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Abstract. In this paper we suggest another accelerated conjugate gradient algorithm that 
for all  both the descent and the conjugacy conditions are guaranteed. The search 
direction is selected as  

where ,  The coefficients 

0k ≥

1 1 1 1( / ) ( / )T T T T
k k k k k k k k k k k k k kd g y g y s s t s g y sθ+ + + += − + − ,s

1 1( )k kg f x+ += ∇ 1 .k k ks x x+= − kθ  and  in this linear 
combination are selected in such a way that both the descent and the conjugacy condition 
are satisfied at every iteration. The algorithm introduces the modified Wolfe line search in 
which the parameter in the second Wolfe condition is modified at every iteration. It is 
shown that both for uniformly convex functions and for general nonlinear functions the 
algorithm with strong Wolfe line search generates directions bounded away from infinity. 
The algorithm uses an acceleration scheme modifying the steplength 

kt

kα  in such a manner 
as to improve the reduction of the function values along the iterations. Numerical 
comparisons with some conjugate gradient algorithms using a set of 75 unconstrained 
optimization problems with different dimensions, some of them from the CUTE library, 
show that the computational scheme outperform the known conjugate gradient algorithms 
like Hestenes and Stiefel; Polak, Ribière and Polyak; Dai and Yuan or the hybrid Dai and 
Yuan; CG_DESCENT with Wolfe line search by Hager and Zhang, as well as the quasi-
Newton L-BFGS by Liu and Nocedal. 
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1. Introduction 
For solving the unconstrained optimization problems 
                                                                  min ( )

nx R
f x

∈
,                                                           (1.1) 

where : nf R → R is a continuously differentiable function, bounded from below, one of the 
most elegant and probably the simplest methods are the conjugate gradient methods. For 
solving this problem, starting from an initial guess 0

nx R∈ , a nonlinear conjugate gradient 

method, generates a sequence { }kx  as: 

                                                               1k k k kx x dα+ = + ,                                                   (1.2) 

where 0kα >  is obtained by line search, and the directions  are generated as: kd
                                                    1 1k k k kdd g β+ += − + 0 0d g= −,  .                                     (1.3) 

In (1.3) kβ  is known as the conjugate gradient parameter and ( )kg f xk= ∇ . The search 

direction , assumed to be a descent one, plays the main role in these methods. On the other kd
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hand, the stepsize kα  guarantees the global convergence in some cases and is crucial in 
efficiency. Different conjugate gradient algorithms correspond to different choices for the 
scalar parameter .kβ  Plenty of conjugate gradient methods are known and an excellent survey 
of these methods with a special attention on their global convergence is given by Hager and 
Zhang [26]. Line search in the conjugate gradient algorithms often is based on the standard 
Wolfe conditions [41, 42] 
                                                                                    (1.4) ( ) ( ) T

k k k k k k kf x d f x g dα ρα+ − ≤ ,
T

k

1.
                                                 ,                                               (1.5) ( )T

k k k k kg x d d g dα σ+ ≥
where  is supposed to be a descent direction and 0 1kd / 2ρ σ< ≤ < <   
A numerical comparison of conjugate gradient algorithms (1.2) and (1.3) with Wolfe line 
search, for different formulae of parameter kβ  computation, including the Dolan and Moré 
performance profile [19], is given in [6].  
If the initial direction  is selected as 0d 0 ,d g0= −  and the objective function to be minimized 
is a convex quadratic function 

                                                      
1( )
2

T Tf x x Ax b x c= + +                                               (1.6) 

and the exact line searches are used, that is 
                                                     

0
arg min ( ),k k kf x d

α
α α

>
= +                                             (1.7) 

then the conjugacy condition 
                                                                  0T

i jd Ad =                                                          (1.8) 
holds for all  This relation (1.8) is the original condition used by Hestenes and Stiefel 
[27] to derive the conjugate gradient algorithms, mainly for solving symmetric positive-
definite systems of linear equations. Using (1.3) and (1.6)-(1.8) it can be shown that 

.i j≠

1kx +  is 

the minimum of the quadratic function (1.6) in the subspace { }1 2, , ,k kx span g g g+ …  and 

the gradients  are mutually orthogonal unless that 1 2, , , kg g g… 0kg =  [20]. It follows that 
for convex quadratic functions the solution will be found after at most  iterations. Powell 
[38] shown that if the initial search direction is not  then even for quadratic functions (1.6) 
the conjugate gradient algorithms does not terminate within a finitely number of iterations. It 
is well known that the conjugate gradient algorithm converges at least linearly [34]. An upper 
bound for the rate of convergence of conjugate gradient algorithms was given by Yuan [43].  

n
0g

Let us denote  For a general nonlinear twice differential function 1 .k k ky g g+= − ,f  
by the mean value theorem, there exists some (0,1)ξ ∈  such that  
                                                                                (1.9) 2

1 1 (T T
k k k k k k k kd y d f x d dα ξα+ += ∇ + ) .

Therefore, it seems reasonable to replace (1.8) with the following conjugacy condition 
                                                                 1 0.T

k kd y+ =                                                          (1.10) 
In order to accelerate the conjugate gradient algorithm Perry [33] (see also Shanno [39]) 
extended the conjugacy condition by incorporating the second order information. He used the 
secant condition  where  is a symmetric approximation to the inverse 

Hessian and, as usual,  Since for quasi-Newton method the search direction 

 is computed as  it follows that  

1 ,k k kH y s+ = kH

1 .k k ks x x+= −

1kd + 1 1 ,k kd H g+ += − 1k+

1 ,T
+

1
T
+

1 1 1 1 1( ) ( )T T T
k k k k k k k k k kd y H g y g H y g s+ + + + += − = − = −  

thus obtaining a new conjugacy condition. Recently, Dai and Liao [15] extended this 
condition and suggested the following new conjugacy condition 
                                                           ,                                                  (1.11) 1

T
k k k kd y vg s+ = −
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where  is a scalar.  0v ≥
Conjugate gradient algorithms are based on the conjugacy condition. To minimize a convex 
quadratic function in a subspace spanned by a set of mutually conjugate directions is 
equivalent to minimize this function along each conjugate direction in turn. This is a very 
good idea, but the performance of these algorithms is dependent on the accuracy of the line 
search. However, in conjugate gradient algorithms we always use inexact line search. Hence, 
when the line search is not exact, the “pure” conjugacy condition (1.10) may have 
disadvantages. Therefore, it seems more reasonable to consider in conjugate gradient 
algorithms the conjugacy condition (1.11). When the algorithm is convergent observe that 

 tends to zero along the iterations, and therefore conjugacy condition (1.11) tends to 
the pure conjugacy condition (1.10). 

1
T
k kg s+

Conjugate gradient algorithm (1.2) and (1.3) with exact line search always satisfy the 
condition 2

1 1 1
T
k k kg d g+ + += −  which is in a direct connection with the sufficient descent 

condition 
                                                          2

1 1 1 ,T
k k kg d w g+ + +≤ −                                             (1.12) 

for some positive constant  Observe that  is an arbitrary positive constant. The 
sufficient descent condition has been used often in the literature to analyze the global 
convergence of the conjugate gradient algorithms with inexact line search based on the strong 
Wolfe conditions. The sufficient descent condition is not needed in the convergence analyses 
of the Newton or quasi-Newton algorithms. However, it is necessary for the global 
convergence of conjugate gradient algorithms [18].  

0.w > w

 Using (1.11) Dai and Liao [15] obtained a new conjugate gradient algorithm  

                                                         1( ) .
T

DL k k k
k T

k k

g y vs
y s

β + −
=                                               (1.13) 

For an exact line search we see that 1kg +  is orthogonal to  Therefore, for an exact line 
search, the DL method reduces to the Hestenes and Stiefel (HS) method. Observe that due to 
the Powell’s example, the DL method may not converge for an exact line search. To 
overcome this and to ensure convergence Dai and Liao modified their formula as  

.ks

                                             1max ,0 .
T T

DL k k k k
k T

k k k k

g y g sv
y s y s

β + +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
1

T
+                                  (1.14) 

If the level set { }0: ( ) ( )nS x R f x f x= ∈ ≤  is bounded and the gradient ( )f x∇  is Lipschitz 

continuous on and if  satisfies the sufficient descent condition (1.12), it is shown in [15] 
that DL+ implemented with a strong Wolfe line search is globally convergent. Numerical 
results are reported in [15] for  and 

,S kd

0.1v = 1v = . However, for different choices of , the 
numerical results are quite different. 

v

In this paper we suggest a new conjugate gradient algorithm that for all  both 
the descent and the conjugacy conditions are guaranteed. In section 2 we present the search 
direction, as well as the main ingredients for its computation. The search direction is selected 
as a linear combination of  and  where the coefficients in this linear combination are 
selected in such a way that both the descent and the conjugacy condition to be satisfied at 
every iteration. In section 3 we prove the convergence of the algorithm. It is shown that both 
for uniformly convex functions and for general nonlinear functions the corresponding 
algorithm with strong Wolfe line search generates directions bounded away from infinity. 
Section 4 is devoted to present the algorithm in its accelerated version. The idea of this 
computational scheme is to take advantage that the step lengths 

0k >

1kg +− ,ks

kα  in conjugate gradient 

algorithms are very different from 1. Therefore, we suggest we modify kα  in such a manner 
as to improve the reduction of the function values along the iterations. In section 5 some 
numerical experiments and performance profiles of Dolan-Moré corresponding to this new 
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conjugate gradient algorithm are given. The performance profiles correspond to a set of 75 
unconstrained optimization problems presented in [1]. Each problem was tested 10 times for a 
gradually increasing number of variables: 1000,2000, ,10000n = … . It is shown that this 
new conjugate gradient algorithm outperforms the classical Hestenes and Stiefel [27], Dai and 
Yuan [17], Polak, Ribière and Polyak [35, 36], hybrid Dai and Yuan [17] conjugate gradient 
algorithms, the CG_DESCENT conjugate gradient algorithm with Wolfe line search by Hager 
and Zhang [25] and also L-BFGS by Liu and Nocedal [29]. 
 
