling factor computed to reduce the condition 

number of kR  when it is applied to a quadratic function with Hessian ,G  where 1/2 1/2
k kR G H G  

and kH  is the current inverse approximation to the Hessian. Nocedal and Yuan [28] further 

studied the self-scaling BFGS method when / ,T T
k k k k k ky s s B s   where 1k k ks x x   and 

1 .k k ky g g   They proved that under the Wolfe line search, the corresponding algorithm is 

globally convergent. An extension of this self-scaling BFGS method was considered by Al-Baali 

[1], who introduced a simple modification: min{1, }.k k   The numerical experiments in [1] 

showed that the modified self-scaling BFGS method is competitive versus the unscaled BFGS 

method. In the same line of efforts, Al-Baali [2] introduced a restricted class of self-scaling quasi-

Newton methods which impose some conditions on the Broyden family parameter and on the 

self-scaling factor .k  The global convergence and the local superlinear convergence of these 

class of self-scaling methods with inexact line search were given by Al-Baali [2]. The numerical 

experiments with this restricted class of self-scaling quasi-Newton methods were reported by Al-

Baali [3] on a set of small test unconstrained optimization problems up to 20 variables.  

Using different function interpolation conditions Biggs [6, 7] and Yuan [36] obtained 

some modified BFGS methods and proved their global convergence. The idea of their method is 

to scale the third term of the BFGS updating formula. The modified BFGS method by Yuan uses 

both gradient and function values information in one step. Another self-scaling modified BFGS 

method was suggested by Aiping Liao [25]. In this method the original BFGS updating formula is 

modified by introducing two positive scaling parameters which correct the eigenvalues of kB  

better than the original unscaled BFGS does. Numerical experiments support this claim and 

indicate that the scaled BFGS method may be competitive versus the standard unscaled BFGS 

method. The values of these parameters are computed in an adaptive way subject to a positive 

parameter. The global convergence of this two parameters scaled BFGS modified method is 

proved by using a tool introduced by Byrd and Nocedal [11]. A recent spectral scaling BFGS 

method was proposed by Cheng and Li [12]. In their method the standard BFGS update is 

modified by introducing a positive scale factor k  to the third term of the BFGS updating 

formula, which is exactly the Barzilai and Borwein [5] parameter obtained by minimizing 
2
.k k ks y  Comparisons of this spectral scaled BFGS method versus some other scaled 

modified BFGS methods given by Yuan [36], Al-Baali [3], Zhang and Xu [37] proved that this 

spectral scaled BFGS method is clearly more efficient and more robust. 

In this paper we introduce an adaptive scaled BFGS method. The idea of this method is to 

improve the self-correcting property of the BFGS update by scaling the third term of the standard 

BFGS updating formula. In Section 2 we present the motivation of this new adaptive scaled 

BFGS method. The scaling factor is computed in an adaptive manner in such a way that the third 

term of the trace of the scaled BFGS updating formula, which is responsible for shifting the 

eigenvalues to the right, is reduced. The scaled BFGS updating inherits the positive definiteness 

of the scaled approximation to the Hessian from the previous iteration, which does not rely on the 

line search or on the convexity of the minimizing function. In Section 3 the global convergence of 
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this scaled BFGS method is proved in very general conditions, without assuming the convexity of 

the minimizing function. Section 4 presents the numerical results obtained with a Fortran 

implementation of this adaptive scaled BFGS method versus: the standard BFGS update, the 

modified BFGS method by Yuan [36], the spectral scaled BFGS method by Cheng and Li [12] 

and the modified BFGS method by Biggs [6, 7]. The numerical results are obtained by solving a 

set of 80 unconstrained optimization test problems of different structures and complexities [4]. 

We have the computational evidence that this adaptive scaled BFGS method is much more 

efficient than the classical BFGS method and than the modified BFGS methods considered in this 

numerical study.  

 

2. Motivation of scaled BFGS method 

Let : nf R R  be a continuously differentiable function bounded from below and consider the 

following unconstrained minimization problem: 

                                                                        min ( ),f x                                                             (2.1) 

where .nx R  The well known BFGS method for solving (2.1) generates a sequence { }kx  

computed by the scheme: 

                                                                   1 ,k k k kx x d                                                         (2.2) 

where kd  is the BFGS search direction obtained as solution of the linear algebraic system 

                                                                       ,k k kB d g                                                           (2.3) 

and kg  is the gradient ( )kf x  of f  at .kx  The matrix kB  is the BFGS approximation to the 

Hessian 2 ( )kf x  of f  at ,kx  being updated by the formula: 

