
Another accelerated conjugate gradient
algorithm with guaranteed descent

and conjugacy conditions for large-scale
unconstrained optimization

Neculai Andrei
Research Institute for Informatics,

Center for Advanced Modeling and Optimization,
8-10, Averescu Avenue, Bucharest 1, Romania,

E-mail: nandrei@ici.ro

Abstract. In this paper we suggest another accelerated conjugate gradient algorithm that
for all both the descent and the conjugacy conditions are guaranteed. The search
direction is selected as

where , The coefficients

0k ≥

1 1 1 1(/) (/)T T T T
k k k k k k k k k k k k k kd g y g y s s t s g y sθ+ + + += − + − ,s

1 1()k kg f x+ += ∇ 1 .k k ks x x+= − kθ and in this linear
combination are selected in such a way that both the descent and the conjugacy condition
are satisfied at every iteration. The algorithm introduces the modified Wolfe line search in
which the parameter in the second Wolfe condition is modified at every iteration. It is
shown that both for uniformly convex functions and for general nonlinear functions the
algorithm with strong Wolfe line search generates directions bounded away from infinity.
The algorithm uses an acceleration scheme modifying the steplength

kt

kα in such a manner
as to improve the reduction of the function values along the iterations. Numerical
comparisons with some conjugate gradient algorithms using a set of 75 unconstrained
optimization problems with different dimensions, some of them from the CUTE library,
show that the computational scheme outperform the known conjugate gradient algorithms
like Hestenes and Stiefel; Polak, Ribière and Polyak; Dai and Yuan or the hybrid Dai and
Yuan; CG_DESCENT with Wolfe line search by Hager and Zhang, as well as the quasi-
Newton L-BFGS by Liu and Nocedal.

Keywords: Conjugate gradient, Wolfe line search, descent condition, conjugacy condition,
unconstrained optimization.
AMS subject classifications: 49M20, 65K05, 90C30

1. Introduction
For solving the unconstrained optimization problems
 min ()

nx R
f x

∈
, (1.1)

where : nf R → R is a continuously differentiable function, bounded from below, one of the
most elegant and probably the simplest methods are the conjugate gradient methods. For
solving this problem, starting from an initial guess 0

nx R∈ , a nonlinear conjugate gradient

method, generates a sequence { }kx as:

 1k k k kx x dα+ = + , (1.2)

where 0kα > is obtained by line search, and the directions are generated as: kd
 1 1k k k kdd g β+ += − + 0 0d g= −, . (1.3)

In (1.3) kβ is known as the conjugate gradient parameter and ()kg f xk= ∇ . The search

direction , assumed to be a descent one, plays the main role in these methods. On the other kd

 1

hand, the stepsize kα guarantees the global convergence in some cases and is crucial in
efficiency. Different conjugate gradient algorithms correspond to different choices for the
scalar parameter .kβ Plenty of conjugate gradient methods are known and an excellent survey
of these methods with a special attention on their global convergence is given by Hager and
Zhang [26]. Line search in the conjugate gradient algorithms often is based on the standard
Wolfe conditions [41, 42]
 (1.4) () () T

k k k k k k kf x d f x g dα ρα+ − ≤ ,
T

k

1.
 , (1.5) ()T

k k k k kg x d d g dα σ+ ≥
where is supposed to be a descent direction and 0 1kd / 2ρ σ< ≤ < <
A numerical comparison of conjugate gradient algorithms (1.2) and (1.3) with Wolfe line
search, for different formulae of parameter kβ computation, including the Dolan and Moré
performance profile [19], is given in [6].
If the initial direction is selected as 0d 0 ,d g0= − and the objective function to be minimized
is a convex quadratic function

1()
2

T Tf x x Ax b x c= + + (1.6)

and the exact line searches are used, that is

0
arg min (),k k kf x d

α
α α

>
= + (1.7)

then the conjugacy condition
 0T

i jd Ad = (1.8)
holds for all This relation (1.8) is the original condition used by Hestenes and Stiefel
[27] to derive the conjugate gradient algorithms, mainly for solving symmetric positive-
definite systems of linear equations. Using (1.3) and (1.6)-(1.8) it can be shown that

.i j≠

1kx + is

the minimum of the quadratic function (1.6) in the subspace { }1 2, , ,k kx span g g g+ … and

the gradients are mutually orthogonal unless that 1 2, , , kg g g… 0kg = [20]. It follows that
for convex quadratic functions the solution will be found after at most iterations. Powell
[38] shown that if the initial search direction is not then even for quadratic functions (1.6)
the conjugate gradient algorithms does not terminate within a finitely number of iterations. It
is well known that the conjugate gradient algorithm converges at least linearly [34]. An upper
bound for the rate of convergence of conjugate gradient algorithms was given by Yuan [43].

n
0g

Let us denote For a general nonlinear twice differential function 1 .k k ky g g+= − ,f
by the mean value theorem, there exists some (0,1)ξ ∈ such that
 (1.9) 2

1 1 (T T
k k k k k k k kd y d f x d dα ξα+ += ∇ +) .

Therefore, it seems reasonable to replace (1.8) with the following conjugacy condition
 1 0.T

k kd y+ = (1.10)
In order to accelerate the conjugate gradient algorithm Perry [33] (see also Shanno [39])
extended the conjugacy condition by incorporating the second order information. He used the
secant condition where is a symmetric approximation to the inverse

Hessian and, as usual, Since for quasi-Newton method the search direction

 is computed as it follows that

1 ,k k kH y s+ = kH

1 .k k ks x x+= −

1kd + 1 1 ,k kd H g+ += − 1k+

1 ,T
+

1
T
+

1 1 1 1 1() ()T T T
k k k k k k k k k kd y H g y g H y g s+ + + + += − = − = −

thus obtaining a new conjugacy condition. Recently, Dai and Liao [15] extended this
condition and suggested the following new conjugacy condition
 , (1.11) 1

T
k k k kd y vg s+ = −

 2

where is a scalar. 0v ≥
Conjugate gradient algorithms are based on the conjugacy condition. To minimize a convex
quadratic function in a subspace spanned by a set of mutually conjugate directions is
equivalent to minimize this function along each conjugate direction in turn. This is a very
good idea, but the performance of these algorithms is dependent on the accuracy of the line
search. However, in conjugate gradient algorithms we always use inexact line search. Hence,
when the line search is not exact, the “pure” conjugacy condition (1.10) may have
disadvantages. Therefore, it seems more reasonable to consider in conjugate gradient
algorithms the conjugacy condition (1.11). When the algorithm is convergent observe that

 tends to zero along the iterations, and therefore conjugacy condition (1.11) tends to
the pure conjugacy condition (1.10).

1
T
k kg s+

Conjugate gradient algorithm (1.2) and (1.3) with exact line search always satisfy the
condition 2

1 1 1
T
k k kg d g+ + += − which is in a direct connection with the sufficient descent

condition
 2

1 1 1 ,T
k k kg d w g+ + +≤ − (1.12)

for some positive constant Observe that is an arbitrary positive constant. The
sufficient descent condition has been used often in the literature to analyze the global
convergence of the conjugate gradient algorithms with inexact line search based on the strong
Wolfe conditions. The sufficient descent condition is not needed in the convergence analyses
of the Newton or quasi-Newton algorithms. However, it is necessary for the global
convergence of conjugate gradient algorithms [18].

0.w > w

 Using (1.11) Dai and Liao [15] obtained a new conjugate gradient algorithm

 1() .
T

DL k k k
k T

k k

g y vs
y s

β + −
= (1.13)

For an exact line search we see that 1kg + is orthogonal to Therefore, for an exact line
search, the DL method reduces to the Hestenes and Stiefel (HS) method. Observe that due to
the Powell’s example, the DL method may not converge for an exact line search. To
overcome this and to ensure convergence Dai and Liao modified their formula as

.ks

 1max ,0 .
T T

DL k k k k
k T

k k k k

g y g sv
y s y s

β + +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
1

T
+ (1.14)

If the level set { }0: () ()nS x R f x f x= ∈ ≤ is bounded and the gradient ()f x∇ is Lipschitz

continuous on and if satisfies the sufficient descent condition (1.12), it is shown in [15]
that DL+ implemented with a strong Wolfe line search is globally convergent. Numerical
results are reported in [15] for and

,S kd

0.1v = 1v = . However, for different choices of , the
numerical results are quite different.

v

In this paper we suggest a new conjugate gradient algorithm that for all both
the descent and the conjugacy conditions are guaranteed. In section 2 we present the search
direction, as well as the main ingredients for its computation. The search direction is selected
as a linear combination of and where the coefficients in this linear combination are
selected in such a way that both the descent and the conjugacy condition to be satisfied at
every iteration. In section 3 we prove the convergence of the algorithm. It is shown that both
for uniformly convex functions and for general nonlinear functions the corresponding
algorithm with strong Wolfe line search generates directions bounded away from infinity.
Section 4 is devoted to present the algorithm in its accelerated version. The idea of this
computational scheme is to take advantage that the step lengths

0k >

1kg +− ,ks

kα in conjugate gradient

algorithms are very different from 1. Therefore, we suggest we modify kα in such a manner
as to improve the reduction of the function values along the iterations. In section 5 some
numerical experiments and performance profiles of Dolan-Moré corresponding to this new

 3

conjugate gradient algorithm are given. The performance profiles correspond to a set of 75
unconstrained optimization problems presented in [1]. Each problem was tested 10 times for a
gradually increasing number of variables: 1000,2000, ,10000n = … . It is shown that this
new conjugate gradient algorithm outperforms the classical Hestenes and Stiefel [27], Dai and
Yuan [17], Polak, Ribière and Polyak [35, 36], hybrid Dai and Yuan [17] conjugate gradient
algorithms, the CG_DESCENT conjugate gradient algorithm with Wolfe line search by Hager
and Zhang [25] and also L-BFGS by Liu and Nocedal [29].