2. Conjugate gradient algorithm with guaranteed descent  
    and conjugacy conditions 
For solving the minimization problem (1.1) let us consider the following conjugate gradient 
algorithm  
                                                               1k k k kx x dα+ = + ,                                                   (2.1) 

where 0kα >  is obtained by the Wolfe line search, and the directions  are generated as: kd
                                                           1 1 ,k k k kd g ksθ β+ += − +                                               (2.2) 

                                                          1
T T
k k k k k

k T
k k

y g t s g
y s

β 1+ +−
= ,                                            (2.3) 

0d g= − 0 , where kθ  and  are scalar parameters which follows to be determined. Observe 

that in , given by (2.2),  is scaled by parameter 
kt

1kd + 1kg + kθ  and the parameter  in (2.3) is 
changed at every iteration. Algorithms of this form, or variations of them, have been studied 
by many authors. For example, Andrei [3,4,5] considers a preconditioned conjugate gradient 
algorithm where the preconditioner is a scaled memoryless BFGS matrix and the parameter 
scaling the gradient is selected as the spectral gradient. On the other hand Birgin and Martínez 
[11] suggested a spectral conjugate gradient method, where . Yuan and Stoer 

[44] studied the conjugate gradient algorithm on a subspace, where the search direction 

kt

/T T
k k k ks s s yθ = k

1kd +  

is taken from the subspace { }1,k kspan g d+ . Observe that if for every 1,k ≥ 1kθ =  and 

, then (2.2) reduces to the Dai and Liao direction (1.13).  kt = v
In our algorithm for all  the scalar parameters 0k ≥ kθ  and  in (2.2) and (2.3) 

respectively are determined in such a way that both the descent and the conjugacy conditions 
are satisfied. Therefore, from the descent condition (1.12) we have 

kt

 

                           
2

2 21 1 1
1 1

( )( ) ( )T T T
k k k k k k

k k k kT T
k k k k

y g s g s gg t
y s y s

θ + + +
+ +− + − = −w g

1),+

                   (2.4) 

and from the conjugacy condition (1.11) 
                                                                    (2.5) 1 1 1 (T T T T

k k k k k k k k k ky g y g t s g v s gθ + + +− + − = −
 
where  and  are known scalar parameters. Observe that in (2.4) we modified the 
classical sufficient descent condition (1.12) with equality. It is worth saying that the main 
condition in any conjugate gradient algorithm is the descent condition  or the 
sufficient descent condition (1.12). In our algorithm we have selected  close to 1. This is 
enough a reasonable value. For example, Hager and Zhang [25] show that in their 
CG_DESCENT algorithm  On the other hand, the conjugacy condition (1.10) or its 
modification (1.11) is not so stringent. In fact very few conjugate gradient algorithms satisfy 
this condition. For example, the Hestenes and Stiefel algorithm has this property that the pure 
conjugacy condition always holds, independent of the line search.  

0v > 0w >

0T
k kg d <

w

7 / 8.w =
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If , then (2.5) is the “pure” conjugacy condition. However, in our algorithm in 
order to accelerate the algorithm and to incorporate the second order information we take 

.  

0v =

0v >
Now, let us define 
                                           2

1 1 1( )( ) (T T T
k k k k k k k ky g s g g y s+ + +∆ = − ),                                   (2.6) 

                                           1( )T
k k k ks g +∆ = ∆ ,

1,
                                                                      (2.7) 

                                            1( )T T
k k k k ka v s g y g+ += +                                                          (2.8) 

                                            2
1 1( ) ( )(T T T

k k k k k k k kb w g y s y g s g+ += + 1).+                                (2.9) 

Supposing that  and 0k∆ ≠ 1 0,T
k ky g + ≠ then from the linear algebraic system given by (2.4) 

and (2.5) we get 

                                              
2

1( ) ( )T T
k k k k k k k

k
k

b y g a y s g
t + −
=

∆
1+ ,                                    (2.10) 

                                              1

1

( ) ,
T

k k k k
k T

k k

a t s g
y g

θ +

+

−
=                                                            (2.11) 

with which the parameter kβ  and the direction 1kd +  can immediately be computed. 
Observe that, using (2.10) in (2.11) we get 

                                            
2

1

1

( )
1

T
k k kk

k T
k k k k

y s ga b
y g

θ +

+

⎡ ⎤
= + −⎢ .k⎥

∆ ∆⎢ ⎥⎣ ⎦
                              (2.12) 

Again, using (2.10) in (2.3) we have 

                                              
2

11 1
T

kk k k
k T

k k k k

gy g b a
y s

β ++ ⎛ ⎞
= − +⎜ ⎟∆ ∆⎝ ⎠

.k                                     (2.13) 

Therefore, the crucial element in the algorithm is .k∆  
In the following, in order to define the algorithm we shall consider a small 

modification of the second Wolfe line search condition (1.5) as 
                                                 ,                                            (2.14) ( )T

k k k k k kg x d d g dα σ+ ≥ T
k

where kσ  is a sequence of parameters satisfying the condition 0 1,kρ σ< < <  for all  

Therefore, in our algorithm we consider that the rate of decrease of 

.k
f  in the direction  at kd

1kx +  is larger than a fraction kσ , which is modified at every iteration, of the rate of decrease 

of f  in the direction  at kd kx . The condition kρ σ< , for all , guarantees that (1.4) 
and (2.14) can be satisfied simultaneously. We call (1.4) and (2.14) as the modified Wolfe 
conditions. The following proposition can be proved. 

0k ≥

 
Proposition 2.1. Assume that  is a descent direction and kd f∇  satisfies the Lipschitz 

condition ( ) ( )k kf x f x L x x∇ −∇ ≤ −  for all  on the line segment connecting x kx  and 

1,kx +  where is a positive constant. If the line search satisfies the modified Wolfe conditions 
(1.4) and (2.14), then 

L

                                                      2
(1 ) .

T
k kk

k
k

g d
L d
σ

kα ω−
≥ ≡                                           (2.15) 

Proof. To prove (2.15) subtract  from both sides of (2.14) and using the Lipschitz 
condition we get: 

T
k kg d
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2
1( 1) ( )T T

k k k k k k k kg d g g d L dσ α+− ≤ − ≤ .  

But,  is a descent direction and since kd 1kσ < , we immediately get (2.15). ■ 
Observe that  defined in (2.15) is positive for all  kω 1.k ≥
 
Proposition 2.2. If  

                                                        
2

1
2

1 1

1 ,
2

k
k T

k k k

g

y g g
+

+ +

< ≤
+

σ                                      (2.16) 

then for all 1,k ≥ 0k∆ < . 
 
Proof. Observe that  
                                                                                            (2.17) 1 .T T T T

k k k k k k k ks g s y s g s y+ = + <
The modified Wolfe condition (2.14) gives 
                                                                          (2.18) 1 1 .T T T T

k k k k k k k k k k kg s g s y s g s+ +≥ = − +σ σ σ
Since 1,k <σ  we can rearrange (2.18) to obtain 

                                                           1 .
1

T k
k k k k

k

g s y s+
T−

≥
−
σ
σ

                                              (2.19) 

Now, combining this lower bound for  with the upper bound (2.17) we get 1
T
k kg s+

                                                 1 max 1, .
1

T T k
k k k k

k

g s y s+

⎧ ⎫
≤ ⎨ ⎬−⎩ ⎭

σ
σ

                                     (2.20) 

Since 1/ 2k >σ , from (2.20) we can write 

                                                         1 .
1

T k
k k k k

k

g s y s+ <
−

Tσ
σ

                                             (2.21) 

If (2.16) is true, then  

                                                       2
1 1 .