                                                         1 ,
T T

k k k k k k
k k T T

k k k k k

B s s B y y
B B

s B s y s
                                              (2.4) 

where 1 ,k k ks x x   1 ,k k ky g g   0B  being symmetric and positive definite. An important 

property of the BFGS updating formula (2.4), which we call standard BFGS, is that 1kB   inherits 

the positive definiteness of kB  if 0.T
k ky s   The condition 0k

T

k sy  holds if the stepsize k  in 

(2.2) is determined by the Wolfe line search conditions: 

                                                   ( ) ( ) ( ) ,T
k k k k k k kf x d f x g x d                                        (2.5) 

                                                   ( ) ( ) ,T T
k k k k k kg x d d g x d                                                  (2.6) 

where the positive constants   and   satisfy 0 1.     We note that the condition 0T
k ky s   

is also guaranteed to hold if the stepsize k  is determined by the exact line search: 

min{ ( ), 0}.k kf x d    Since kB  is positive definite, the search direction kd  generated by 

(2.3) is a descent direction of f  at ,kx  no matter whether the Hessian is positive definite or not.  

 It is worth computing the trace and the determinant of the standard 1kB   given by (2.4) as 

important tools in the analysis of the properties and of the convergence of BFGS method. Indeed, 

by direct computation from (2.4) we get: 

                                                  

2 2

1( ) ( ) .
k k k

k k T T
k k k k k

B s y
tr B tr B

s B s y s
                                              (2.7) 

On the other hand 

1

1det( ) det
T T

k k k k k k
k k T T

k k k k k

s s B B y y
B B I

s B s y s





  
    

   
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                                                         1( )
det( )det .

T T
k k k

k k k kT T
k k k k k

B s y
B I s B y

s B s y s

 
   

 
 

Now, applying the identity (see [34]) 

                                1 2 3 4 1 2 3 4 1 4 2 3det( ) (1 )(1 ) ( )( )T T T T T TI u u u u u u u u u u u u                              (2.8) 

where  

1 ,ku s   2 ,k k
T
k k k

B s
u

s B s
   1

3 k ku B y  and  4 ,k
T
k k

y
u

y s
  

we obtain: 

                                                        1det( ) det( ) .
T
k k

k k T
k k k

y s
B B

s B s
                                                 (2.9) 

 

We know that the efficiency of the BFGS method is dependent on the structure of the eigenvalues 

of the approximation to the Hessian matrix [27]. Observe that the second term in (2.7) is negative. 

Therefore, it produces a shift of the eigenvalues of 1kB   to the left. Thus, the BFGS method is 

able to correct large eigenvalues. On the other hand, the third term in (2.7) being positive, it 

produces a shift of the eigenvalues of 1kB   to the right. If this term is large, 1kB   may have large 

eigenvalues, too. Therefore, a correction of the eigenvalues of 1kB   can be achieved by scaling 

the corresponding terms in (2.4), and this is the main motivation for which we use the scaled 

BFGS method. In this paper we scale only the third term in (2.4) for correcting the large 

eigenvalues of 1.kB    

 

In practical implementations the search direction is computed as  

                                                                       ,k k kd H g                                                        (2.10) 

where kH  is the BFGS approximation to the inverse Hessian 2 1( )kf x   of f  at ,kx  i.e. 

1.k kH B  With a  little algebra, using the rank-one Sherman-Morrison-Woodbury formula [34] 

twice, from (2.4) we get: 

                                       1 1 .
T T T T

k k k k k k k k k k k
k k T T T

k k k k k k

H y s s y H y H y s s
H H

y s y s y s


 
    

 
                    (2.11) 

Also, for the stepsize computation, in practical implementations the inexact Wolfe line search 

conditions (2.5) and (2.6) are used.  

 

 Motivated by the idea of changing the structure of the eigenvalues of the BFGS 

approximation to the Hessian matrix, in this paper we propose a scaled BFGS method in which 

the updating of the approximation Hessian matrix kB  is computed as: 

                                                    1 ,
T T

k k k k k k
k k kT T

k k k k k

B s s B y y
B B

s B s y s
                                             (2.12) 

where k  is a positive parameter which is to be determined. Using the rank-one Sherman-

Morrison-Woodbury update formula twice, from (2.12) we get: 

                                       1

1
.