2. Conjugate gradient algorithm with guaranteed descent
 and conjugacy conditions
For solving the minimization problem (1.1) let us consider the following conjugate gradient
algorithm
 1k k k kx x dα+ = + , (2.1)

where 0kα > is obtained by the Wolfe line search, and the directions are generated as: kd
 1 1 ,k k k kd g ksθ β+ += − + (2.2)

 1
T T
k k k k k

k T
k k

y g t s g
y s

β 1+ +−
= , (2.3)

0d g= − 0 , where kθ and are scalar parameters which follows to be determined. Observe

that in , given by (2.2), is scaled by parameter
kt

1kd + 1kg + kθ and the parameter in (2.3) is
changed at every iteration. Algorithms of this form, or variations of them, have been studied
by many authors. For example, Andrei [3,4,5] considers a preconditioned conjugate gradient
algorithm where the preconditioner is a scaled memoryless BFGS matrix and the parameter
scaling the gradient is selected as the spectral gradient. On the other hand Birgin and Martínez
[11] suggested a spectral conjugate gradient method, where . Yuan and Stoer

[44] studied the conjugate gradient algorithm on a subspace, where the search direction

kt

/T T
k k k ks s s yθ = k

1kd +

is taken from the subspace { }1,k kspan g d+ . Observe that if for every 1,k ≥ 1kθ = and

, then (2.2) reduces to the Dai and Liao direction (1.13). kt = v
In our algorithm for all the scalar parameters 0k ≥ kθ and in (2.2) and (2.3)

respectively are determined in such a way that both the descent and the conjugacy conditions
are satisfied. Therefore, from the descent condition (1.12) we have

kt

2

2 21 1 1
1 1

()() ()T T T
k k k k k k

k k k kT T
k k k k

y g s g s gg t
y s y s

θ + + +
+ +− + − = −w g

1),+

 (2.4)

and from the conjugacy condition (1.11)
 (2.5) 1 1 1 (T T T T

k k k k k k k k k ky g y g t s g v s gθ + + +− + − = −

where and are known scalar parameters. Observe that in (2.4) we modified the
classical sufficient descent condition (1.12) with equality. It is worth saying that the main
condition in any conjugate gradient algorithm is the descent condition or the
sufficient descent condition (1.12). In our algorithm we have selected close to 1. This is
enough a reasonable value. For example, Hager and Zhang [25] show that in their
CG_DESCENT algorithm On the other hand, the conjugacy condition (1.10) or its
modification (1.11) is not so stringent. In fact very few conjugate gradient algorithms satisfy
this condition. For example, the Hestenes and Stiefel algorithm has this property that the pure
conjugacy condition always holds, independent of the line search.

0v > 0w >

0T
k kg d <

w

7 / 8.w =

 4

If , then (2.5) is the “pure” conjugacy condition. However, in our algorithm in
order to accelerate the algorithm and to incorporate the second order information we take

.

0v =

0v >
Now, let us define
 2

1 1 1()() (T T T
k k k k k k k ky g s g g y s+ + +∆ = −), (2.6)

 1()T
k k k ks g +∆ = ∆ ,

1,
 (2.7)

 1()T T
k k k k ka v s g y g+ += + (2.8)

 2
1 1() ()(T T T

k k k k k k k kb w g y s y g s g+ += + 1).+ (2.9)

Supposing that and 0k∆ ≠ 1 0,T
k ky g + ≠ then from the linear algebraic system given by (2.4)

and (2.5) we get

2

1() ()T T
k k k k k k k

k
k

b y g a y s g
t + −
=

∆
1+ , (2.10)

 1

1

() ,
T

k k k k
k T

k k

a t s g
y g

θ +

+

−
= (2.11)

with which the parameter kβ and the direction 1kd + can immediately be computed.
Observe that, using (2.10) in (2.11) we get

2

1

1

()
1

T
k k kk

k T
k k k k

y s ga b
y g

θ +

+

⎡ ⎤
= + −⎢ .k⎥

∆ ∆⎢ ⎥⎣ ⎦
 (2.12)

Again, using (2.10) in (2.3) we have

2

11 1
T

kk k k
k T

k k k k

gy g b a
y s

β ++ ⎛ ⎞
= − +⎜ ⎟∆ ∆⎝ ⎠

.k (2.13)

Therefore, the crucial element in the algorithm is .k∆
In the following, in order to define the algorithm we shall consider a small

modification of the second Wolfe line search condition (1.5) as
 , (2.14) ()T

k k k k k kg x d d g dα σ+ ≥ T
k

where kσ is a sequence of parameters satisfying the condition 0 1,kρ σ< < < for all

Therefore, in our algorithm we consider that the rate of decrease of

.k
f in the direction at kd

1kx + is larger than a fraction kσ , which is modified at every iteration, of the rate of decrease

of f in the direction at kd kx . The condition kρ σ< , for all , guarantees that (1.4)
and (2.14) can be satisfied simultaneously. We call (1.4) and (2.14) as the modified Wolfe
conditions. The following proposition can be proved.

0k ≥

Proposition 2.1. Assume that is a descent direction and kd f∇ satisfies the Lipschitz

condition () ()k kf x f x L x x∇ −∇ ≤ − for all on the line segment connecting x kx and

1,kx + where is a positive constant. If the line search satisfies the modified Wolfe conditions
(1.4) and (2.14), then

L

 2
(1) .

T
k kk

k
k

g d
L d
σ

kα ω−
≥ ≡ (2.15)

Proof. To prove (2.15) subtract from both sides of (2.14) and using the Lipschitz
condition we get:

T
k kg d

 5

2
1(1) ()T T

k k k k k k k kg d g g d L dσ α+− ≤ − ≤ .

But, is a descent direction and since kd 1kσ < , we immediately get (2.15). ■
Observe that defined in (2.15) is positive for all kω 1.k ≥

Proposition 2.2. If

2

1
2

1 1

1 ,
2

k
k T

k k k

g

y g g
+

+ +

< ≤
+

σ (2.16)

then for all 1,k ≥ 0k∆ < .

Proof. Observe that
 (2.17) 1 .T T T T

k k k k k k k ks g s y s g s y+ = + <
The modified Wolfe condition (2.14) gives
 (2.18) 1 1 .T T T T

k k k k k k k k k k kg s g s y s g s+ +≥ = − +σ σ σ
Since 1,k <σ we can rearrange (2.18) to obtain

 1 .
1

T k
k k k k

k

g s y s+
T−

≥
−
σ
σ

 (2.19)

Now, combining this lower bound for with the upper bound (2.17) we get 1
T
k kg s+

 1 max 1, .
1

T T k
k k k k

k

g s y s+

⎧ ⎫
≤ ⎨ ⎬−⎩ ⎭

σ
σ

 (2.20)

Since 1/ 2k >σ , from (2.20) we can write

 1 .
1

T k
k k k k

k

g s y s+ <
−

Tσ
σ

 (2.21)

If (2.16) is true, then

 2
1 1 .

1
Tk
k k k

k

y g g+ +≤
−
σ
σ

 (2.22)

Again, observe that the Wolfe condition gives (if 0T
k ky s > 0kg ≠). Therefore,

 2
11

T T Tk
k k k k k k k

k

y s g y y s g+ ≤
− 1+
σ
σ

. (2.23)

From (2.21) and (2.23) we can write

 2
1 1 1 1 ,

1
T T T T Tk
k k k k k k k k k k k

k

s g y g y s y g y s g+ + + +< ≤
−
σ
σ

 (2.24)

i.e. 0k∆ < for all ■ 1.k ≥

In our algorithm we consider

2

1
2

1 1

.k
k T

k k k

g

y g g
σ +

+ +

=
+

 (2.25)

Proposition 2.3. Suppose that is a descent direction and kd ()f x∇ is Lipschitz continuous

on the level set { }0: () ()nS x R f x f x= ∈ ≤ . Then the sequence { }k∆ given by (2.6) is

uniformly bounded away from zero, independent of .k

 6

Proof. Suppose that for all , otherwise a stationary point is obtained. Defining 0kg ≠ 1k ≥

{ }inf : 0 ,kg kγ = ≥ we have 0.γ > Therefore, for all from (2.25) ,k 1kσ < . Observe

that with this value for ,kσ from (2.21) it follows that 0k∆ < for all Now, from
proposition 2.1, the modified Wolfe condition (2.14) and the descent condition (2.4), since

1.k ≥

1,kσ < for all , we have 1k ≥

1() (1)T T T
k k k k k k k k k k k k ky s y d g g d g dα α α σ+= = − ≥ − T

2 2(1) (1)k k k k kw g w= − − ≥ − >α σ ω σ γ 0.