1
Tk
k k k

k

y g g+ +≤
−
σ
σ

                                            (2.22) 

Again, observe that the Wolfe condition gives  (if 0T
k ky s > 0kg ≠ ). Therefore,  

                                              2
11

T T Tk
k k k k k k k

k

y s g y y s g+ ≤
− 1+
σ
σ

.                                  (2.23) 

From (2.21) and (2.23) we can write 

                               2
1 1 1 1 ,

1
T T T T Tk
k k k k k k k k k k k

k

s g y g y s y g y s g+ + + +< ≤
−
σ
σ

                  (2.24) 

i.e. 0k∆ <  for all   ■ 1.k ≥
 
In our algorithm we consider  

                                                          
2

1
2

1 1

.k
k T

k k k

g

y g g
σ +

+ +

=
+

                                           (2.25) 

 
Proposition 2.3. Suppose that  is a descent direction and kd ( )f x∇ is Lipschitz continuous 

on the level set { }0: ( ) ( )nS x R f x f x= ∈ ≤ . Then the sequence { }k∆  given by (2.6) is 

uniformly bounded away from zero, independent of  .k
 

 6



Proof. Suppose that  for all , otherwise a stationary point is obtained. Defining 0kg ≠ 1k ≥

{ }inf : 0 ,kg kγ = ≥  we have 0.γ >  Therefore, for all  from (2.25) ,k 1kσ < . Observe 

that with this value for ,kσ  from (2.21) it follows that 0k∆ <  for all  Now, from 
proposition 2.1, the modified Wolfe condition (2.14) and the descent condition (2.4), since 

1.k ≥

1,kσ <  for all , we have 1k ≥

1( ) ( 1)T T T
k k k k k k k k k k k k ky s y d g g d g dα α α σ+= = − ≥ − T  

2 2( 1) (1 )k k k k kw g w= − − ≥ − >α σ ω σ γ 0. 

Therefore, 
2 4

1 (1 ) 0,T
k k k k ky s g w+ ≥ − >ω σ γ  for all  i.e. 1,k ≥ 2

1( )T
k k ky s g +  is uniformly 

bounded away from zero independent of   .k
On the other hand, observe that the first Wolfe condition (1.4) limits the accuracy of the 
algorithm to the order of the square root of the machine precision [25]. Therefore, even that 
the line search is not exact, however the line search based on the modified Wolfe conditions is 
enough accurate to ensure that 1

T
k ks g +  tends to zero along the iterations. Therefore, since by 

(2.22) 1
T
k ky g +  is bounded, it follows that  Since 1 1( )( )T T

k k k ky g s g+ + → 0. 0k∆ <  for all 

 we have that the sequence 1,k ≥ { }k∆  is uniformly bounded away from zero independent of 

 ■ .k
 
Some remarks are in order. 
1) Suppose that  is a descent direction and kd 0kg ≠  for all , otherwise a stationary 
point is obtained. From the descent condition (2.4) we can write  

1k ≥

                                                   2
1( ) ( )T

k k k k ks g w gβ θ+ = − 1+ .                                        (2.26) 

Since  tends to zero (  is a descent direction) it follows that 1
T
k ks g + kd kθ  tends to  and 

hence 

0,w >
0.kθ >  Since  is a real positive and finite constant, and w ,k w→θ  there exists the 

arbitrary and positive constants  and  such that for any  10 c w< ≤ 2 ,c w≥ 1,k ≥ 1 2.kc c≤ ≤θ  
 
2) Observe that, 2

1 1 .T
k k k k kg g g y g+ += − 1

T
+  On the other hand, from (2.25) it follows that 

2
1 1

1 .T k
k k k

k

y g gσ
σ+ +

−
=  Hence,  

                         2 2
1 1 1 1 1 1

1 .T T T
k k k k k k k k k

k

g g g y g g y g g
σ+ + + + + += − ≤ + = 2              (2.27) 

Since 2 0T
k k kg d w g= − < , it follows that  is a descent direction. If kd kα  satisfies the 

modified Wolfe conditions (1.4) and (2.14) and the Lipschitz assumption holds, then the 
Zoutendijk condition is satisfied [18, 26]. In section 3 we prove that kd  is bounded by a 
positive constant. This property combined with Zoutendijk condition and sufficient descent of 

 prove that our algorithm (2.1), (2.2) with (2.12) and (2.13) is globally convergent in the 

sense that 
kd

liminf 0kk
g

→∞
= . Hence, since 1/ 2 1,k< <σ  from (2.27) it follows that 

 faster than 1 0T
k kg g+ → 2

kg  does. Now, since 
2

1 1
T T
k k k k ky g g g g 1+ + +≤ + , then 

                                      
2 2

1
2 2

1 1 12
k k

k T T
k k k k k k

g g

y g g g g g
σ + +1

1+ + +

= ≥
+ + +

.                           (2.28) 
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Therefore, from (2.28) we have that in the bounded sequence { }kσ  there exists a 

subsequence { } 1/ 2,
jkσ →  i.e. 0 k 1ρ σ< < < , since usually ρ  is selected enough small to 

ensure the reduction of function values along the iterations. 
 
3) By the second Wolfe condition (2.14) we have  But 

from the descent condition (2.4) it follows that 
1( ) ( 1)T T

k k k k k k k ky s g g s g s+= − ≥ −σ .T

2 .T T
k k k k k k kg s g d w gα α= = −  From 

proposition 2.1 we have 
2 2( 1) ( 1) (1 )T T

k k k k k k k k k k ky s g s w g w g≥ − = − − ≥ − >σ α σ ω σ 0.  

Therefore, if , then by the modified second Wolfe condition (2.14), for all  

. On the other hand, since , from (2.24) it follows that 

0kg ≠ 0,k ≥
0T

k ky s > 0w >
2

1 1( )T T T
k k k k k k kw g y s y g s g+ +≥ 1+ . 

Therefore, since  tends to zero, from (2.9)  for all . 1
T
k ks g + 0kb > 0k ≥

 
3. Convergence analysis 
In this section we analyze the convergence of the algorithm (2.1) and (2.2), where kθ  and kβ  

are given by (2.11) and (2.3) respectively, and 0d g0= − . In the following we consider that 

 for all , otherwise a stationary point is obtained. Assume that: 0kg ≠ 1k ≥

(i) The level set { }0: ( ) ( )nS x R f x f x= ∈ ≤  is bounded, i.e. there exists a positive 

constant such that for all 0B > ,x S∈  .x B≤  
(ii) In a neighborhood  of , the function N S f is continuously differentiable and its 

gradient is Lipschitz continuous, i.e. there exists a constant  such that 0L >
( ) ( )f x f y L x y∇ −∇ ≤ − , for all , .x y N∈  

Under these assumptions on f  there exists a constant 0Γ ≥  such that ( )f x∇ ≤ Γ  for all 

.x S∈  In order to prove the global convergence, we assume that the step size kα  in (2.1) is 
obtained by the strong Wolfe line search, that is, 
                                                                                    (3.1) ( ) ( ) T

k k k k k k kf x d f x g dα ρα+ − ≤ ,

                                              ( )T T
k k k k k kg x d d g dα σ+ ≤ .                                                  (3.2) 

where ρ  and σ  are positive constants such that 0 1.ρ σ< ≤ <  
For the conjugate gradient algorithm (2.2) where kθ  and kβ  are given by (2.11) and (2.3) 
respectively, with strong Wolfe line search, the following Lemmas can be proved. The first 
two Lemmas were established by Zoutendijk [45] and Wolfe [41, 42], but for completeness 
we present them here (see also [28]). 
 
Lemma 3.1. Suppose that the assumptions (i) and (ii) hold. Consider that kα  is obtained by 
the strong Wolfe line search (3.1) and (3.2) and the descent condition hold. Then 

                                                            
0

.T
k k k

k

g dα
∞

=

− < ∞∑                                                      (3.3) 

 
Proof. From (3.1) and the descent condition (2.4) we have that  
                                                      1 0.T

k k k k kf f g dρα+ − ≤ ≤                                               (3.4) 
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Therefore,{ }kf  is a decreasing sequence. Since f  is bounded below there exist a constant 
*f  such that  

                                                                 *lim .kk
f f

→∞
=                                                         (3.5) 

From (3.5) it follows that 
*

1 1 0 1
0 0
( ) lim ( ) lim( )

n

k k k k nn nk k
0 .f f f f f f f

∞

+ + +→∞ →∞
= =

− = − = − = −∑ ∑ f

.∞

 

Hence,  From (3.4) it follows (3.3).  ■ 1
0

( )k k
k

f f
∞

+
=

− < +∑
 
Lemma 3.2. Consider the conjugate gradient algorithm (2.2) where kθ  and kβ  are given by 

(2.11) and (2.3) respectively and kα  is obtained by the strong Wolfe line search (3.1) and 
(3.2). Suppose that the assumptions (i) and (ii), as well as the descent condition hold. Then  

                                                            
2

2
0

( ) .
T
k k

k k

g d
d

∞

=

< +∞∑                                                    (3.6) 

 
Proof. From the strong Wolfe line search and the assumptions (i) and (ii), we get 

2
1(1 ) ( ) .T T

k k k k k k kg d g g d L dσ α+− − ≤ − ≤  
Therefore, 

                                                           2

(1 ) .
T
k k

k
k

g d
L d
σα − −

≥                                                  (3.7) 