T T T T
k k k k k k k k k k k

k k T T T
kk k k k k k

H y s s y H y H y s s
H H

y s y s y s


 
    

 
                 (2.13) 

 

Proposition 2.1. If the stepsize k  is determined by the Wolfe line search (2.5) and (2.6), kB  is 

positive definite and 0,k   then 1kB   given by (2.12) is also positive definite. 
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Proof  By the Cauchy-Schwarz inequality, for any 0,z   we have 
2( ) ( )( ).T T T

k k k k k ks B z s B s z B z  

On the other hand, by the Wolfe line search (2.5) and (2.6) we have that 0.T
k ky s   Therefore, 

using the above inequality we get: 

                        1

T T T T
T T k k k k k k

k k kT T
k k k k k

z B s s B z z y y z
z B z z B z

s B s y s
     

                                     
2 2 2( ) ( ) ( )

0,
T T T

T k k k k
k k kT T T

k k k k k k k

z B s z y z y
z B z

s B s y s y s
       

for any nonzero .z    

 

The above proposition shows that 1kB   given by (2.12) with 0k   inherits the positive 

definiteness of kB  and it does not rely on the line search used or on the convexity of the function 

.f  Therefore, (2.12) is well defined if 0,T
k ky s   which is satisfied if the stepsize is determined 

by the Wolfe line search conditions (2.5) and (2.6). With these, the scaled BFGS algorithm can be 

presented as: 

 

Scaled BFGS algorithm - SBFGS 

1. Initialization. Choose an initial point 0
nx R  and an initial positive definite matrix 0.H  

Choose the constants ,    with 0 1,     and 0   sufficiently small. Compute 

0 0( ).g f x   Set 0 0.d g   Set 0.k   

2. Test a criterion for stopping the iterations. For example, if ,kg   then stop the 

iterations. Otherwise, continue with step 3. 

3. Compute the stepsize 0k   satisfying the Wolfe line search conditions (2.5) and (2.6). 

4. Compute 1 ,k k k kx x d    1 1( )k kf f x   and 1 1( ).k kg f x    Set 1 ,k k ks x x   

1 .k k ky g g   

5. Compute the scaling factor .k  

6. Update the inverse Hessian kH  using (2.13). 

7. Compute the search direction as 1 1 1.k k kd H g     

8. Set 1k k   and continue with step 2.    

  

Observe that if 1k   for all 0,1,...,k   then the above algorithm is exactly the standard BFGS 

algorithm. For different values of the parameter k  in (2.12) (or (2.13)), different scaled BFGS 

algorithms are obtained. The algorithm is very easy to be implemented, but it is applicable only in 

solving small and medium unconstrained optimization problems. 

 

Some values for the scaling parameter k  in (2.12) have been proposed in literature as 

follows. Observe that the quasi-Newton step k k kd H g   is a stationary point of the following 

problem: 

                                             
1

min ( ) ( ) .
2

n

T T
k k k kd R

d f x g d d B d


                                       (2.14) 
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Since for small ,d  ( ) ( ),k kd f x d    it follows that the problem (2.14) is an approximation to 

the problem (2.1) near the current point .kx  From (2.14) we have that 

                                                   (0) ( ),k kf x     (0) ( ),k kg x                                           (2.15) 

and the quasi-Newton condition 1 1k k kH y s   is equivalent to  

                                                          1 1( ) ( ).k k k kx x g x                                                    (2.16) 

Therefore ( )k kx x   is a quadratic interpolation of ( )f x  at kx  satisfying the above conditions 

(2.15) and (2.16).  

If the objective function is cubic along the line segment connecting 1kx   and kx  and the 

Hermite interpolation is used on the same line between 1kx   and ,kx  then the following condition 

holds 

                               2
1 1 1 1 1 1( ) 4 2 6( ( ) ( )).T T T

k k k k k k k k ks f x s s g s g f x f x                               (2.17) 

Biggs [6, 7] considers the update (2.13) with the value of k  chosen in such a way that the new 

approximate Hessian satisfies the reasonable condition 

                                    1 1 1 1 1 14 2 6( ( ) ( )).T T T
k k k k k k k k ks B s s g s g f x f x                                   (2.18) 

Therefore, the value of k  proposed by Biggs is 

                                             1 1

6
( ( ) ( ) ) 2.T

k k k k kT
k k

f x f x s g
y s

                                         (2.19) 

For one-dimensional problems Wang and Yuan [35] showed that the scaled BFGS (2.12) with 

(2.19) and without line search is R-linear convergent. 

In the same line of developments, Yuan [36] considers that the approximate function 

( )k d  satisfies the interpolation condition 

                                                           1 1( ) ( )k k k kx x f x                                                      (2.20) 

instead of (2.16) and determines the following value for the scaling parameter 

                                                1 1

2
( ( ) ( ) ).T

k k k k kT
k k

f x f x s g
y s

                                           (2.21) 

For uniformly convex functions it is easy to prove that there exists a constant 0   such that for 

all ,k  [ ,2].k   Powell [31] showed that the scaled BFGS method with k  given by (2.21) is 

globally convergent for convex functions with inexact line search. However, for general nonlinear 

functions the inexact line search does not involve the positivity of .k  In these cases Yuan 

restricts k  in the interval [0.01,100]  and proves the global convergence of this variant of the 

scaled BFGS method. 