Therefore,
2 4

1 (1) 0,T
k k k k ky s g w+ ≥ − >ω σ γ for all i.e. 1,k ≥ 2

1()T
k k ky s g + is uniformly

bounded away from zero independent of .k
On the other hand, observe that the first Wolfe condition (1.4) limits the accuracy of the
algorithm to the order of the square root of the machine precision [25]. Therefore, even that
the line search is not exact, however the line search based on the modified Wolfe conditions is
enough accurate to ensure that 1

T
k ks g + tends to zero along the iterations. Therefore, since by

(2.22) 1
T
k ky g + is bounded, it follows that Since 1 1()()T T

k k k ky g s g+ + → 0. 0k∆ < for all

 we have that the sequence 1,k ≥ { }k∆ is uniformly bounded away from zero independent of

 ■ .k

Some remarks are in order.
1) Suppose that is a descent direction and kd 0kg ≠ for all , otherwise a stationary
point is obtained. From the descent condition (2.4) we can write

1k ≥

 2
1() ()T

k k k k ks g w gβ θ+ = − 1+ . (2.26)

Since tends to zero (is a descent direction) it follows that 1
T
k ks g + kd kθ tends to and

hence

0,w >
0.kθ > Since is a real positive and finite constant, and w ,k w→θ there exists the

arbitrary and positive constants and such that for any 10 c w< ≤ 2 ,c w≥ 1,k ≥ 1 2.kc c≤ ≤θ

2) Observe that, 2

1 1 .T
k k k k kg g g y g+ += − 1

T
+ On the other hand, from (2.25) it follows that

2
1 1

1 .T k
k k k

k

y g gσ
σ+ +

−
= Hence,

 2 2
1 1 1 1 1 1

1 .T T T
k k k k k k k k k

k

g g g y g g y g g
σ+ + + + + += − ≤ + = 2 (2.27)

Since 2 0T
k k kg d w g= − < , it follows that is a descent direction. If kd kα satisfies the

modified Wolfe conditions (1.4) and (2.14) and the Lipschitz assumption holds, then the
Zoutendijk condition is satisfied [18, 26]. In section 3 we prove that kd is bounded by a
positive constant. This property combined with Zoutendijk condition and sufficient descent of

 prove that our algorithm (2.1), (2.2) with (2.12) and (2.13) is globally convergent in the

sense that
kd

liminf 0kk
g

→∞
= . Hence, since 1/ 2 1,k< <σ from (2.27) it follows that

 faster than 1 0T
k kg g+ → 2

kg does. Now, since
2

1 1
T T
k k k k ky g g g g 1+ + +≤ + , then

2 2

1
2 2

1 1 12
k k

k T T
k k k k k k

g g

y g g g g g
σ + +1

1+ + +

= ≥
+ + +

. (2.28)

 7

Therefore, from (2.28) we have that in the bounded sequence { }kσ there exists a

subsequence { } 1/ 2,
jkσ → i.e. 0 k 1ρ σ< < < , since usually ρ is selected enough small to

ensure the reduction of function values along the iterations.

3) By the second Wolfe condition (2.14) we have But

from the descent condition (2.4) it follows that
1() (1)T T

k k k k k k k ky s g g s g s+= − ≥ −σ .T

2 .T T
k k k k k k kg s g d w gα α= = − From

proposition 2.1 we have
2 2(1) (1) (1)T T

k k k k k k k k k k ky s g s w g w g≥ − = − − ≥ − >σ α σ ω σ 0.

Therefore, if , then by the modified second Wolfe condition (2.14), for all

. On the other hand, since , from (2.24) it follows that

0kg ≠ 0,k ≥
0T

k ky s > 0w >
2

1 1()T T T
k k k k k k kw g y s y g s g+ +≥ 1+ .

Therefore, since tends to zero, from (2.9) for all . 1
T
k ks g + 0kb > 0k ≥

3. Convergence analysis
In this section we analyze the convergence of the algorithm (2.1) and (2.2), where kθ and kβ

are given by (2.11) and (2.3) respectively, and 0d g0= − . In the following we consider that

 for all , otherwise a stationary point is obtained. Assume that: 0kg ≠ 1k ≥

(i) The level set { }0: () ()nS x R f x f x= ∈ ≤ is bounded, i.e. there exists a positive

constant such that for all 0B > ,x S∈ .x B≤
(ii) In a neighborhood of , the function N S f is continuously differentiable and its

gradient is Lipschitz continuous, i.e. there exists a constant such that 0L >
() ()f x f y L x y∇ −∇ ≤ − , for all , .x y N∈

Under these assumptions on f there exists a constant 0Γ ≥ such that ()f x∇ ≤ Γ for all

.x S∈ In order to prove the global convergence, we assume that the step size kα in (2.1) is
obtained by the strong Wolfe line search, that is,
 (3.1) () () T

k k k k k k kf x d f x g dα ρα+ − ≤ ,

 ()T T
k k k k k kg x d d g dα σ+ ≤ . (3.2)

where ρ and σ are positive constants such that 0 1.ρ σ< ≤ <
For the conjugate gradient algorithm (2.2) where kθ and kβ are given by (2.11) and (2.3)
respectively, with strong Wolfe line search, the following Lemmas can be proved. The first
two Lemmas were established by Zoutendijk [45] and Wolfe [41, 42], but for completeness
we present them here (see also [28]).

Lemma 3.1. Suppose that the assumptions (i) and (ii) hold. Consider that kα is obtained by
the strong Wolfe line search (3.1) and (3.2) and the descent condition hold. Then

0

.T
k k k

k

g dα
∞

=

− < ∞∑ (3.3)

Proof. From (3.1) and the descent condition (2.4) we have that
 1 0.T

k k k k kf f g dρα+ − ≤ ≤ (3.4)

 8

Therefore,{ }kf is a decreasing sequence. Since f is bounded below there exist a constant
*f such that

 *lim .kk
f f

→∞
= (3.5)

From (3.5) it follows that
*

1 1 0 1
0 0
() lim () lim()

n

k k k k nn nk k
0 .f f f f f f f

∞

+ + +→∞ →∞
= =

− = − = − = −∑ ∑ f

.∞

Hence, From (3.4) it follows (3.3). ■ 1
0

()k k
k

f f
∞

+
=

− < +∑

Lemma 3.2. Consider the conjugate gradient algorithm (2.2) where kθ and kβ are given by

(2.11) and (2.3) respectively and kα is obtained by the strong Wolfe line search (3.1) and
(3.2). Suppose that the assumptions (i) and (ii), as well as the descent condition hold. Then

2

2
0

() .
T
k k

k k

g d
d

∞

=

< +∞∑ (3.6)

Proof. From the strong Wolfe line search and the assumptions (i) and (ii), we get

2
1(1) () .T T

k k k k k k kg d g g d L dσ α+− − ≤ − ≤
Therefore,

 2

(1) .
T
k k

k
k

g d
L d
σα − −

≥ (3.7)

We know that for all . Hence, using Lemma 3.1 we get ,k 0T
k kg d <

2

2
0 0

() ()
1

T
Tk k

k k k
k kk

g d L g d
d

α
σ

∞ ∞

= =

.≤ − <
−∑ ∑ +∞ ■

Observe that (3.6), known as the Zoutendijk condition, is obtained under the assumptions that
the strong Wolfe line search hold and that is a descent direction, independent by its form. kd

Lemma 3.3. Consider the conjugate gradient algorithm (2.2) where kθ and kβ are given by

(2.11) and (2.3) respectively and kα is obtained by the strong Wolfe line search (3.1) and

(3.2). Suppose that the assumptions (i) and (ii) hold, and [0,2].k wθ ∈ Then either

 liminf 0kk
g

→∞
= (3.8)

or

4

2
0

.k

k k

g

d

∞

=

< ∞∑ (3.9)

Proof. Squaring the both terms of 1 1k k k kd g ksθ β+ ++ = we get

2 22 2
1 1 1 12 .T

k k k k k k k kd g d gθ θ β+ + + ++ + = 2s

But, from (2.4) 2
1 1 1 .T

k k kd g w g+ + += − Therefore,

 2 22
1 1(2)k k k k kd w gθ θ β+ += − − + 22 .ks (3.10)

 9

Observe that for [0,2],k wθ ∈ and is bounded below by 2 2k k wθ θ− ≤ 0 2w− . On the other

hand from (2.2) we have 2
1 1 1 1 .T T

k k k k k k kg d g s gβ θ+ + + +− = − Using the strong Wolfe line
search we get

2
1 1 1 .T T

k k k k k k kg d g s gσ β θ+ + ++ ≥ (3.11)

Now, considering the following inequality true for all , , 0,a b σ ≥ with 1 1
T
k ka g d+ += and

T
k k kb gβ= s after some algebra we get

2
42 2 2

1 1 12() ()
1

T T k
k k k k k kg d g s g+ + ++ ≥

+
θβ
σ

.