We know that for all . Hence, using Lemma 3.1 we get ,k 0T
k kg d <

2

2
0 0

( ) ( )
1

T
Tk k

k k k
k kk

g d L g d
d

α
σ

∞ ∞

= =

.≤ − <
−∑ ∑ +∞   ■ 

 
Observe that (3.6), known as the Zoutendijk condition, is obtained under the assumptions that 
the strong Wolfe line search hold and that  is a descent direction, independent by its form. kd
 
Lemma 3.3. Consider the conjugate gradient algorithm (2.2) where kθ  and kβ  are given by 

(2.11) and (2.3) respectively and kα  is obtained by the strong Wolfe line search (3.1) and 

(3.2). Suppose that the assumptions (i) and (ii) hold, and [0,2 ].k wθ ∈  Then either 

                                                               liminf 0kk
g

→∞
=                                                      (3.8) 

or 

                                                                
4

2
0

.k

k k

g

d

∞

=

< ∞∑                                                        (3.9) 

 
Proof. Squaring the both terms of 1 1k k k kd g ksθ β+ ++ =  we get 

2 22 2
1 1 1 12 .T

k k k k k k k kd g d gθ θ β+ + + ++ + = 2s  

But, from (2.4) 2
1 1 1 .T

k k kd g w g+ + += −  Therefore, 

                                          2 22
1 1( 2 )k k k k kd w gθ θ β+ += − − + 22 .ks                               (3.10) 
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Observe that for [0,2 ],k wθ ∈   and is bounded below by 2 2k k wθ θ− ≤ 0 2w− .  On the other 

hand from (2.2) we have 2
1 1 1 1 .T T

k k k k k k kg d g s gβ θ+ + + +− = −  Using the strong Wolfe line 
search we get 
                                              

2
1 1 1 .T T

k k k k k k kg d g s gσ β θ+ + ++ ≥                                   (3.11) 

Now, considering the following inequality true for all , , 0,a b σ ≥  with 1 1
T
k ka g d+ +=  and 

T
k k kb gβ= s  after some algebra we get 

2
42 2 2

1 1 12( ) ( )
1

T T k
k k k k k kg d g s g+ + ++ ≥

+
θβ
σ

.  

But, 1k c≥θ  and 1/  Therefore  Hence 2 1.< σ < 2 2 2
1/(1 ) / 2.k c+ ≥θ σ

                                             42 2 2
1 1 1( ) ( )T T

k k k k k kg d g s e g+ + ++ ≥β .                                    (3.12) 

where  is a positive constant.  2
1 / 2e c=

Using (3.10) and (3.12) we can write 
22 2

12 21 1
1 12 2 2 2

1 1

( ) ( ) 1 ( ) (
T T

kT Tk k k k
k k k k

k k k k

dg d g s g d g s
d s d s

++ +
+ +

+ +

⎡ ⎤
+ = +⎢ ⎥

⎢ ⎥⎣ ⎦
)  

                       ( )
2

2 22 2 2
1 1 12 2

1

( )1 ( ) ( 2 )
T

T k k
k k k k k k k

k k

g sg d w g s
d s

θ θ β+ + +

+

⎡ ⎤
= + − − +⎢ ⎥

⎢ ⎥⎣ ⎦
 

                       
2

4 22
1 12 2

1

( )1 ( 2 )
T
k k

k k k k
k k

g se g w g
d s

θ θ+ +

+

⎡ ⎤
≥ − −⎢ ⎥

⎢ ⎥⎣ ⎦
 

                       
4 2

1 2
2 2

1 1

( ) 1( 2 )
T

k k k
k k

k k

g g se w
d s

θ θ+

+ +

⎡ ⎤
= − −⎢

⎢ ⎥⎣ ⎦
2 .

kg
⎥                                            (3.13) 

From Lemma 3.2 we know that  
2

2

( )lim 0.
T
k k

k
k

g s
s→∞

=  

On the other hand, for [0,2 ]k wθ ∈ , 2 2k k wθ θ−  is finite. Therefore, if (3.8) is not true, then 
2 2

2 2
1

( ) ( 2 )lim 0.
T
k k k k

k
k k

g s w
s g

θ θ
→∞

+

−
=  

Hence,  

                                               
42 2

11 1
2 2

1 1

( ) ( )T T
kk k k k

k k

gg d g s e
d s d

++ +

+ +

+ ≥ 2
k

,                                    (3.14) 

holds for all sufficiently large  Therefore, by Lemma 3.2 it follows that (3.9) is true. ■ .k
 
Using Lemma 3.3 we can prove the following proposition which has a crucial role in proving 
the convergence of our algorithm. 
 
Proposition 3.1. Consider the conjugate gradient algorithm (2.2) where kθ  and kβ  are given 

by (2.11) and (2.3) respectively and kα  is obtained by the strong Wolfe line search (3.1) and 

(3.2). Suppose that the assumptions (i) and (ii) hold, and [0,2 ].k wθ ∈  If 
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                                                               2
1

1
k kd≥

= ∞∑ ,                                                      (3.15) 

then 
                                                             liminf 0.k

k
g

→∞
=                                                     (3.16) 

 
Proof. Suppose by contradiction that there is a positive constant γ  such that kg γ≥  for all 

 Therefore, from Lemma 3.3 it follows that 1.k ≥
4

2 24
1 1

1 1 k

k kk k

g

d dγ≥ ≥

≤ < ∞∑ ∑  

which is in contradiction with (3.15). ■ 
 
Therefore, the iteration can fail, in the sense that 0kg γ≥ >  for all  only if ,k kd →∞  
sufficiently rapidly.  
 
Convergence for uniformly convex functions. For uniformly convex functions we can prove 
that the norm of the direction  generated by (2.2), where kd kθ  and kβ  are given by (2.11) 
and (2.3) respectively, is bounded. Thus by Proposition 3.1 we can prove the following result. 
 
Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the method (2.1)-(2.3) 
and (2.11), where  is a descent direction and kd kα  is obtained by the strong Wolfe line 

search. Suppose that there exists the positive constants  and  such that 2c t 2k c≤θ  and 

kt ≤ t  for all  If there exists a constant 1.k ≥ 0µ >  such that 

                                            2( ( ) ( )) ( )Tf x f y x y x yµ∇ −∇ − ≥ −                                  (3.17) 

for all  then  ,x y S∈ ,
                                                                 lim 0.kk

g
→∞

=                                                         (3.18) 

 
Proof. From (3.17) it follows that f  is a uniformly convex function in  and therefore S

                                                              2 .T
k k ky s sµ≥                                                      (3.19) 

Again, by Lipschitz continuity .ky L s≤ k  Now, from (2.3) we have that 

1 11 1
2 2

T T
k k k kk k k k

k k kT T
k k k k k k

y g s gy g s gt t
y s y s s s

β
µ µ

+ ++ += − ≤ +  

                                     1 1
2 2 .k k k k

kk k

L s g s g L tt
ss s µµ µ

+ + + Γ
≤ + =                                    (3.20) 

Hence, from (2.2): 

                                      1 2 2 .k k
k

L t L td c s c
s+

⎛ ⎞+ Γ +
≤ Γ + = + Γ⎜

⎝ ⎠µ µ ⎟                            (3.21) 

Which implies that (3.15) is true. Therefore, by Proposition 3.1 we have (3.16), which for 
uniformly convex functions is equivalent to (3.18).  ■ 
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Convergence for general nonlinear functions. Firstly we prove that in very mild conditions 
the direction  generated by (2.2), where kd kθ  and kβ  are given by (2.11) and (2.3) 
respectively, is bounded. Again, by Proposition 3.1 we can prove the following result. 
 
Theorem 3.2. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient 
algorithm (2.1), where the direction 1kd +  is given by (2.2) and (2.3), and the step length kα  
is obtained by the strong Wolfe line search (3.1) and (3.2). Assume that for all  there 
exist positive constants  and  such that 

0k ≥
0c > 2 0c > 1 /T

k k ky g c s+ ≤  and 2k c≤θ  

respectively, then liminf 0.kk
g

→∞
=  

 
Proof.  From (2.3) using (2.10) after some algebra we get 

                                              
2

11 1
T

kk k k
k T

k k k k

gy g b a
y s

β ++ ⎛ ⎞
= − +⎜ ⎟∆ ∆⎝ ⎠

.k                                     (3.22) 

Suppose that  otherwise a stationary point is obtained. By the Wolfe line search 

 Since  is a descent direction for all  it follows that 

0,kg ≠

0.T
k ky s > kd 0,k ≥ ks  tends to zero. 