In another avenue of research Liao [25] introduced a modified (scaled) BFGS method in 

which both the second and the third terms in (2.4) are scaled with positive scaling parameters: 

                                                .1

k

T

k

T

kk
k

kk

T

k

k

T

kkk
kkk

sy

yy

sBs

BssB
BB                                        (2.22) 

Liao proved that this scaled BFGS method with two positive parameters corrects the large 

eigenvalues better than the BFGS method given by (2.4). The parameters scaling the terms in the 

BFGS update are computed in an adaptive way subject to the values of a positive parameter: 

 

                      
, , if ,

( , )

( ,1), otherwise,

T T T
k k k k k k k k

kT T T T T T
k k k k k k k k k k k k k k k k k

k

s B s y s s B s

s B s y s s B s y s s B s y s


 



 
 

    



             (2.23) 
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where 10  k  (for example )/1exp( 2kk  ). Using a tool given by Byrd and Nocedal [11], 

Liao proved that the scaled BFGS (2.22) with the scaling parameters given by (2.23) and using 

the Wolfe line search generates iterates which converge superlinearly to the optimal solution. 

 

 Another scaled BFGS method was introduced by Cheng and Li [12]. In this method the 

scaling parameter k  is computed as 

                                                                    
2

,
T
k k

k

k

y s

y
                                                              (2.24) 

obtained as solution of the problem: 
2

min .k k ks y  Observe that (2.24) is exactly one of the 

spectral stepsizes introduced by Barzilai and Borwein [5]. Therefore, the scaled BFGS method 

given by (2.12) with (2.24) is viewed as the spectral scaled BFGS method. Under classical 

assumptions it is proved that this spectral scaled BFGS method with Wolfe line search is globally 

convergent and R-linear convergent for convex optimization problems.   

 

 In this paper we introduce another scaled BFGS update given by (2.12), in which the 

scaling parameter k  is computed as: 

                                                         
2

min ,1 ,
T
k k

k

k k

y s

y




  
  

  

                                                (2.25) 

where 0k  for all .,1,0 k  

Since under the Wolfe line search conditions (2.5) and (2.6) 0T
k ky s   for all 0,1, ,k   it 

follows that k  given by (2.25) is bounded away from zero, i.e. .10  k  

As we know, the BFGS method actually suffers more from the large eigenvalues than from the 

small ones (see Powell [32] or Byrd, Liu and Nocedal [9]). Therefore, the motivation behind this 

adaptive computation of the scaling parameter k  as in (2.25) is that if 1,k   then the structure 

of the large eigenvalues of 1kB  is corrected by their shifting to the left, as it is proved in the 

following proposition. 

 

Proposition 2.2. If k  is selected as in (2.25), where 0k  for all ,,1,0 k  then the large 

eigenvalues of 1kB  given by (2.12) are shifted to the left. 

 

Proof As we know, the sum of the eigenvalues of matrix 1kB  is given by ).( 1kBtr  From (2.12) 

we have 

                                                

2 2

1( ) ( ) .
k k k

k k kT T
k k k k k

B s y
tr B tr B

s B s y s
                                         (2.26) 

Observe that the second term in (2.26), which is negative, is shifting the eigenvalues of 1kB  to 

the left. On the other hand, the third term in (2.26), which is positive, is shifting the eigenvalues 

to the right. Now, substituting k  from (2.25) in (2.26) we get: 

                                              

2 2

1 2
( ) ( ) .

k k k

k k T
k k k k k

B s y
tr B tr B

s B s y 
   


                                   (2.27) 
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Since 1)/(
22

 kkk yy   for any positive value of ,k  ,,1,0 k  it follows that the third 

term in (2.26) responsible for the large eigenvalues of 1kB  is reduced. Therefore, )( 1kBtr  is 

reduced, i.e. the large eigenvalues of 1kB  are shifted to the left, thus correcting the structure of 

the eigenvalues.   

 

 

The interpretation of k  from (2.24) given by Cheng and Li [12] is that the k I  is a diagonal 

preconditioner of 2
1( ),kf x   determined in such a way as to reduce the condition number of the 

Hessian 2
1( ).kf x   Cheng and Li suggest that k I  should be a rough approximation to the 

inverse of 2
1( ).kf x   By minimizing 

2
( )k k ks I y  subject to ,k  the proposal (2.24) is 

obtained. However, another interpretation of k  given by (2.24) is possible. Observe that from 

(2.26), a simple way to reduce the value of 1( )ktr B  is to select k  like in (2.24), i.e. exactly the 

proposal given by Cheng and Li [12], which leads to 

                                                     

2

1( ) ( ) 1.
k k

k k T
k k k

B s
tr B tr B

s B s
                                                (2.28) 

It is clear that by using (2.25), the reduction of )( 1kBtr  given by (2.27) is more emphasized than 

the one given by (2.24). 