But, 1k c≥θ and 1/ Therefore Hence 2 1.< σ < 2 2 2
1/(1) / 2.k c+ ≥θ σ

 42 2 2
1 1 1() ()T T

k k k k k kg d g s e g+ + ++ ≥β . (3.12)

where is a positive constant. 2
1 / 2e c=

Using (3.10) and (3.12) we can write
22 2

12 21 1
1 12 2 2 2

1 1

() () 1 () (
T T

kT Tk k k k
k k k k

k k k k

dg d g s g d g s
d s d s

++ +
+ +

+ +

⎡ ⎤
+ = +⎢ ⎥

⎢ ⎥⎣ ⎦
)

 ()
2

2 22 2 2
1 1 12 2

1

()1 () (2)
T

T k k
k k k k k k k

k k

g sg d w g s
d s

θ θ β+ + +

+

⎡ ⎤
= + − − +⎢ ⎥

⎢ ⎥⎣ ⎦

2

4 22
1 12 2

1

()1 (2)
T
k k

k k k k
k k

g se g w g
d s

θ θ+ +

+

⎡ ⎤
≥ − −⎢ ⎥

⎢ ⎥⎣ ⎦

4 2

1 2
2 2

1 1

() 1(2)
T

k k k
k k

k k

g g se w
d s

θ θ+

+ +

⎡ ⎤
= − −⎢

⎢ ⎥⎣ ⎦
2 .

kg
⎥ (3.13)

From Lemma 3.2 we know that
2

2

()lim 0.
T
k k

k
k

g s
s→∞

=

On the other hand, for [0,2]k wθ ∈ , 2 2k k wθ θ− is finite. Therefore, if (3.8) is not true, then
2 2

2 2
1

() (2)lim 0.
T
k k k k

k
k k

g s w
s g

θ θ
→∞

+

−
=

Hence,

42 2

11 1
2 2

1 1

() ()T T
kk k k k

k k

gg d g s e
d s d

++ +

+ +

+ ≥ 2
k

, (3.14)

holds for all sufficiently large Therefore, by Lemma 3.2 it follows that (3.9) is true. ■ .k

Using Lemma 3.3 we can prove the following proposition which has a crucial role in proving
the convergence of our algorithm.

Proposition 3.1. Consider the conjugate gradient algorithm (2.2) where kθ and kβ are given

by (2.11) and (2.3) respectively and kα is obtained by the strong Wolfe line search (3.1) and

(3.2). Suppose that the assumptions (i) and (ii) hold, and [0,2].k wθ ∈ If

 10

 2
1

1
k kd≥

= ∞∑ , (3.15)

then
 liminf 0.k

k
g

→∞
= (3.16)

Proof. Suppose by contradiction that there is a positive constant γ such that kg γ≥ for all

 Therefore, from Lemma 3.3 it follows that 1.k ≥
4

2 24
1 1

1 1 k

k kk k

g

d dγ≥ ≥

≤ < ∞∑ ∑

which is in contradiction with (3.15). ■

Therefore, the iteration can fail, in the sense that 0kg γ≥ > for all only if ,k kd →∞
sufficiently rapidly.

Convergence for uniformly convex functions. For uniformly convex functions we can prove
that the norm of the direction generated by (2.2), where kd kθ and kβ are given by (2.11)
and (2.3) respectively, is bounded. Thus by Proposition 3.1 we can prove the following result.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the method (2.1)-(2.3)
and (2.11), where is a descent direction and kd kα is obtained by the strong Wolfe line

search. Suppose that there exists the positive constants and such that 2c t 2k c≤θ and

kt ≤ t for all If there exists a constant 1.k ≥ 0µ > such that

 2(() ()) ()Tf x f y x y x yµ∇ −∇ − ≥ − (3.17)

for all then ,x y S∈ ,
 lim 0.kk

g
→∞

= (3.18)

Proof. From (3.17) it follows that f is a uniformly convex function in and therefore S

 2 .T
k k ky s sµ≥ (3.19)

Again, by Lipschitz continuity .ky L s≤ k Now, from (2.3) we have that

1 11 1
2 2

T T
k k k kk k k k

k k kT T
k k k k k k

y g s gy g s gt t
y s y s s s

β
µ µ

+ ++ += − ≤ +

 1 1
2 2 .k k k k

kk k

L s g s g L tt
ss s µµ µ

+ + + Γ
≤ + = (3.20)

Hence, from (2.2):

 1 2 2 .k k
k

L t L td c s c
s+

⎛ ⎞+ Γ +
≤ Γ + = + Γ⎜

⎝ ⎠µ µ ⎟ (3.21)

Which implies that (3.15) is true. Therefore, by Proposition 3.1 we have (3.16), which for
uniformly convex functions is equivalent to (3.18). ■

 11

Convergence for general nonlinear functions. Firstly we prove that in very mild conditions
the direction generated by (2.2), where kd kθ and kβ are given by (2.11) and (2.3)
respectively, is bounded. Again, by Proposition 3.1 we can prove the following result.

Theorem 3.2. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient
algorithm (2.1), where the direction 1kd + is given by (2.2) and (2.3), and the step length kα
is obtained by the strong Wolfe line search (3.1) and (3.2). Assume that for all there
exist positive constants and such that

0k ≥
0c > 2 0c > 1 /T

k k ky g c s+ ≤ and 2k c≤θ

respectively, then liminf 0.kk
g

→∞
=

Proof. From (2.3) using (2.10) after some algebra we get

2

11 1
T

kk k k
k T

k k k k

gy g b a
y s

β ++ ⎛ ⎞
= − +⎜ ⎟∆ ∆⎝ ⎠

.k (3.22)

Suppose that otherwise a stationary point is obtained. By the Wolfe line search

 Since is a descent direction for all it follows that

0,kg ≠

0.T
k ky s > kd 0,k ≥ ks tends to zero.

Hence, there exists a positive constant such that 3 0c >

 1 3 .
T
k k

T
k k k

y g c
y s s

+ ≤ (3.23)

Now, observe that since for all , and 0k ≥ 0kb > 0,k∆ < it follows that / 0k kb− ∆ > .
Besides, from (2.6) and (2.9) we can write

 1()((1) .
T T

k k k

k k

b y g sw w + +− = + +
∆ −

1)k kg
∆

 (3.24)

Since 0k−∆ > and tends to zero along the iterations, it follows that 1
T
k ks g + /kb− ∆k tends to

 Therefore, there exists a positive constant such that 0.w > 4 0c > 41 1 / .k kb c< − ∆ ≤

Again observe that if from the Wolfe line search Hence, there exists a

positive constant such that

0kg ≠ 0.T
k ky s >

5 0c > 50 /T
k k ky s c s< ≤ for all 0.k ≥

Now, from (2.8) and (2.20) we have
 1 1 1() ()T T T T

k k k k k k k k ka v s g y g v s g y g+ + += + ≤ + 1+

1max 1,
1

T T
k k k kv y s y gσ

σ +
⎧ ⎫≤ +⎨ ⎬−⎩ ⎭

5 max 1,
1k k

c cv
s s

σ
σ

⎧ ⎫≤ +⎨ ⎬−⎩ ⎭

 5
1max 1, .

1 k

vc c
s

σ
σ

⎛ ⎞⎧ ⎫= ⎨ ⎬⎜ −⎩ ⎭⎝ ⎠
+ ⎟ (3.25)

Since { }k∆ is uniformly bounded away from zero independent of and k 0k∆ < for all

there exists a positive constant such that

1,k ≥

6c 6.k c∆ > Therefore, from (3.25) it follows that

2 2

1
5

6

1max 1, .
1

k
k

kk

g
a vc c

c s
+ ⎛ ⎞ Γ⎧ ⎫≤ +⎨ ⎬⎜ −∆ ⎩ ⎭⎝ ⎠

σ
σ ⎟ (3.26)

With these, from (3.22) we can write

2

11 1
T

kk k k
k kT

k k k k

gy g b a
y s

β ++≤ − +
∆ ∆

 12

2
3

4 5
6

1max 1,
1k k

c c vc c
s c

⎛ ⎞ Γ⎧ ⎫≤ + +⎨ ⎬⎜ ⎟−⎩ ⎭⎝ ⎠

σ
σ s

2

3 4 5
6

1max 1, .
1 k

c c vc c
c s

⎡ ⎤⎛ ⎞ Γ⎧ ⎫= + +⎨ ⎬⎢ ⎥⎜ ⎟−⎩ ⎭⎝ ⎠⎣ ⎦

σ
σ

 (3.27)

From (2.2) we have
 1 1k k k kd gθ β+ +≤ + ks

2

2 3 4 5
6

1max 1, ,
1 k

k

c c c vc c s
c s

⎡ ⎤⎛ ⎞ Γ⎧ ⎫≤ Γ + + + ≡⎨ ⎬⎢ ⎥⎜ ⎟−⎩ ⎭⎝ ⎠⎣ ⎦

σ
σ

E (3.28)

where is a positive constant. Therefore, for all , E 0k ≥ kd E≤ , which implies (3.15).

Therefore, by Proposition 3.1, since is a descent direction, we have kd liminf 0.kk
g

→∞
= ■

Observe that if for every 1,k ≥ 1kθ = and 0kt = , then (2.2) reduces to the Hestenes
and Stiefel direction. For an exact line search the HS algorithm reduces to that of Polak-
Ribière and Polyak (PRP). Therefore, the convergence properties of the HS method should be
similar to the convergence properties of the PRP method. In particular, for a general nonlinear
function by the Powell’s example, the HS method with an exact line search may not converge.
Hence, our method (2.1)-(2-3) need not converge for general functions. Therefore, like in
Gilbert and Nocedal [22], who proved the global convergence of the PRP method with the
restriction that we replace (2.3) by 0,PRP

kβ ≥

 1max ,0
T T
k k k k

k T
k k k k

y g s gt
y s y s

β 1
k T

+ +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
 (3.29)

and prove the global convergence of this modification of the algorithm for general functions.
Firstly, we prove the following results.