Hence, there exists a positive constant  such that 3 0c >

                                                              1 3 .
T
k k

T
k k k

y g c
y s s

+ ≤                                                     (3.23) 

Now, observe that since for all ,  and 0k ≥ 0kb > 0,k∆ <  it follows that / 0k kb− ∆ > .  
Besides, from (2.6) and (2.9) we can write 

                                            1( )((1 ) .
T T

k k k

k k

b y g sw w + +− = + +
∆ −

1)k kg
∆

                                  (3.24) 

Since 0k−∆ >  and  tends to zero along the iterations, it follows that 1
T
k ks g + /kb− ∆k  tends to 

 Therefore, there exists a positive constant  such that 0.w > 4 0c > 41 1 / .k kb c< − ∆ ≤  

Again observe that if  from the Wolfe line search  Hence, there exists a 

positive constant  such that 

0kg ≠ 0.T
k ky s >

5 0c > 50 /T
k k ky s c s< ≤  for all  0.k ≥

Now, from (2.8) and (2.20) we have 
               1 1 1( ) ( )T T T T

k k k k k k k k ka v s g y g v s g y g+ + += + ≤ + 1+  

1max 1,
1

T T
k k k kv y s y gσ

σ +
⎧ ⎫≤ +⎨ ⎬−⎩ ⎭

5 max 1,
1k k

c cv
s s

σ
σ

⎧ ⎫≤ +⎨ ⎬−⎩ ⎭
 

                     5
1max 1, .

1 k

vc c
s

σ
σ

⎛ ⎞⎧ ⎫= ⎨ ⎬⎜ −⎩ ⎭⎝ ⎠
+ ⎟                                                                   (3.25) 

Since { }k∆  is uniformly bounded away from zero independent of  and k 0k∆ <  for all  

there exists a positive constant  such that  

1,k ≥

6c 6.k c∆ >  Therefore, from (3.25) it follows that 

                                    
2 2

1
5

6

1max 1, .
1

k
k

kk

g
a vc c

c s
+ ⎛ ⎞ Γ⎧ ⎫≤ +⎨ ⎬⎜ −∆ ⎩ ⎭⎝ ⎠

σ
σ ⎟                           (3.26) 

With these, from (3.22) we can write 

                                
2

11 1
T

kk k k
k kT

k k k k

gy g b a
y s

β ++≤ − +
∆ ∆
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2
3

4 5
6

1max 1,
1k k

c c vc c
s c

⎛ ⎞ Γ⎧ ⎫≤ + +⎨ ⎬⎜ ⎟−⎩ ⎭⎝ ⎠

σ
σ s

 

                                       
2

3 4 5
6

1max 1, .
1 k

c c vc c
c s

⎡ ⎤⎛ ⎞ Γ⎧ ⎫= + +⎨ ⎬⎢ ⎥⎜ ⎟−⎩ ⎭⎝ ⎠⎣ ⎦

σ
σ

                            (3.27) 

From (2.2) we have 
                 1 1k k k kd gθ β+ +≤ + ks  

                            
2

2 3 4 5
6

1max 1, ,
1 k

k

c c c vc c s
c s

⎡ ⎤⎛ ⎞ Γ⎧ ⎫≤ Γ + + + ≡⎨ ⎬⎢ ⎥⎜ ⎟−⎩ ⎭⎝ ⎠⎣ ⎦

σ
σ

E                (3.28) 

where  is a positive constant. Therefore, for all , E 0k ≥ kd E≤ , which implies (3.15). 

Therefore, by Proposition 3.1, since  is a descent direction, we have kd liminf 0.kk
g

→∞
=   ■ 

Observe that if for every 1,k ≥ 1kθ =  and 0kt = , then (2.2) reduces to the Hestenes 
and Stiefel direction. For an exact line search the HS algorithm reduces to that of Polak-
Ribière and Polyak (PRP). Therefore, the convergence properties of the HS method should be 
similar to the convergence properties of the PRP method. In particular, for a general nonlinear 
function by the Powell’s example, the HS method with an exact line search may not converge. 
Hence, our method (2.1)-(2-3) need not converge for general functions. Therefore, like in 
Gilbert and Nocedal [22], who proved the global convergence of the PRP method with the 
restriction that  we replace (2.3) by 0,PRP

kβ ≥

                                              1max ,0
T T
k k k k

k T
k k k k

y g s gt
y s y s

β 1
k T

+ +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
                                     (3.29) 

and prove the global convergence of this modification of the algorithm for general functions.  
Firstly, we prove the following results. 
 
Lemma 3.4. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient 
algorithm (2.2), where kθ  and kβ  are given by (2.11) and (3.29) respectively and kα  is 

obtained by the strong Wolfe line search. Suppose that there exists the positive constants  

and  such that 
2c

t 2k c<θ  and kt < t  for all  If there exists a positive constant 1.k ≥ 0γ >  
such that 
                                                                    kg γ≥                                                           (3.30) 

for all  then  and 0,k ≥ 0kd ≠

                                                           2
1

1

,k k
k

u u+
≥

− < ∞∑                                                (3.31) 

where / .k k ku d d=  
 
Proof. First, we note that , otherwise the descent condition (2.4) is not true. Therefore, 

 is well defined. Besides, by (3.30) and the Proposition 3.1 we have 

0kd ≠

ku

                                                                 
0

1
k kd≥

< ∞∑ ,                                                      (3.32) 

otherwise (3.16) is true, contradicting (3.30) 
Now, as usual (see [15]) we can consider 1 2 ,k k kβ β β= +  where 
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                                                         1 1max ,0
T
k k

k T
k k

y g
y s

β +⎧ ⎫
= ⎨ ⎬

⎩ ⎭
                                             (3.33) 

                                                         2 1 .
T
k k

k k T
k k

s gt
y s

β += −                                                        (3.34) 

Define 
                                                                                                       (3.35) 2

1 1 ,k k k kv gθ β+ += − + ks

                                                           1
1

1

,k
k

k

vr
d

+
+

+

=                                                            (3.36) 

                                                           1

1

0.k
k k

k

d
d

δ β
+

= ≥                                                   (3.37) 

With these we have 
                                                           1 1 .k k k ku r ukα δ+ += +                                                 (3.38) 

But, 1 1k ku u += =  and therefore from (3.38) we obtain 

                                         1 1 1 .k k k k k k k kr u u u uα δ α δ+ + += − = − k                                (3.39) 

Now, using the condition 0,kδ ≥  the triangle inequality and (3.39) we have 

                                1 1(1 ) (1 )k k k k k k ku u u uα δ α δ+ +− = + − + k  

                                                  1 1 2k k k k k k k k ku u u uα δ α δ 1r+ +≤ − + − = + .                 (3.40) 
On the other hand, from the strong Wolfe line search and the descent condition it follows that 

                                                     1 max 1, .
1

T
k k

T
k k

s g
y s

σ
σ

+ ⎧ ⎫≤ ⎨ ⎬−⎩ ⎭
                                            (3.41) 

Hence, from the definition of  given by (3.35), (3.41) and the assumptions (i) and (ii), i.e. 1kv +

kx B≤  and kg ≤ Γ  for all  we obtain 0,k ≥

1
1 1

T
k k

k k k k T
k k

s gv g t
y s

θ +
+ +≤ + ks  

                                                         2 max 1, 2 .
1

c t ⎧ ⎫≤ Γ + ⎨ ⎬−⎩ ⎭
σ
σ

B                                      (3.42) 

Therefore, 
1

1 1 2
1 1

22 2 max 1, 2
1

k
k k k

k k

v
u u r c t B

d d
+

+ +
+ +

⎛ ⎞⎧ ⎫− ≤ = ≤ Γ + ⎨ ⎬⎜ ⎟−⎩ ⎭⎝ ⎠

σ
σ

,  

which completes the proof. ■ 
 
This lemma shows that asymptotically the search directions generated by the algorithm (2.2), 
where kθ  and kβ  are computed as in (2.11) and (3.29) respectively, change slowly. 
 
Lemma 3.5. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient 
algorithm (2.2), where kθ  and kβ  are given by (2.11) and (3.29) respectively and kα  is 

obtained by the strong Wolfe line search and for all  0,k ≥ 0.k ≥ >α ω  Suppose that there 

exist the positive constants  and t γ  such that for all , 1k ≥ kt < t  and 

,kg γ> respectively. Then there exist the constants  and 1b > 0λ >  such that for all  1k ≥

                                                                    k bβ ≤                                                            (3.43) 
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and 

                                                      ks λ≤  implies 
1 .k b

β ≤                                            (3.44) 

Proof. We have 
2 2( 1) ( 1) ( 1) (1 )T T T

k k k k k k k k ky s s g d g w g w .σ σ α σ α σ ω γ≥ − = − = − − ≥ −  
Therefore 

                         1 1
T T
k k k k

k kT T
k k k k

y g s gt
y s y s

β + +≤ + 1 1
2 2(1 ) (1 )

k k k ky g s g
t

w wσ ω γ σ ω γ
+ +≤ +

− −
 

                                2(1 )
k kL s t s

wσ ω γ
Γ + Γ

≤
− 2

2( ) .
(1 )

L t B b
wσ ω γ

+ Γ
≤ ≡

−
                                          (3.45) 

Without loss of generality we can define b  such that  Let us define 1.b >

                                                            
2(1 )

2( )
w

L t b
σ ω γλ −

≡
+ Γ

.                                                 (3.46) 

Obviously, if ,ks λ≤  then from the third inequality in (3.45) we have 

                                                       2

( ) 1 .
(1 )k

L t
w b
λβ

σ ω γ
+ Γ

≤ =
−

                                            (3.47) 

Therefore, for  and b λ  defined in (3.45) and (3.46) respectively, it follows that the relations 
(3.43) and (3.44) hold. ■ 
 
The property presented in Lemma 3.5, which is similar to but slightly different from Property 
(*) in [22], can be used to show that if the gradients are bounded away from zero and (3.43) 
and (3.44) hold, then a finite number of steps  cannot be too small. Therefore, the 
algorithm makes a rapid progress to the optimum. Indeed, for 

ks
0λ >  and a positive integer  

let us define the set of index 
J

                                       { }*
, : 1,k J kK i N k i k J sλ ,λ= ∈ ≤ ≤ + − >                               (3.48) 

where  is the set of positive integers. The following Lemma is similar to Lemma 3.5 in 
[15] and Lemma 4.2 in [22]. 