 

 

3. Convergence analysis 

Assume that the level set 0{ : ( ) ( )}S x f x f x   is bounded. From the first Wolfe condition (2.5) 

it follows that the sequence { ( )}kf x  is nonincreasing, and therefore lim ( )k kf x  exists. 

Besides, .kx S  In order to establish the global convergence of the algorithm SBFGS, some 

useful propositions are proved as follows, where k  is computed as in (2.25) and k  is a positive 

parameter. Our analysis is based on the same principles as those presented by Li and Fukushima 

[24] and by Byrd and Nocedal [11]. 

 

Proposition 3.1. Consider the scaled 1kB   given by (2.12), where k  is computed as in (2.25), 

then 

                           1 0( ) ( ) ( 1)ktr B tr B k        and     

2

0

0

( ) ( 1).
k

i i

T
i i ii

B s
tr B k

s B s

                       (3.1) 

Proof  From (2.12) we have: 

                                                 

2 2

1( ) ( )
k k k

k k kT T
k k k k k

B s y
tr B tr B

s B s y s
     

                                                              

2 2

0

0 0

( ) .
k k

i i i
iT T

i i i i ii i

B s y
tr B

s B s y s


 

                                    (3.2) 

But 
2 2 2

2 2
1.

T
i i ii i

i T T
i i i ii i i i

y y yy s

y s y sy y


 
  

 
 

Therefore, 
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2

1 0 0

0

( ) ( ) ( 1) ( ) ( 1).
k

i i
k T

i i ii

B s
tr B tr B k tr B k

s B s




                                 (3.3) 

Since 1kB   is positive definite, 1( ) 0.ktr B    Therefore (3.1) is true.   

 

Remark 3.1. If 0 ,B I  then  

                                    1( ) ( 1),ktr B n k       and   

2

0

( 1).
k

i i

T
i i ii

B s
n k

s B s

       

 

Observe that the last inequality in (3.3) shows that the largest eigenvalue of 1kB   is strictly 

smaller than 0( ) ( 1).tr B k   Therefore, the scaled BFGS method with k  given by (2.25) has a 

good self-correcting property subject to the trace, i.e. it may be more efficient than the standard 

BFGS in correcting the large eigenvalues. 

 

Proposition 3.2. If for all ,k  ,k m   where 0m   is a constant, then there is a constant 0c   

such that for all k  sufficiently large: 

                                                                     
0

.
k

k
i

i

c


                                                              (3.4) 

Proof Considering the identity (2.8), the determinant of the scaled 1kB   given by (2.12) is as 

follows: 

                                        
1

1det( ) det
T T

k k k k k k
k k kT T

k k k k k

s s B B y y
B B I

s B s y s






  
    

   

 

                                                       0

0

det( ) det( ) .
kT T

k k i i
k k iT T

k k k i i ii

y s y s
B B

s B s s B s
 



                           (3.5) 

From (2.25) we get: 

 

2

1 0 2
0

( )
det( ) det( ) .

k T
i i

k
T

i i i i i i

y s
B B

s B s y 







  

 

But, for all ,i  T T
i i i i i is B s s g   and (1 ) .T T

i i i iy s s g    Therefore, 

 

                                   1 0 2

0

det( ) det( )
k T T

i i i i
k T

i i ii i i

y s y s
B B

s B s y 







  

                                                   1 1
0 0

0 0

1 1
det( ) det( )(1 ) .

k k
k k

i ii i

B m B m



 

 

 


                   (3.6) 

Since 1 1

1
det( ) ( ) ,

n

k kB tr B
n

 

 
  
 

 using Proposition 3.1 we get 

 1 0

1
det( ) ( ) ( 1) .

n

kB tr B k
n



 
   
 

 

Therefore, 
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1 1 1 1

0 0

10

0

(1 ) det( ) (1 ) det( )
.

det( ) 1
( ( ) ( 1))

k k k k k

i n
ki

m B m B

B
tr B k

n

 


   



 
 

 
   

                          (3.7) 

 

When k  is sufficiently large, (3.7) implies (3.4).  

 

 

Remark 3.2. If 0 ,B I  then 

                                                         
1 1

0

(1 )
.