Lemma 3.4. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient
algorithm (2.2), where kθ and kβ are given by (2.11) and (3.29) respectively and kα is

obtained by the strong Wolfe line search. Suppose that there exists the positive constants

and such that
2c

t 2k c<θ and kt < t for all If there exists a positive constant 1.k ≥ 0γ >
such that
 kg γ≥ (3.30)

for all then and 0,k ≥ 0kd ≠

 2
1

1

,k k
k

u u+
≥

− < ∞∑ (3.31)

where / .k k ku d d=

Proof. First, we note that , otherwise the descent condition (2.4) is not true. Therefore,

 is well defined. Besides, by (3.30) and the Proposition 3.1 we have

0kd ≠

ku

0

1
k kd≥

< ∞∑ , (3.32)

otherwise (3.16) is true, contradicting (3.30)
Now, as usual (see [15]) we can consider 1 2 ,k k kβ β β= + where

 13

 1 1max ,0
T
k k

k T
k k

y g
y s

β +⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (3.33)

 2 1 .
T
k k

k k T
k k

s gt
y s

β += − (3.34)

Define
 (3.35) 2

1 1 ,k k k kv gθ β+ += − + ks

 1
1

1

,k
k

k

vr
d

+
+

+

= (3.36)

 1

1

0.k
k k

k

d
d

δ β
+

= ≥ (3.37)

With these we have
 1 1 .k k k ku r ukα δ+ += + (3.38)

But, 1 1k ku u += = and therefore from (3.38) we obtain

 1 1 1 .k k k k k k k kr u u u uα δ α δ+ + += − = − k (3.39)

Now, using the condition 0,kδ ≥ the triangle inequality and (3.39) we have

 1 1(1) (1)k k k k k k ku u u uα δ α δ+ +− = + − + k

 1 1 2k k k k k k k k ku u u uα δ α δ 1r+ +≤ − + − = + . (3.40)
On the other hand, from the strong Wolfe line search and the descent condition it follows that

 1 max 1, .
1

T
k k

T
k k

s g
y s

σ
σ

+ ⎧ ⎫≤ ⎨ ⎬−⎩ ⎭
 (3.41)

Hence, from the definition of given by (3.35), (3.41) and the assumptions (i) and (ii), i.e. 1kv +

kx B≤ and kg ≤ Γ for all we obtain 0,k ≥

1
1 1

T
k k

k k k k T
k k

s gv g t
y s

θ +
+ +≤ + ks

 2 max 1, 2 .
1

c t ⎧ ⎫≤ Γ + ⎨ ⎬−⎩ ⎭
σ
σ

B (3.42)

Therefore,
1

1 1 2
1 1

22 2 max 1, 2
1

k
k k k

k k

v
u u r c t B

d d
+

+ +
+ +

⎛ ⎞⎧ ⎫− ≤ = ≤ Γ + ⎨ ⎬⎜ ⎟−⎩ ⎭⎝ ⎠

σ
σ

,

which completes the proof. ■

This lemma shows that asymptotically the search directions generated by the algorithm (2.2),
where kθ and kβ are computed as in (2.11) and (3.29) respectively, change slowly.

Lemma 3.5. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient
algorithm (2.2), where kθ and kβ are given by (2.11) and (3.29) respectively and kα is

obtained by the strong Wolfe line search and for all 0,k ≥ 0.k ≥ >α ω Suppose that there

exist the positive constants and t γ such that for all , 1k ≥ kt < t and

,kg γ> respectively. Then there exist the constants and 1b > 0λ > such that for all 1k ≥

 k bβ ≤ (3.43)

 14

and

 ks λ≤ implies
1 .k b

β ≤ (3.44)

Proof. We have
2 2(1) (1) (1) (1)T T T

k k k k k k k k ky s s g d g w g w .σ σ α σ α σ ω γ≥ − = − = − − ≥ −
Therefore

 1 1
T T
k k k k

k kT T
k k k k

y g s gt
y s y s

β + +≤ + 1 1
2 2(1) (1)

k k k ky g s g
t

w wσ ω γ σ ω γ
+ +≤ +

− −

 2(1)
k kL s t s

wσ ω γ
Γ + Γ

≤
− 2

2() .
(1)

L t B b
wσ ω γ

+ Γ
≤ ≡

−
 (3.45)

Without loss of generality we can define b such that Let us define 1.b >

2(1)

2()
w

L t b
σ ω γλ −

≡
+ Γ

. (3.46)

Obviously, if ,ks λ≤ then from the third inequality in (3.45) we have

 2

() 1 .
(1)k

L t
w b
λβ

σ ω γ
+ Γ

≤ =
−

 (3.47)

Therefore, for and b λ defined in (3.45) and (3.46) respectively, it follows that the relations
(3.43) and (3.44) hold. ■

The property presented in Lemma 3.5, which is similar to but slightly different from Property
(*) in [22], can be used to show that if the gradients are bounded away from zero and (3.43)
and (3.44) hold, then a finite number of steps cannot be too small. Therefore, the
algorithm makes a rapid progress to the optimum. Indeed, for

ks
0λ > and a positive integer

let us define the set of index
J

 { }*
, : 1,k J kK i N k i k J sλ ,λ= ∈ ≤ ≤ + − > (3.48)

where is the set of positive integers. The following Lemma is similar to Lemma 3.5 in
[15] and Lemma 4.2 in [22].

*N

Lemma 3.6. Suppose that all assumptions of Lemma 3.5 are satisfied. Then there exists a

0λ > such that for any and any index there is a greater index such that *J N∈ 0 ,k 0k k≥

, / 2.k JK Jλ >

Using Lemma 3.4 and Lemma 3.6 we can prove the global convergence of the conjugate
gradient algorithm (2.2) where kθ and kβ are given by (2.11) and (3.29) respectively and kα
is obtained by the strong Wolfe line search. The following Theorem is similar to Theorem 3.6
in Dai and Liao [15] or to Theorem 3.2 in Hager and Zhang [25] and the proof is omitted
here.

Theorem 3.3. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient
algorithm (2.2), where kθ and kβ are given by (2.11) and (3.29) respectively and kα is

obtained by the strong Wolfe line search. Then we have liminf 0.kk
g

→∞
=

 15

4. DESCON algorithm

In this section we present an accelerated conjugate gradient algorithm with guaranteed
descent and conjugacy conditions for large scale unconstrained optimization given by (2.1)
and (2.2), where the parameters kθ and kβ are computed as in (2.12) and (2.13) respectively.
We know that in conjugate gradient algorithms the search directions tend to be poorly scaled,
and as a consequence the line search must perform more function evaluations in order to
obtain a suitable steplength .kα Therefore, the research effort was directed to design
procedures for direction computation which takes the second order information. For example,
the algorithms implemented in SCALCG by Andrei [3-5], or CONMIN by Shanno and Phua
[40] use the BFGS preconditioning with remarkable results. On the other hand, in our
algorithm the search direction is computed to satisfy both the descent and the conjugacy
conditions.
In conjugate gradient methods the step lengths computed by means of the Wolfe line search
(1.4) and (1.5) may differ from 1 in a very unpredictable manner [32]. They can be larger or
smaller than 1 depending on how the problem is scaled. This is in very sharp contrast to the
Newton and quasi-Newton methods, including the limited memory quasi-Newton methods,
which accept the unit steplength most of the time along the iterations, and therefore usually
they require only few function evaluations per search direction. Numerical comparisons
between conjugate gradient method and limited memory quasi Newton method by Liu and
Nocedal [29] showed that the latter is more successful [6]. One partial explanation of the
efficiency of this limited memory quasi-Newton method is given by its ability to accept unity
step lengths along the iterations. In this section we take advantage of this behavior of
conjugate gradient algorithms and consider an acceleration scheme we have presented in [7]
(see also [2]). Basically the acceleration scheme modifies the step length kα in a
multiplicative manner to improve the reduction of the function values along the iterations. In
accelerated algorithm instead of (2.1) the new estimation of the minimum point is computed
as
 1k k k k kx x dξ α+ = + , (4.1)
where

 k
k

k

a
b

ξ = − , (4.2)

,T
k k k ka g dα= () ,kd ()zg fT

k k k zb g gα= − − z= ∇ and k kz x dkα= + . Hence, if 0,kb ≠

then the new estimation of the solution is computed as 1k k k k kx x dξ α+ = + , otherwise

1k k k kx x dα+ = + . Observe that since ρ in (1.4) is enough small (usually 0.0001ρ =), the
Wolfe line search leads to very small reductions in function’s values along the iterations. The
acceleration scheme (4.1) emphasizes the reduction of function’s values, since in conjugate
gradient algorithms often 1kα > along the iterations (see [7]). Therefore, using the
definitions of gk , sk , and the above acceleration scheme (4.1) and (4.2) we can present
the following conjugate gradient algorithm.

yk

DESCON algorithm
Step 1. Select a starting point 0x dom f∈ and compute: 0 ()0f f x= and

Select some positive values for
0 0().g f x= ∇

ρ and σ , and for v and Set and

.w 0d g= − 0

0.k =
Step 2. Test a criterion for stopping the iterations. If the test is satisfied, then stop;

otherwise continue with step 3.
Step 3. Determine the steplength kα by using the Wolfe line search conditions (1.4) - (1.5)

 16

Step 4. Acceleration scheme. Compute: k k kz x dα= + ()zg f z= ∇ z, and .k ky g g= −

Step 5. Compute: T
k k ka gα= kd , and T

k k kb yα= − kd .