*N

 
Lemma 3.6. Suppose that all assumptions of Lemma 3.5 are satisfied. Then there exists a 

0λ >  such that for any  and any index  there is a greater index  such that *J N∈ 0 ,k 0k k≥

, / 2.k JK Jλ >  

 
Using Lemma 3.4 and Lemma 3.6 we can prove the global convergence of the conjugate 
gradient algorithm (2.2) where kθ  and kβ  are given by (2.11) and (3.29) respectively and kα  
is obtained by the strong Wolfe line search. The following Theorem is similar to Theorem 3.6 
in Dai and Liao [15] or to Theorem 3.2 in Hager and Zhang [25] and the proof is omitted 
here. 
 
Theorem 3.3. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient 
algorithm (2.2), where kθ  and kβ  are given by (2.11) and (3.29) respectively and kα  is 

obtained by the strong Wolfe line search. Then we have liminf 0.kk
g

→∞
=  
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4. DESCON algorithm 
 
In this section we present an accelerated conjugate gradient algorithm with guaranteed 
descent and conjugacy conditions for large scale unconstrained optimization given by (2.1) 
and (2.2), where the parameters kθ  and kβ  are computed as in (2.12) and (2.13) respectively.  
We know that in conjugate gradient algorithms the search directions tend to be poorly scaled, 
and as a consequence the line search must perform more function evaluations in order to 
obtain a suitable steplength .kα  Therefore, the research effort was directed to design 
procedures for direction computation which takes the second order information. For example, 
the algorithms implemented in SCALCG by Andrei [3-5], or CONMIN by Shanno and Phua 
[40] use the BFGS preconditioning with remarkable results. On the other hand, in our 
algorithm the search direction is computed to satisfy both the descent and the conjugacy 
conditions.  
In conjugate gradient methods the step lengths computed by means of the Wolfe line search 
(1.4) and (1.5) may differ from 1 in a very unpredictable manner [32]. They can be larger or 
smaller than 1 depending on how the problem is scaled. This is in very sharp contrast to the 
Newton and quasi-Newton methods, including the limited memory quasi-Newton methods, 
which accept the unit steplength most of the time along the iterations, and therefore usually 
they require only few function evaluations per search direction. Numerical comparisons 
between conjugate gradient method and limited memory quasi Newton method by Liu and 
Nocedal [29] showed that the latter is more successful [6]. One partial explanation of the 
efficiency of this limited memory quasi-Newton method is given by its ability to accept unity 
step lengths along the iterations. In this section we take advantage of this behavior of 
conjugate gradient algorithms and consider an acceleration scheme we have presented in [7] 
(see also [2]). Basically the acceleration scheme modifies the step length kα  in a 
multiplicative manner to improve the reduction of the function values along the iterations. In 
accelerated algorithm instead of (2.1) the new estimation of the minimum point is computed 
as  
                                                           1k k k k kx x dξ α+ = + ,                                                   (4.1) 
where  

                                                                   k
k

k

a
b

ξ = − ,                                                         (4.2) 

,T
k k k ka g dα=  ( ) ,kd ( )zg fT

k k k zb g gα= − − z= ∇  and k kz x dkα= + . Hence, if 0,kb ≠  

then the new estimation of the solution is computed as 1k k k k kx x dξ α+ = + , otherwise 

1k k k kx x dα+ = + . Observe that since ρ  in (1.4) is enough small (usually 0.0001ρ = ), the 
Wolfe line search leads to very small reductions in function’s values along the iterations. The 
acceleration scheme (4.1) emphasizes the reduction of function’s values, since in conjugate 
gradient algorithms often 1kα >  along the iterations (see [7]). Therefore, using the 
definitions of gk , sk , and the above acceleration scheme (4.1) and (4.2) we can present 
the following conjugate gradient algorithm. 

yk

 
DESCON algorithm
Step 1. Select a starting point 0x dom f∈  and compute: 0 ( )0f f x=  and  

Select some positive values for 
0 0( ).g f x= ∇

ρ  and σ , and for v  and  Set  and 
 

.w 0d g= − 0

0.k =
Step 2. Test a criterion for stopping the iterations. If the test is satisfied, then stop; 

otherwise continue with step 3. 
Step 3. Determine the steplength kα by using the Wolfe line search conditions (1.4) - (1.5) 
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Step 4. Acceleration scheme. Compute: k k kz x dα= + ( )zg f z= ∇ z,  and  .k ky g g= −

Step 5. Compute: T
k k ka gα= kd , and T

k k kb yα= − kd . 

Step 6. If 0,kb ≠  then compute /k ka bξ = − k

k

 and update the variables as 

1k k k kx x dξ α+ = + , otherwise update the variables as 1k k k kx x dα+ = + . Compute 

1kf +  and  Compute 1.kg + 1k ky g g+ k= −  and 1 .k k ks x x+= −  

Step 7. Compute k∆  as in (2.6). 

Step 8. If ,k mε∆ ≥  then determine kθ  and kβ  as in (2.12) and (2.13) respectively, else 

set 1kθ =  and 0.kβ =  

Step 9. Compute the search direction as: 1 1k k k kd g ksθ β+ += − + . 

Step 10. Compute 
2 2

1 1/( )T
k k k kg y g gσ + + += + 1 . 

Step 11. Restart criterion. If 
2

1 10.2T
k k kg g g+ +>  then set 1 1k kd g+ += − . 

Step 12. Consider  and go to step 2.  ■ 1k k= +
 

It is well known that if f  is bounded along the direction  then there exists a stepsize kd kα  
satisfying the Wolfe line search conditions (1.4) and (1.5). In our algorithm when the Powell 
restart condition is satisfied, then we restart the algorithm with the negative gradient 1.kg +−  
More sophisticated reasons for restarting the algorithms have been proposed in the literature 
[16], but we are interested in the performance of a conjugate gradient algorithm that uses this 
restart criterion associated to a direction satisfying both the descent and the conjugacy 
conditions. Under reasonable assumptions, the Wolfe conditions and the Powell restart 
criterion are sufficient to prove the global convergence of the algorithm. The first trial of the 
step length crucially affects the practical behavior of the algorithm. At every iteration  
the starting guess for the step 

1k ≥

kα  in the line search is computed as 1 1 /k k kd dα − − .  This 
selection was used for the first time by Shanno and Phua in CONMIN [40] and in SCALCG 
by Andrei [3-5]. Observe that in the line search procedure (step 3) the steplength kα  is 
computed using the updated value of the parameter ,σ  computed as in step 10. For uniformly 
convex functions, we can prove the linear convergence of the acceleration scheme [7].  

The DESCON algorithm can be implemented in some other variants. For example in 
step 8 when k mε∆ ≥  is not satisfied, we can set 1kθ =  and compute kβ  as in classical 

conjugate gradient algorithms like Hestenes and Stiefel [27], Dai and Yuan [17], Polak, 
Ribière and Polyak [35, 36], etc. Another variant of DESCON can use (2.1) and (2.2) where 

kθ  and kβ  are computed as in (2.11) and (3.29) respectively. However, our intensive 
numerical experiments proved that all these variants are not faster or more robust than the 
variant presented in DESCON algorithm above. 
 
5. Numerical results and comparisons 
In this section we report some numerical results obtained with an implementation of the 
DESCON algorithm. The code is written in Fortran and compiled with f77 (default compiler 
settings) on a Workstation Intel Pentium 4 with 1.8 GHz. DESCON uses the loop unrolling to 
a depth of 5. We selected a number of 75 large-scale unconstrained optimization test 
functions in generalized or extended form [1] (some from CUTE library [12]). For each test 
function we have taken ten numerical experiments with the number of variables increasing as 

 The algorithm implements the Wolfe line search conditions with 1000,2000,...,10000.n =
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0.0001,ρ =  
2

1 1/( ),T
k k k kg y g gσ + + += + 2

1  and the same stopping criterion 

gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute component of a vector. In DESCON we 

set  and 7 / 8w = 0.05v = . In our numerical experiments kθ  is not restricted in the interval 
 In all the algorithms we considered in this numerical study the maximum number of 

iterations is limited to 10000. 
[0,2 ].w

 The comparisons of algorithms are given in the following context. Let and 
be the optimal value found by ALG1 and ALG2, for problem  

respectively. We say that, in the particular problem  the performance of ALG1 was better 
than the performance of ALG2 if:  

f i
ALG1

f i
ALG2 i = 1 750, , ,…

i,

                                                          f fi
ALG

i
ALG1 2 10− < −3

)
)

                                             (5.1) 
and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or 
the CPU time of ALG1 was less than the number of iterations, or the number of function-
gradient evaluations, or the CPU time corresponding to ALG2, respectively. 