1
( 1)

k k k

i n
i

m

n k
n




 





 

   

     

 

 

Theorem 3.1. Let { }kx be generated by the algorithm, SBFGS. Then 

                                                               liminf 0.k kg                                                        (3.8) 

 

Proof Assume that 0,kg     for all .k  Observe that .k k k k kB s B d  Since f  is bounded 

from below, from the first Wolfe condition (2.5) we have 
0
( ) .T

k kk
s g




    Therefore, 

 

0 0 0

1
( )

kT T T
k k k k k k k k

k k kk k k

g
s g s B s s B s

B s

  

  

        

                                         
0 0

T T
k k k kk k k k k k

k k

k k k k k k k kk k

B s gs B s s B s
g g

B s B s B s B s

 

 

     

                                         
2 2

2 2

0 0

.
T T
k k k k k k

k k k

k kk k k k

s B s s B s
g

B s B s
 

 

 

     

 

Now, from the geometric inequality, for any 0   there exists an integer 0 0k   such that for 

any positive integer q  we have 

 

0 0

0 0

1/

2 2

1 1

.

q
k q k qT T

k k k k k k
k k

k k k kk k k k

s B s s B s
q

B s B s
 

 

   

 
   

  
   

Hence,  

                                    
0 0 0

0 0 0

1/1/ 2 2

2

1 1 1

qq
k q k q k q

k k k k
k T T

k k k k k kk k k k k k

B s B s

q s B s q s B s


  

     

    
   

     
    

                                                         
0

2

0 02 2

0

( ( ) ( 1)),

k q
k k

T
k k kk

B s
tr B k q

q s B s q





 
                          (3.9) 

 

where the last inequality follows from Proposition 3.1. Now, considering ,q  we get a 

contradiction because of Proposition 3.2 which shows that the left-hand side of the above 

inequality (3.9) is greater than a positive constant. Therefore, (3.8) is true.    
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Observe that the global convergence of the algorithm SBFGS with k  given by (2.25) bounded 

from below is proved in general conditions without the convexity assumption of function .f  This 

is the best result we obtain in very general assumptions that the function f is bounded from 

below and the line search is based on the Wolfe line search conditions (2.5) and (2.6) and without 

the convexity assumption on .f  Moreover, the above results are obtained for any positive value 

for the parameter .k  The superlinear convergence of the scaled BFGS method (2.12) with the 

scaling parameter k  given by (2.25) can be proved by using the tool and the results presented by 

Byrd and Nocedal [11] and Dennis and Moré [14, 15] (see [24]). If the Hessian matrix 2 ( )f x  of 

the minimizing function f  is Lipschitz continuous at the optimal solution *x  of the problem 

(2.1), then for any positive definite matrix 0B  the modified BFGS method (2.12) with the scaling 

parameter given by (2.25) and the line search satisfying the inexact Wolfe line search conditions 

(2.5) and (2.6), generates a sequence { }kx  which converges to *x  superlinearly. This result is 

obtained in very general assumptions that f  is twice continuously differentiable near *,x  { }kx  

converges to *x  where *( ) 0,f x   2 *( )f x  is positive definite and 2 ( )f x  is Lipschitz 

continuous, again without convexity assumption on f  (see also [24]).  

 

 

4. Numerical results 

In this section we report some numerical results obtained with an implementation of the scaled 

BFGS algorithm – SBFGS. The algorithm SBFGS is particularized as follows: BFGSN (SBFGS 

with k  given by (2.25) for different values of 0k ), BFGS (SBFGS with ,1k  i.e. the 

standard BFGS), BFGSC (SBFGS with k  given by (2.24), i.e. the scaled BFGS given by Cheng 

and Li [12]), BFGSB (SBFGS with k  given by (2.19), i.e. the scaled BFGS proposed by Biggs 

[6,7]) and BFGSY (SBFGS with k  given by (2.21), i.e. the scaled BFGS suggested by Yuan 

[36]). 

 

We considered a number of 80 unconstrained optimization test problems of medium size 

( 100n   variables), described in [4]. All the algorithms implement the Wolfe line search 

conditions with 0.8   and 0.0001.   The iterations are stopped if the inequality 510kg 


  

is satisfied, where .


 is the maximum absolute component of a vector or if the number of 

iterations exceeds 310 .  In all the algorithms, for all the problems, the initial matrix 0 ,H I  i.e. 

the identity matrix. For the scaled BFGS methods by Biggs and Yuan, k  given by (2.19) and 

(2.21) respectively is restricted in the interval [0.01, 100]. All the codes were written in double 

precision Fortran and compiled with f77 (default compiler settings) on an Intel Pentium 4, 

1.8GHz workstation. All the codes are authored by Andrei.  

 

The algorithms we compare in these numerical experiments find local solutions. Therefore, the 

comparisons of algorithms are given in the following context. Let 1ALG

if and 2ALG

if  be the 

optimal value found by ALG1 and ALG2, for problem 1, ,80,i   respectively. We say that, in 

the particular problem ,i  the performance of ALG1 was better than the performance of ALG2 if:  
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                                                            1 2 310ALG ALG

i if f                                                       (4.1) 

 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the 

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient 

evaluations, or the CPU time corresponding to ALG2, respectively.  