Step 6. If 0,kb ≠ then compute /k ka bξ = − k

k

 and update the variables as

1k k k kx x dξ α+ = + , otherwise update the variables as 1k k k kx x dα+ = + . Compute

1kf + and Compute 1.kg + 1k ky g g+ k= − and 1 .k k ks x x+= −

Step 7. Compute k∆ as in (2.6).

Step 8. If ,k mε∆ ≥ then determine kθ and kβ as in (2.12) and (2.13) respectively, else

set 1kθ = and 0.kβ =

Step 9. Compute the search direction as: 1 1k k k kd g ksθ β+ += − + .

Step 10. Compute
2 2

1 1/()T
k k k kg y g gσ + + += + 1 .

Step 11. Restart criterion. If
2

1 10.2T
k k kg g g+ +> then set 1 1k kd g+ += − .

Step 12. Consider and go to step 2. ■ 1k k= +

It is well known that if f is bounded along the direction then there exists a stepsize kd kα
satisfying the Wolfe line search conditions (1.4) and (1.5). In our algorithm when the Powell
restart condition is satisfied, then we restart the algorithm with the negative gradient 1.kg +−
More sophisticated reasons for restarting the algorithms have been proposed in the literature
[16], but we are interested in the performance of a conjugate gradient algorithm that uses this
restart criterion associated to a direction satisfying both the descent and the conjugacy
conditions. Under reasonable assumptions, the Wolfe conditions and the Powell restart
criterion are sufficient to prove the global convergence of the algorithm. The first trial of the
step length crucially affects the practical behavior of the algorithm. At every iteration
the starting guess for the step

1k ≥

kα in the line search is computed as 1 1 /k k kd dα − − . This
selection was used for the first time by Shanno and Phua in CONMIN [40] and in SCALCG
by Andrei [3-5]. Observe that in the line search procedure (step 3) the steplength kα is
computed using the updated value of the parameter ,σ computed as in step 10. For uniformly
convex functions, we can prove the linear convergence of the acceleration scheme [7].

The DESCON algorithm can be implemented in some other variants. For example in
step 8 when k mε∆ ≥ is not satisfied, we can set 1kθ = and compute kβ as in classical

conjugate gradient algorithms like Hestenes and Stiefel [27], Dai and Yuan [17], Polak,
Ribière and Polyak [35, 36], etc. Another variant of DESCON can use (2.1) and (2.2) where

kθ and kβ are computed as in (2.11) and (3.29) respectively. However, our intensive
numerical experiments proved that all these variants are not faster or more robust than the
variant presented in DESCON algorithm above.

5. Numerical results and comparisons
In this section we report some numerical results obtained with an implementation of the
DESCON algorithm. The code is written in Fortran and compiled with f77 (default compiler
settings) on a Workstation Intel Pentium 4 with 1.8 GHz. DESCON uses the loop unrolling to
a depth of 5. We selected a number of 75 large-scale unconstrained optimization test
functions in generalized or extended form [1] (some from CUTE library [12]). For each test
function we have taken ten numerical experiments with the number of variables increasing as

 The algorithm implements the Wolfe line search conditions with 1000,2000,...,10000.n =

 17

0.0001,ρ =
2

1 1/(),T
k k k kg y g gσ + + += + 2

1 and the same stopping criterion

gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute component of a vector. In DESCON we

set and 7 / 8w = 0.05v = . In our numerical experiments kθ is not restricted in the interval
 In all the algorithms we considered in this numerical study the maximum number of

iterations is limited to 10000.
[0,2].w

 The comparisons of algorithms are given in the following context. Let and
be the optimal value found by ALG1 and ALG2, for problem

respectively. We say that, in the particular problem the performance of ALG1 was better
than the performance of ALG2 if:

f i
ALG1

f i
ALG2 i = 1 750, , ,…

i,

 f fi
ALG

i
ALG1 2 10− < −3

)
)

 (5.1)
and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or
the CPU time of ALG1 was less than the number of iterations, or the number of function-
gradient evaluations, or the CPU time corresponding to ALG2, respectively.

In the first set of numerical experiments we compare DESCON versus Dai and Liao
 conjugate gradient algorithm (1.13). Figure 1 shows the Dolan and Moré CPU

performance profile of DESCON versus DL
(1v =

(1v = . In a performance profile plot, the top
curve corresponds to the method that solved the most problems in a time that was within a
factor τ of the best time. The percentage of the test problems for which a method is the
fastest is given on the left axis of the plot. The right side of the plot gives the percentage of
the test problems that were successfully solved by these algorithms, respectively. Mainly, the
right side is a measure of the robustness of an algorithm.

Fig. 1. DESCON (7 / 8w = , 0.05v =) versus DL (1)v = .

When comparing DESCON with DL (1v)= conjugate gradient algorithm subject to CPU
time metric we see that DESCON is top performer, i.e. the accelerated Dai and Liao conjugate

 18

gradient algorithm with guaranteed descent and conjugacy conditions is more successful and
more robust than the Dai and Liao conjugate gradient algorithms with Comparing
DESCON with DL ((see Figure 1), subject to the number of iterations, we see that
DESCON was better in 605 problems (i.e. it achieved the minimum number of iterations in
605 problems). DL (was better in 52 problems and they achieved the same number of
iterations in 63 problems, etc. Out of 750 problems, only for 720 problems does the criterion
(5.1) hold. Therefore, DESCON appears to generate the best search direction and the best
steplength, on average.

1.v =
1v =)

)1v =

In the second set of numerical experiments we compare DESCON versus Hestenes

and Stiefel (HS) (1
T

HS k k
k T

k k

y g
y s

β +=) [27], versus Dai and Yuan (DY) (1 1
T

DY k k
k T

k k

g g
y s

β + +=) [17]

and versus Polak-Ribière-Polyak (PRP) (1
T

PRP k k
k T

k k

y g
g g

β +=) [35, 36], conjugate gradient

algorithms. Figures 2-4 present the Dolan and Moré CPU performance profile of DESCON
versus HS, DY and PRP, respectively.

An attractive feature of the Hestenes and Stiefel conjugate gradient algorithm is that
the pure conjugacy condition 1 0T

k ky d + = always is satisfied, independent of the line search.
On the other hand, under strong convexity assumption of ,f the global convergence of the
PRP method with exact line search has been proved by Polak and Ribière [35]. For an exact
line search the convergence properties of the HS method are similar to the convergence
properties of the PRP method. Therefore, by Powell’s example [37], the HS method with
exact line search may not converge for a general nonlinear function. Therefore, the
convergence of PRP method for general nonlinear functions is uncertain. Based on Powell’s
work, Gilbert and Nocedal [22] presented an elegant analysis and proved that the PRP method
is globally convergent if PRP

kβ is restricted to be nonnegative and the steplength satisfies the
sufficient descent condition (1.12) in each iteration. Both the HS and PRP methods possess a
built-in restart feature that addresses directly to the jamming phenomenon. When the step

1k kx x+ − is small, the factor in the numerator of 1k ky g g+= − k kβ tends to zero. Therefore,

kβ becomes small and the new search direction 1kd + essentially becomes the steepest descent

direction Hence, both HS and PRP methods automatically adjust 1.kg +− kβ to avoid
jamming. The performance of these methods is better than the performance of DY. On the
other hand, the DY method always generates descent directions and when implemented with a
standard Wolfe line search is globally convergent. In [14] Dai established a remarkable
property for the DY conjugate gradient algorithm, relating the descent directions to the
sufficient descent condition. It is shown that if there exist constants γ 1 and γ 2 such that

γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ (,)0 1 , there exists a constant such that the

sufficient descent condition

c > 0

g d c gi
T

i ≤ −
2

i ⎦holds for at least ⎣ indices pk
i k∈ [,],0 where denotes the largest integer ⎣ ⎦j ≤ j. However, the DY method does not
satisfy the conjugacy condition. In contrast, observe that in DESCON the search directions
are always descent directions and the conjugacy condition always is satisfied independent of
the accuracy of the line search.

 19

Fig. 2. DESCON (7 / 8w = , 0.05v =) versus Hestenes-Stiefel.

Fig. 3. DESCON (7 / 8w = , 0.05v =) versus Dai-Yuan.

 20

Fig. 4. DESCON (,7 / 8w = 0.05v =) versus Polak-Ribière-Polyak.