In the first set of numerical experiments we compare DESCON versus Dai and Liao 
 conjugate gradient algorithm (1.13). Figure 1 shows the Dolan and Moré CPU 

performance profile of DESCON versus DL
( 1v =

( 1v = . In a performance profile plot, the top 
curve corresponds to the method that solved the most problems in a time that was within a 
factor τ  of the best time. The percentage of the test problems for which a method is the 
fastest is given on the left axis of the plot. The right side of the plot gives the percentage of 
the test problems that were successfully solved by these algorithms, respectively. Mainly, the 
right side is a measure of the robustness of an algorithm. 

 
Fig. 1. DESCON ( 7 / 8w = , 0.05v = ) versus DL ( 1)v = . 

 
When comparing DESCON with DL ( 1v )=  conjugate gradient algorithm subject to CPU 
time metric we see that DESCON is top performer, i.e. the accelerated Dai and Liao conjugate 
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gradient algorithm with guaranteed descent and conjugacy conditions is more successful and 
more robust than the Dai and Liao conjugate gradient algorithms with  Comparing 
DESCON with DL (  (see Figure 1), subject to the number of iterations, we see that 
DESCON was better in 605 problems (i.e. it achieved the minimum number of iterations in 
605 problems). DL (  was better in 52 problems and they achieved the same number of 
iterations in 63 problems, etc. Out of 750 problems, only for 720 problems does the criterion 
(5.1) hold. Therefore, DESCON appears to generate the best search direction and the best 
steplength, on average. 

1.v =
1v = )

)1v =

In the second set of numerical experiments we compare DESCON versus Hestenes 

and Stiefel (HS) ( 1
T

HS k k
k T

k k

y g
y s

β += ) [27], versus Dai and Yuan (DY) ( 1 1
T

DY k k
k T

k k

g g
y s

β + += ) [17] 

and versus Polak-Ribière-Polyak (PRP) ( 1
T

PRP k k
k T

k k

y g
g g

β += ) [35, 36], conjugate gradient 

algorithms. Figures 2-4 present the Dolan and Moré CPU performance profile of DESCON 
versus HS, DY and PRP, respectively. 

An attractive feature of the Hestenes and Stiefel conjugate gradient algorithm is that 
the pure conjugacy condition 1 0T

k ky d + =  always is satisfied, independent of the line search. 
On the other hand, under strong convexity assumption of ,f  the global convergence of the 
PRP method with exact line search has been proved by Polak and Ribière [35]. For an exact 
line search the convergence properties of the HS method are similar to the convergence 
properties of the PRP method. Therefore, by Powell’s example [37], the HS method with 
exact line search may not converge for a general nonlinear function. Therefore, the 
convergence of PRP method for general nonlinear functions is uncertain. Based on Powell’s 
work, Gilbert and Nocedal [22] presented an elegant analysis and proved that the PRP method 
is globally convergent if PRP

kβ  is restricted to be nonnegative and the steplength satisfies the 
sufficient descent condition (1.12) in each iteration.  Both the HS and PRP methods possess a 
built-in restart feature that addresses directly to the jamming phenomenon. When the step 

1k kx x+ −  is small, the factor  in the numerator of 1k ky g g+= − k kβ  tends to zero. Therefore, 

kβ  becomes small and the new search direction 1kd +  essentially becomes the steepest descent 

direction  Hence, both HS and PRP methods automatically adjust 1.kg +− kβ  to avoid 
jamming. The performance of these methods is better than the performance of DY. On the 
other hand, the DY method always generates descent directions and when implemented with a 
standard Wolfe line search is globally convergent. In [14] Dai established a remarkable 
property for the DY conjugate gradient algorithm, relating the descent directions to the 
sufficient descent condition. It is shown that if there exist constants γ 1  and γ 2  such that 

γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ ( , )0 1 , there exists a constant such that the 

sufficient descent condition 

c > 0

g d c gi
T

i ≤ −
2

i ⎦holds for at least ⎣  indices pk
i k∈ [ , ],0 where  denotes the largest integer ⎣ ⎦j ≤ j. However, the DY method does not 
satisfy the conjugacy condition. In contrast, observe that in DESCON the search directions 
are always descent directions and the conjugacy condition always is satisfied independent of 
the accuracy of the line search.  
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Fig. 2. DESCON ( 7 / 8w = , 0.05v = ) versus Hestenes-Stiefel. 

 

 
Fig. 3. DESCON ( 7 / 8w = , 0.05v = ) versus Dai-Yuan. 

 20



 
Fig. 4. DESCON ( ,7 / 8w = 0.05v = ) versus Polak-Ribière-Polyak. 

 
 The DY method has better global convergence properties than the Fletcher and 
Reeves method [21]. As a result, Dai and Yuan [17] considered the possibility to combine DY 
with other conjugate gradient methods. The following two hybrid methods were proposed in 
[17]: 

{ }1max , min ,
1

hDY DY HS DY
k k k

σβ β β
σ

−
kβ

⎧ ⎫= −⎨ ⎬+⎩ ⎭
 

and 

{ }{ }max 0, min , .hDYz HS DY
k kβ β= kβ  

The numerical experiments indicated that both these hybrid methods have similar 
performances [6]. Therefore, in the third set of numerical experiments we compare DESCON 
versus hybrid Dai-Yuan ( { }{ }max , min ,hDY DY HS DY

k k k kβcβ β β= − (1 ) /(1 )c, σ σ= − + , 

0.8σ = ) [17]. The hDY method reduces to the Fletcher and Reeves method [21] if f  is a 
strictly convex quadratic function and the line search is exact. For a standard Wolfe line 
search, Dai and Yuan [17] proved that it produces descent directions at every iteration and 
they established the global convergence of their hybrid conjugate gradient algorithm when the 
Lipschitz assumption holds. However, the hDY conjugate gradient algorithm does not satisfy 
the conjugacy condition. Figure 5 presents the Dolan and Moré CPU time performance profile 
of DESCON versus hDY. The best performance, relative to the CPU time metric, again was 
obtained by DESCON, the top curve in Figure 5.  
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Fig. 5. DESCON ( 7 / 8w = , 0.05v = ) versus hybrid Dai-Yuan. 

 
In the fourth set of numerical experiments we compare DESCON versus 

CG_DESCENT by Hager and Zhang [25]. CG_DESCENT is a modification of HS and was 
devised in order to ensure sufficient descent, independent of the accuracy of the line search. 
Hager and Zhang [25] proved that at every iteration the direction  in their algorithm 

satisfies the sufficient descent condition 
kd

2(7 / 8)T
k k kg d g≤ − . This is the main reason we 

considered  in all our numerical experiments. CG_DESCENT has a very advanced 
line search procedure that utilizes the “approximate Wolfe conditions” which provides a more 
accurate way to check the usual Wolfe conditions when the iterates are near a local minimum 
of the function 

7 / 8w =

.f  However, in CG_DESCENT the conjugacy condition (1.11) holds 
approximately. CG_DESCENT like DESCON uses the loop unrolling to a depth of 5. Figure 
6 presents the Dolan and Moré CPU time performance profile of DESCON versus 
CG_DESCENT with Wolfe line search. Again, the best performance, relative to the CPU time 
metric, was obtained by DESCON, the top curve in Figure 6.  

Finally we compare DESCON versus L-BFGS (m=3) by Liu and Nocedal [29] as in 
Figure 7, where  is the number of pairs ( ,  used. Observe that DESCON is top 
performer again. The differences are significant. The linear algebra in the L-BFGS code to 
update the search direction is very different from the linear algebra used in DESCON. On the 
other hand the steplength in L-BFGS is determined at each iteration by means of the line 
search routine MCVSRCH, which is a slight modification of the routine CSRCH written by 
Moré and Thuente [30]. 

m )k ks y
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Fig. 6. DESCON ( ,7 / 8w = 0.05v = ) versus CG_DESCENT by Hager and Zhang. 

 
Fig. 7. DESCON ( ,7 / 8w = 0.05v = ) versus L-BFGS (m=3) by Liu and Nocedal. 

 
In the following, in Figure 8, we present the performance profile of DESCON 
( , ) versus HS, PRP, CG_DESCENT and L-BFGS (m=3), subject to CPU 
time metric. We see that among these algorithms DESCON is top performer. Observe that 
these algorithms can be classified in three major classes: DESCON and CG_DESCENT; HS 
and PRP, and finally the limited memory quasi-Newton L-BFGS. 