 

In the first set of numerical experiments we consider ,1 k

T

kk gs  i.e. the scaling parameter k  

in (2.25) is defined as: 

                                                     
2

1

min ,1 ,
T
k k

k T
k k k

y s

y s g




 
 

  
  

                                               (4.2) 

 

that is BFGSN is the scaled BFGS algorithm SBFGS with k  given by (4.2). A theoretical 

justification for this selection of k  in (2.25) as 1
T

k k ks g   is as follows. Observe that the 

approximation Hessian 1kB   given by (2.12) satisfies the quasi-Newton equation 1 .k k k kB s y   

If 1,k   then the classical quasi-Newton equation is obtained. Now, if 2
1( )kf x   is ill-

conditioned and 1,k   then a poor search direction may be obtained. Since the matrix 1kB   

approximates 2
1( )kf x   along ,ks  it follows that larger round errors and numerical instability 

may appear in the algorithm. To remedy this situation we hope that k I  is a diagonal 

preconditioner of 2
1( )kf x   that reduces the condition number to the inverse of 2

1( ),kf x   i.e. 

reduces the large eigenvalues. Such matrix k I  should be a rough approximation to the inverse of 

2
1( ).kf x   Therefore, k  can be computed to minimize 

2
.k k ks y   

But, as we know, if the initial direction 0d  is selected as 0 0d g   (i.e. 0H I ) and the 

objective function to be minimized is a convex quadratic one: 

 

                                                          
1

( ) ,
2

T Tf x x Ax b x c                                                     (4.3) 

 

where TA A  is positive definite and the exact line searches are used, that is 

 

                                                       0argmin ( ),k k kf x d                                                  (4.4) 

then  

                                                                      0T

i jd Ad                                                               (4.5) 

 

holds for all .i j This is called the conjugacy condition. This relation is the original condition 

used by Hestenes and Stiefel [23] to derive their conjugate gradient algorithms, mainly for 

solving symmetric positive-definite systems of linear equations. For the general nonlinear twice 

continuously differentiable function ,f  by the mean value theorem, there exists some (0,1)   

such that 

 

                                                  2

1 1 ( ) .T T

k k k k k k k kd y d f x d d                                               (4.6) 
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Therefore, is seems reasonable to replace the old conjugacy condition (4.5) from the quadratic 

case with the following one: 

                                                                     1 0,T

k kd y                                                               (4.7) 

 

in the case of general nonlinear functions. Now, to improve the convergence of the algorithm, the 

above conjugacy condition can be extended by incorporating the second-order information. In 

this respect, the quasi-Newton condition also known as the secant equation:  

 

                                                                    1 ,k k kH y s                                                              (4.8) 

 

where 1kH   is a symmetric approximation to the inverse Hessian of function ,f  can be used. 

Since for the quasi-Newton method the search direction is computed as 
1 1 1,k k kd H g    it 

follows that: 

                                     1 1 1 1 1 1( ) ( ) ,T T T T

k k k k k k k k k kd y H g y g H y g s                                        (4.9) 

 

thus a new conjugacy condition being obtained.  

 Therefore, we want our algorithm k I  to be a diagonal preconditioner of 2
1( )kf x   on 

one side and to minimize the conjugacy condition (4.7) on the other one. Having in view (4.9) it 

follows that k  can be selected to minimize a combination of these two conditions: 

 

                                                          
2 2

1 .T
k k k k k ks y s g                                                    (4.10) 

 

Notice that in the second term of (4.10) we use 2
k  in order to have a positive term. The 

minimization of (4.10) subject to k  gives: 

2

1

,
T
k k

k T
k k k

y s

y s g







 

 

exactly as in (4.2) in the BFGSN algorithm. In this way we see that BFGSN is a combination of 

the scaled BFGS from the quasi-Newton algorithms with the conjugacy condition from the 

conjugate gradient algorithms.  

 

Figure 1 presents the Dolan and Moré [17] performance profiles of these algorithms for 

this set of unconstrained optimization problems based on the CPU time metric. For example, 

when comparing BFGSN versus BFGS (see Figure 1), subject to the number of iterations, we see 

that BFGSN was better in 47 problems (i.e. it achieved the minimum number of iterations in 47 

problems), BFGS was better in 24 problems. Both of them achieved the same number of 

iterations in 6 problems, etc. Out of 80 problems considered in this set of numerical experiments 

only for 77 does the criterion (4.1) hold. From the performance profiles given in Figure 1 we see 

that BFGSN is top performer against all these algorithms. Since all these codes use the same 

Wolfe line search and the same stopping criterion, they differ only in their choice of the search 

direction. 
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Fig. 1. Performance profiles of BFGSN versus BFGS, BFGSC, BFGSB and BFGSY. 

 

 

The percentage of the test problems for which a method is the fastest is given on the left axis of 

the plot. The right side of the plot gives the percentage of the test problems that were successfully 

solved by these algorithms. Mainly, the left side is a measure of the efficiency of an algorithm; 

the right side is a measure of the robustness. From Figure 1 we see that BFGSN is top performer 

versus the classical BFGS and the scaled BFGS algorithms (BFGSB, BFGSC, BFGSY) 

considered in this numerical study and the differences are significant. 
 