 The DY method has better global convergence properties than the Fletcher and
Reeves method [21]. As a result, Dai and Yuan [17] considered the possibility to combine DY
with other conjugate gradient methods. The following two hybrid methods were proposed in
[17]:

{ }1max , min ,
1

hDY DY HS DY
k k k

σβ β β
σ

−
kβ

⎧ ⎫= −⎨ ⎬+⎩ ⎭

and

{ }{ }max 0, min , .hDYz HS DY
k kβ β= kβ

The numerical experiments indicated that both these hybrid methods have similar
performances [6]. Therefore, in the third set of numerical experiments we compare DESCON
versus hybrid Dai-Yuan ({ }{ }max , min ,hDY DY HS DY

k k k kβcβ β β= − (1) /(1)c, σ σ= − + ,

0.8σ =) [17]. The hDY method reduces to the Fletcher and Reeves method [21] if f is a
strictly convex quadratic function and the line search is exact. For a standard Wolfe line
search, Dai and Yuan [17] proved that it produces descent directions at every iteration and
they established the global convergence of their hybrid conjugate gradient algorithm when the
Lipschitz assumption holds. However, the hDY conjugate gradient algorithm does not satisfy
the conjugacy condition. Figure 5 presents the Dolan and Moré CPU time performance profile
of DESCON versus hDY. The best performance, relative to the CPU time metric, again was
obtained by DESCON, the top curve in Figure 5.

 21

Fig. 5. DESCON (7 / 8w = , 0.05v =) versus hybrid Dai-Yuan.

In the fourth set of numerical experiments we compare DESCON versus

CG_DESCENT by Hager and Zhang [25]. CG_DESCENT is a modification of HS and was
devised in order to ensure sufficient descent, independent of the accuracy of the line search.
Hager and Zhang [25] proved that at every iteration the direction in their algorithm

satisfies the sufficient descent condition
kd

2(7 / 8)T
k k kg d g≤ − . This is the main reason we

considered in all our numerical experiments. CG_DESCENT has a very advanced
line search procedure that utilizes the “approximate Wolfe conditions” which provides a more
accurate way to check the usual Wolfe conditions when the iterates are near a local minimum
of the function

7 / 8w =

.f However, in CG_DESCENT the conjugacy condition (1.11) holds
approximately. CG_DESCENT like DESCON uses the loop unrolling to a depth of 5. Figure
6 presents the Dolan and Moré CPU time performance profile of DESCON versus
CG_DESCENT with Wolfe line search. Again, the best performance, relative to the CPU time
metric, was obtained by DESCON, the top curve in Figure 6.

Finally we compare DESCON versus L-BFGS (m=3) by Liu and Nocedal [29] as in
Figure 7, where is the number of pairs (, used. Observe that DESCON is top
performer again. The differences are significant. The linear algebra in the L-BFGS code to
update the search direction is very different from the linear algebra used in DESCON. On the
other hand the steplength in L-BFGS is determined at each iteration by means of the line
search routine MCVSRCH, which is a slight modification of the routine CSRCH written by
Moré and Thuente [30].

m)k ks y

 22

Fig. 6. DESCON (,7 / 8w = 0.05v =) versus CG_DESCENT by Hager and Zhang.

Fig. 7. DESCON (,7 / 8w = 0.05v =) versus L-BFGS (m=3) by Liu and Nocedal.

In the following, in Figure 8, we present the performance profile of DESCON
(,) versus HS, PRP, CG_DESCENT and L-BFGS (m=3), subject to CPU
time metric. We see that among these algorithms DESCON is top performer. Observe that
these algorithms can be classified in three major classes: DESCON and CG_DESCENT; HS
and PRP, and finally the limited memory quasi-Newton L-BFGS.

7 / 8w = 0.05v =

 23

Fig. 8. DESCON (,) versus HS, PRP, CG_DESCENT and L-BFGS (m=3). 7 / 8w = 0.05v =

In order to see the performances of the algorithm we present a sensitivity study of DESCON
subject to the variation of v and parameters. Both these parameters emphasize the
importance of the conjugacy condition and the sufficient descent condition, respectively.
From (2.2), (2.3) and (2.6)-(2.11) we have

w

2

11
1

()
,

T T
k k kk

k T
k k

y s gd yg
w y

++
+

⎛ ⎞∂
= −⎜∂ ∆ ⎝ ⎠

1k k
k

k

g s
s
+ ⎟ (5.2)

 (21 1
1 1 1

() ()
T

Tk k k
k k k k k

k

d s g s g g g s
v
+ +

+ + +

∂
= − −

∂ ∆). (5.3)

Observe that if the line search is exact (1 0T

k ks g + =) then from (5.3) we see that the algorithm
is not sensitive to the variation of However, in our algorithm the line search is not exact. .v

Table 1 presents the total number of iterations (#itert), the total number of function
and its gradient evaluations (#fgt) and the total CPU time (cput) for solving the above set of
750 unconstrained optimization test problems for 7 / 8w = and for different values of For
example, for solving the set of 750 problems with

.v
7 / 8w = and 0v = , the total number of

iteration is 258495, the total number of function and its gradient evaluations is 601615 and the
total CPU time is 281.22 seconds, etc.

In Table 1 we have a computational evidence of the sensitivity of DESCON
corresponding to a set of 12 numerical experiments subject to variation of v parameter. The
best results corresponding to this set of 12 numerical experiments are obtained for
Subject to the CPU time metric the average of the total CPU time corresponding to these 12
numerical experiments, for solving 750 problems in each experiment, is 3467.27/12=288.93

0.05.v =

 24

seconds. The largest deviation is of 20.22 seconds and corresponds to the numerical
experiment in which Therefore, in all these 12 numerical experiments the maximum
deviation is of 20.22/750=0.0269 seconds per problem.

1.v =

Table 1. Sensitivity of the DESCON subject to .v 7 / 8w = .

v #itert #fgt cput
0 258495 601615 281.22

0.001 260994 617922 289.15
0.005 262993 638135 293.31
0.01 259220 610071 287.77
0.02 256349 596269 280.94
0.05 257401 598061 277.12
0.07 260234 622866 293.70
0.1 258965 607951 281.98
0.2 270643 639619 299.59
0.5 259877 617219 291.09
0.7 269096 626097 282.25
1 271124 677019 309.15

In the following we present the sensitivity of DESCON subject to the variation of
parameter. Table 2 presents the total number of iterations, the total number of function and its
gradient evaluations and the total CPU time for solving the above set of 750 unconstrained
optimization test problems for and for 6 different values of

w

0.05v = .w

Table 2. Sensitivity of the DESCON subject to .w 0.05v = .
w #itert #fgt cput

0.5 260019 612548 283.96
0.6 258562 608102 282.50
0.7 262148 645578 295.08
0.8 259623 608464 283.98
0.9 258696 609549 285.08
1 258387 600603 277.26

The best results corresponding to this set of 6 numerical experiments are obtained for
Subject to CPU time metric for solving 750 problems in each of these 6 numerical
experiments the total CPU time difference is of 295.08

1.w =

− 277.26 = 17.82 seconds. Therefore,
in all these 6 numerical experiments the maximum deviation is of 17.82/750=0.0237 seconds
per problem. Observe that the average of the total CPU time corresponding to these 6
numerical experiments is 1707.86/6=284.64 seconds. The largest deviation is of 295.08 −
284.64 = 10.44 seconds. Therefore, in all these 6 numerical experiments the maximum
deviation is of 10.44/750=0.0139 seconds per problem. Practically, DESCON is very little
sensitive to the variation of .w
 We now present comparisons between DESCON and CG_DESCENT conjugate
gradient algorithms for solving some applications from MINPACK-2 test problem collection
[9]. In Table 3 we present these applications, as well as the values of their parameters. The
infinite-dimensional version of these problems is transformed into a finite element
approximation by triangulation. Thus a finite-dimensional minimization problem is obtained
whose variables are the values of the picewise linear function at the vertices of the
triangulation. The discretization steps are 1000nx = and 1000,ny = thus obtaining
minimization problems with 1,000,000 variables.

 25

Table 3. Applications from MINPACK-2 collection.
A1 Elastic-Plastic Torsion [23, pp. 41-55], 5.c =
A2 Pressure Distribution in a Journal Bearing [13], 10,b = 0.1.ε =

A3 Optimal Design with Composite Materials [24], 0.008.λ =
A4 Steady-State Combustion [8, pp. 292-299], [10], 5.λ =
A5 Minimal Surfaces with Enneper conditions [31, pp. 80-85].

A comparison between DESCON (0.05,v = 0.875,w = Powell restart criterion,

6() 10kf x −
∞

∇ ≤ ,) and CG_DESCENT (Wolfe line search, default settings, 410ρ −=
6() 10kf x −

∞
∇ ≤) for solving these applications is given in Table 4.

Table 4. Performance of DESCON and CG_DESCENT.

1,000,000 variables. cpu seconds.
DESCON CG_DESCENT

#iter #fg cpu #iter #fg cpu
A1 1118 2267 787.89 1145 2291 1087.83
A2 2837 5702 2120.75 3368 6737 3369.77
A3 4712 9462 5679.96 4841 9684 8058.66
A4 1413 2864 2349.64 1806 3613 4213.00
A5 1279 2580 1368.08 1226 2453 1773.95

TOTAL 11359 22875 12306.32 12386 24778 18503.21

Form Table 4 we see that subject to the CPU time metric the DESCON algorithm is top
performer again, and the difference is significant, about 6196.89 seconds for solving all these
5 applications.