7 / 8w = 0.05v =
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Fig. 8. DESCON ( , ) versus HS, PRP, CG_DESCENT and L-BFGS (m=3).  7 / 8w = 0.05v =

 
In order to see the performances of the algorithm we present a sensitivity study of DESCON 
subject to the variation of v  and  parameters. Both these parameters emphasize the 
importance of the conjugacy condition and the sufficient descent condition, respectively. 
From (2.2), (2.3) and (2.6)-(2.11) we have 

w

 

                               
2

11
1

( )
,

T T
k k kk

k T
k k

y s gd yg
w y

++
+

⎛ ⎞∂
= −⎜∂ ∆ ⎝ ⎠

1k k
k

k

g s
s
+ ⎟                                         (5.2) 

                               ( 21 1
1 1 1

( ) ( )
T

Tk k k
k k k k k

k

d s g s g g g s
v
+ +

+ + +

∂
= − −

∂ ∆ ).                                    (5.3) 

 
Observe that if the line search is exact ( 1 0T

k ks g + = ) then from (5.3) we see that the algorithm 
is not sensitive to the variation of  However, in our algorithm the line search is not exact.   .v

Table 1 presents the total number of iterations (#itert), the total number of function 
and its gradient evaluations (#fgt) and the total CPU time (cput) for solving the above set of 
750 unconstrained optimization test problems for 7 / 8w =  and for different values of  For 
example, for solving the set of 750 problems with 

.v
7 / 8w =  and 0v = , the total number of 

iteration is 258495, the total number of function and its gradient evaluations is 601615 and the 
total CPU time is 281.22 seconds, etc.  

In Table 1 we have a computational evidence of the sensitivity of DESCON 
corresponding to a set of 12 numerical experiments subject to variation of v  parameter. The 
best results corresponding to this set of 12 numerical experiments are obtained for  
Subject to the CPU time metric the average of the total CPU time corresponding to these 12 
numerical experiments, for solving 750 problems in each experiment, is 3467.27/12=288.93 

0.05.v =
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seconds. The largest deviation is of 20.22 seconds and corresponds to the numerical 
experiment in which  Therefore, in all these 12 numerical experiments the maximum 
deviation is of 20.22/750=0.0269 seconds per problem. 

1.v =

 
Table 1. Sensitivity of the DESCON subject to  .v 7 / 8w = . 

v #itert #fgt cput 
0 258495 601615 281.22 

0.001 260994 617922 289.15 
0.005 262993 638135 293.31 
0.01 259220 610071 287.77 
0.02 256349 596269 280.94 
0.05 257401 598061 277.12 
0.07 260234 622866 293.70 
0.1 258965 607951 281.98 
0.2 270643 639619 299.59 
0.5 259877 617219 291.09 
0.7 269096 626097 282.25 
1 271124 677019 309.15 

 
In the following we present the sensitivity of DESCON subject to the variation of  
parameter. Table 2 presents the total number of iterations, the total number of function and its 
gradient evaluations and the total CPU time for solving the above set of 750 unconstrained 
optimization test problems for  and for 6 different values of  

w

0.05v = .w
 

Table 2. Sensitivity of the DESCON subject to  .w 0.05v = . 
w #itert #fgt cput 

0.5 260019 612548 283.96 
0.6 258562 608102 282.50 
0.7 262148 645578 295.08 
0.8 259623 608464 283.98 
0.9 258696 609549 285.08 
1 258387 600603 277.26 

 
The best results corresponding to this set of 6 numerical experiments are obtained for  
Subject to CPU time metric for solving 750 problems in each of these 6 numerical 
experiments the total CPU time difference is of 295.08 

1.w =

−  277.26 = 17.82 seconds. Therefore, 
in all these 6 numerical experiments the maximum deviation is of 17.82/750=0.0237 seconds 
per problem. Observe that the average of the total CPU time corresponding to these 6 
numerical experiments is 1707.86/6=284.64 seconds. The largest deviation is of 295.08 −  
284.64 = 10.44 seconds. Therefore, in all these 6 numerical experiments the maximum 
deviation is of 10.44/750=0.0139 seconds per problem. Practically, DESCON is very little 
sensitive to the variation of  .w
 We now present comparisons between DESCON and CG_DESCENT conjugate 
gradient algorithms for solving some applications from MINPACK-2 test problem collection 
[9]. In Table 3 we present these applications, as well as the values of their parameters. The 
infinite-dimensional version of these problems is transformed into a finite element 
approximation by triangulation. Thus a finite-dimensional minimization problem is obtained 
whose variables are the values of the picewise linear function at the vertices of the 
triangulation. The discretization steps are 1000nx =  and 1000,ny =  thus obtaining 
minimization problems with 1,000,000 variables. 
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Table 3. Applications from MINPACK-2 collection. 
A1 Elastic-Plastic Torsion [23, pp. 41-55], 5.c =  
A2 Pressure Distribution in a Journal Bearing [13], 10,b = 0.1.ε =  

A3 Optimal Design with Composite Materials [24], 0.008.λ =  
A4 Steady-State Combustion [8, pp. 292-299], [10], 5.λ =  
A5 Minimal Surfaces with Enneper conditions [31, pp. 80-85]. 

 
A comparison between DESCON ( 0.05,v = 0.875,w =  Powell restart criterion, 

6( ) 10kf x −
∞

∇ ≤ , ) and CG_DESCENT (Wolfe line search, default settings, 410ρ −=
6( ) 10kf x −

∞
∇ ≤ ) for solving these applications is given in Table 4. 

 
Table 4. Performance of DESCON and CG_DESCENT. 

1,000,000 variables. cpu seconds. 
DESCON CG_DESCENT  

#iter #fg cpu  #iter #fg cpu  
A1 1118 2267 787.89 1145 2291 1087.83 
A2 2837 5702 2120.75 3368 6737 3369.77 
A3 4712 9462 5679.96 4841 9684 8058.66 
A4 1413 2864 2349.64 1806 3613 4213.00 
A5 1279 2580 1368.08 1226 2453 1773.95 

TOTAL 11359 22875 12306.32 12386 24778 18503.21 
 

Form Table 4 we see that subject to the CPU time metric the DESCON algorithm is top 
performer again, and the difference is significant, about 6196.89 seconds for solving all these 
5 applications. 

The DESCON and CG_DESCENT algorithms (and codes) are different in many 
respects. Since both of them use the Wolfe line search (however, implemented in different 
manners), these codes mainly differ in their choice of the search direction. DESCON appears 
to generate a better search direction, on average. The direction 1kd +  used in DESCON is more 
elaborate, it satisfies both the sufficient descent condition and the conjugacy condition in a 
restart environment. Although the update formulae (2.2), (2.3) and (2.6)-(2.11) are more 
complicated, this computational scheme proved to be more efficient and more robust in 
numerical experiments and applications.  

As a final remark observe that the DESCON algorithm can be implemented in 
different versions. For example, in step 8 for kθ  and kβ  computation, one version can use 
(2.12) and (3.29) respectively. However, this version doesn’t prove to be superior in 
numerical experiments. Subject to CPU time metric DESCON using (2.12) and (2.13) was 
fastest in 115 problems. On the other hand, DESCON using (2.12) and (3.29) was fastest only 
in 100 problems. Another version can implement a truncation mechanism suggested by Hager 
and Zhang [25] as { }max , ,k k kβ β η+ =  where 1/( min{0.1, }).k k kd gη = −  In this case, 
subject to CPU time metric, DESCON using (2.12) and (2.13) was fastest in 113 problems. 
On the other hand, DESCON using (2.12) and ,kβ

+  where kβ  is computed by (2.13), was 
fastest in 107 problems. In another set of comparisons DESCON using (2.12) and (2.13) was 
fastest in 91 problems versus DESCON using (2.12) and ,kβ

+  where kβ  is computed by 
(3.29), was fastest in 86 problems. Observe that DESCON with (2.12) and (2.13) is top 
performer.  
 
6. Conclusions 
For solving large scale unconstrained optimization problems we have presented an 
accelerated conjugate gradient algorithm that for all  both the descent and the 0k ≥
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conjugacy conditions are guaranteed. In our algorithm the search direction is selected as a 
linear combination of  and  where the coefficients in this linear combination are 
selected in such a way that both the descent and the conjugacy condition are satisfied at every 
iteration. The algorithm introduces the modified Wolfe line search, where in the second 
Wolfe condition the parameter 

1kg +− ,ks

σ  is modified at every iteration. Besides, the step length is 
modified by an acceleration scheme which proved to be very efficient in reducing the values 
of the minimizing function along the iterations.  
For a test set consisting of 750 problems with dimensions ranging between 1000 and 10,000, 
the CPU time performance profiles of DESCON was higher than those of HS, PRP, DY, 
hDY, CG_DESCENT with Wolfe line search and limited memory quasi-Newton method L-
BFGS. A number of 5 applications from MINPACK2 test problem collection, with  
variables, illustrate the performances of DESCON versus CG_DESCENT. At present, from 
the above test problems and applications we have the computational evidence that DESCON 
is the fastest and the most robust conjugate gradient algorithm.  
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