Figure 2 presents the performance profiles of all these 5 BFGS methods subject to the CPU 

computing time metric. We see that BFGSN is top performer, being more efficient than the 

algorithms considered in this numerical study. From Figure 2 we see that the value of the scaling 

parameter k  given by the adaptive updating formula (4.2) leads us to a scaled BFGS method 

which is much more efficient and more robust versus the scaled BFGS methods where the value 

of k  is determined by the interpolation conditions given by Biggs [6, 7] or by Yuan [36].  

Observe that close to our scaled BFGS method is the one given by Cheng and Li [12]. For this set 

of numerical experiments, similar performance profiles like in Figure 2 are obtained, subject to 

the number of iterations or to the number of function and gradient evaluations metrics.  
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Fig. 2. Performance profiles of BFGSN, BFGSC, BFGS, BFGSB and BFGSY. 

 

By correcting the large eigenvalues and by taking into consideration the minimization of the 

conjugacy condition, BFGSN is one of the best scaled BFGS algorithms, as proved in the 

numerical experiments. 

 

In the second set of numerical experiments for the parameter k  in (2.25) we consider a truncated 

monotone decreasing evolution. We present the numerical results for two evolutions of k  in 

(2.25). In the first one the parameter k  is computed as  

 

                                                           
15

10 , if 15,

10 , if 15,

k

k

k

k






 
 



                                                 (4.11) 

and the corresponding algorithm is called BFGSP. In the second case the parameter k  is 

computed as  

                                                          
10

10 , if 10,

10 , if 10,

k

k

k

k






 
 



                                                  (4.12) 

 

and this time the corresponding algorithm is called BFGSQ. In Figure 3 the performance profiles 

of BFGSN ( k  given by (4.2)) and BFGS versus these scaled BFGS versions BFGSP and 

BFGSQ are presented. We see that BFGSN is again top performer versus both BFGSP and 

BFGSQ. On the other hand, these scaled BFGS versions BFGSP and BFGSQ are much more 

efficient versus the classical (unscaled) BFGS quasi-Newton updating.  
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Fig. 3. Performance profiles of BFGSN and BFGS versus BFGSP and BFGSQ. 

 

 

In the third set of numerical experiments let us consider some small constant values for the 

parameter k  in (2.12). In this case the idea is to see the influence of a constant value of the 

parameter k  on the scaled BFGS performances. Thus, the following three scaled BFGS methods 

have been considered in our study: BFGSU in which for all ,1,0k  the value of the parameter 

k  in (2.12) is constant ,1.0k  BFGSZ in which 01.0k  and BFGSS where .001.0k  

Figure 4 shows the performance profiles of BFGSN and BFGS versus these three variants of the 

scaled BFGS: BFGSU, BFGSZ and BFGSS. In this figure we see that BFGSN is much more 

efficient and slightly more robust than BFGSU, BFGSZ and BFGSS. But, on the other hand, all 

these scaled BFGS variants are more efficient than the classical (unscaled) BFGS quasi-Newton 

method. This shows once again the importance of scaling the third term in BFGS updating 

formula (2.12) with a positive scalar, i.e. the importance of correcting the large eigenvalues of the 

approximation to the Hessian of the minimizing function. 
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Fig. 4.  Performance profiles of BFGSN and BFGS versus BFGSU ( 0.1k  ), BFGSZ ( 0.01k  ) and 

BFGSS ( 0.001k  ). 

 

From the above numerical experiments we have clear computational evidence that the scaled 

BFGS update (2.12) with the parameter k  as in (2.25) where 1 k

T

kk gs  is the best scaled 

BFGS quasi-Newton update for solving unconstrained optimization problems. Observe that this 

algorithm is the best one in comparison to a large diversity of other scaled BFGS updates like: 

BFGSB, BFGSC, BFGSY, BFGSP, BFGSQ, BFGSU, BFGSZ, and BFGSS.  
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5. Conclusions 

The standard BFGS method has been modified by scaling the third term of its updating formula 

by a positive parameter. The value of this parameter is computed in an adaptive manner. We 

show that this scaled BFGS method corrects the large eigenvalues better than the unscaled BFGS 

method does. We have proved that this adaptive scaled BFGS method with the Wolfe line search 

is global convergent without assuming the convexity of the minimizing function. Numerical 

experiments with a limited number of unconstrained minimization test functions, with a medium 

number of variables, illustrate that this adaptive scaled BFGS method is more efficient than the 

standard BFGS method or than some other scaled BFGS methods including those by Biggs [6, 7], 

Yuan [36] and Cheng and Li [12].    
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