The DESCON and CG_DESCENT algorithms (and codes) are different in many
respects. Since both of them use the Wolfe line search (however, implemented in different
manners), these codes mainly differ in their choice of the search direction. DESCON appears
to generate a better search direction, on average. The direction 1kd + used in DESCON is more
elaborate, it satisfies both the sufficient descent condition and the conjugacy condition in a
restart environment. Although the update formulae (2.2), (2.3) and (2.6)-(2.11) are more
complicated, this computational scheme proved to be more efficient and more robust in
numerical experiments and applications.

As a final remark observe that the DESCON algorithm can be implemented in
different versions. For example, in step 8 for kθ and kβ computation, one version can use
(2.12) and (3.29) respectively. However, this version doesn’t prove to be superior in
numerical experiments. Subject to CPU time metric DESCON using (2.12) and (2.13) was
fastest in 115 problems. On the other hand, DESCON using (2.12) and (3.29) was fastest only
in 100 problems. Another version can implement a truncation mechanism suggested by Hager
and Zhang [25] as { }max , ,k k kβ β η+ = where 1/(min{0.1, }).k k kd gη = − In this case,
subject to CPU time metric, DESCON using (2.12) and (2.13) was fastest in 113 problems.
On the other hand, DESCON using (2.12) and ,kβ

+ where kβ is computed by (2.13), was
fastest in 107 problems. In another set of comparisons DESCON using (2.12) and (2.13) was
fastest in 91 problems versus DESCON using (2.12) and ,kβ

+ where kβ is computed by
(3.29), was fastest in 86 problems. Observe that DESCON with (2.12) and (2.13) is top
performer.

6. Conclusions
For solving large scale unconstrained optimization problems we have presented an
accelerated conjugate gradient algorithm that for all both the descent and the 0k ≥

 26

conjugacy conditions are guaranteed. In our algorithm the search direction is selected as a
linear combination of and where the coefficients in this linear combination are
selected in such a way that both the descent and the conjugacy condition are satisfied at every
iteration. The algorithm introduces the modified Wolfe line search, where in the second
Wolfe condition the parameter

1kg +− ,ks

σ is modified at every iteration. Besides, the step length is
modified by an acceleration scheme which proved to be very efficient in reducing the values
of the minimizing function along the iterations.
For a test set consisting of 750 problems with dimensions ranging between 1000 and 10,000,
the CPU time performance profiles of DESCON was higher than those of HS, PRP, DY,
hDY, CG_DESCENT with Wolfe line search and limited memory quasi-Newton method L-
BFGS. A number of 5 applications from MINPACK2 test problem collection, with
variables, illustrate the performances of DESCON versus CG_DESCENT. At present, from
the above test problems and applications we have the computational evidence that DESCON
is the fastest and the most robust conjugate gradient algorithm.

610

References
[1] N. Andrei, An unconstrained optimization test functions collection. Advanced Modeling

and Optimization, 10 (2008), pp. 147-161.
[2] N. Andrei, An acceleration of gradient descent algorithm with backtracking for

unconstrained optimization, Numerical Algorithms, 42 (2006), pp. 63-73.
[3] N. Andrei, Scaled conjugate gradient algorithms for unconstrained optimization.

Computational Optimization and Applications, 38 (2007), pp. 401-416.
[4] N. Andrei, Scaled memoryless BFGS preconditioned conjugate gradient algorithm for

unconstrained optimization. Optimization Methods and Software, 22 (2007), 561-571.
[5] N. Andrei, A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained

optimization. Applied Mathematics Letters, 20 (2007), 645-650.
[6] N. Andrei, Numerical comparison of conjugate gradient algorithms for unconstrained

optimization. Studies in Informatics and Control, 16 (2007), pp.333-352.
[7] N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization.

Applied Mathematics and Computation, 213 (2009), 361-369.
[8] R. Aris, The mathematical theory of diffusion and reaction in permeable catalysts.

Oxford, 1975.
[9] B.M., Averick, R.G., Carter, J.J., Moré, Xue, G.L. The MINPACK-2 test problem

collection. Mathematics and Computer Science Division, Argonne National
Laboratory, Preprint MCS-P153-0692, June 1992.

[10] J. Bebernes, D. Eberly, Mathematical problems from combustion theory. Applied
Mathematical Sciences 83, Springer-Verlag, 1989.

[11] E. Birgin, J.M. Martínez, A spectral conjugate gradient method for unconstrained
optimization, Applied Math. and Optimization, 43, pp.117-128, 2001.

[12] I. Bongartz, A.R. Conn, N.I.M. Gould, P.L. Toint, CUTE: constrained and
unconstrained testing environments, ACM Trans. Math. Software, 21, pp.123-160,
1995.

[13] G., Cimatti, On a problem of the theory of lubrication governed by a variational
inequality. Appl. Math. Potim., 3 (1977) 227-242.

[14] Y.H. Dai, New properties of a nonlinear conjugate gradient method. Numer. Math., 89
(2001), pp.83-98.

[15] Y.H. Dai, L.Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient
methods. Applied Mathematical Optimization, 43 (2001), pp. 87-101.

[16] Y.H. Dai, L.Z. Liao, Li Duan, On restart procedures for the conjugate gradient method.
Numerical Algorithms 35 (2004), pp. 249-260.

[17] Y.H. Dai, Y. Yuan, An efficient hybrid conjugate gradient method for unconstrained
optimization, Ann. Oper. Res., 103 (2001) 33-47.

 27

[18] Y.H. Dai, Han, J.Y., Liu, G.H., Sun, D.F., Yin, .X., Yuan, Y., Convergence properties of
nonlinear conjugate gradient methods. SIAM Journal on Optimization 10 (1999), 348-
358.

[19] E.D., Dolan, J.J. Moré, Benchmarking optimization software with performance profiles,
Math. Programming 91, 201-213 (2002)

[20] R. Fletcher, Practical Optimization:Vol. 1: Unconstrained optimization. John Wiley and
Sons, Chichester, 1980.

[21] R., Fletcher, Reeves, C., Function minimization by conjugate gradients, Comput. J., 7
(1964), pp.149-154.

[22] J.C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods
for optimization, SIAM J. Optim., 2 (1992), pp. 21-42.

[23] R., Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer-
Verlag, Berlin, 1984.

[24] J., Goodman, R., Kohn, L., Reyna, Numerical study of a relaxed variational problem
from optimal design. Comput. Methods Appl. Mech. Engrg., 57, 1986, pp.107-127.

[25] W.W. Hager, H. Zhang, “A new conjugate gradient method with guaranteed descent and
an efficient line search”, SIAM Journal on Optimization, 16 (2005) 170-192.

[26] W.W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods. Pacific
journal of Optimization, 2 (2006) 35-58.

[27] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems, J.
Research Nat. Bur. Standards, 49 (1952) 409-436.

[28] G. Li, C. Tang, Z. Wei, New conjugacy condition and related new conjugate gradient
methods for unconstrained optimization. Journal of Computational and Applied
Mathematics, 202 (2007) 523-539.

[29] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization
methods. Mathematical Programming, 45 (1989), pp. 503-528.

[30] J.J. Moré, D.J. Thuente, Line search algorithms with guaranteed sufficient decrease.
ACM Transactions on Mathematical Software, 20 (1994) 286-307.

[31] J.C.C. Nitsche, Lectures on minimal surfaces. Vol.1, Cambridge University Press, 1989.
[32] J. Nocedal, Conjugate gradient methods and nonlinear optimization. In Linear and

nonlinear Conjugate Gradient related methods, L. Adams and J.L. Nazareth (eds.),
SIAM, 1996, pp.9-23.

[33] A. Perry, A modified conjugate gradient algorithm. Operations Research 26 (1978), pp.
1073-1078.

[34] E. Polak, Computational methods in optimization: A unified approach. Academic Press,
New York, 1971.

[35] E. Polak, G. Ribière, Note sur la convergence de directions conjuguée, Rev. Francaise
Informat Recherche Operationelle, 3e Année 16 (1969) 35-43.

[36] B.T. Polyak, The conjugate gradient method in extreme problems. USSR Comp. Math.
Math. Phys., 9 (1969) 94-112.

[37] M.J.D. Powell, Nonconvex minimization calculations and the conjugate gradient method.
Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, vol. 1066,
Springer-Verlag, Berlin, 1984, pp. 122-141.

[38] M.J.D. Powell, Some convergence properties of the conjugate gradient method.
Mathematical Programming, 11 (1976), pp.42-49.

[39] D.F. Shanno, Conjugate gradient methods with inexact searches. Mathematics of
Operations Research 3 (1978), pp. 244-256.

[40] D.F. Shanno, K.H. Phua, Algorithm 500. Minimization of unconstrained multivariate
functions, ACM Trans. on Math. Soft., 2 (1976) 87-94.

[41] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev. 11 (1969) 226-235.
[42] P. Wolfe, Convergence conditions for ascent methods II: some corrections, SIAM Rev.

13 (1971) 185-188.
[43] Y. Yuan, Analysis on the conjugate gradient method. Technical Report, Computing

Center, Academia Sinica, China, 1990.

 28

[44] Y. Yuan, J. Stoer, A subspace study on conjugate gradient algorithms. Z. Angew. Math.
Mech., 75 (1995), pp. 69-77.

[45] G. Zoutendijk, Nonlinear programming computational methods. In: J. Abadie (Ed.)
Integer and Nonlinear Programming, North-Holland, Amsterdam, 1970, pp. 37-86.

November 29, 2010

 29

