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Abstract. The purpose of this work is to introduce the main aspects of conjugate direction 
methods for solving systems of linear algebraic equations. We emphasize the algorithms 
and their analysis concerning the convergence. Some numerical examples are presented. 

 
 
1. Steepest descent method for quadratic function 
 
Consider the linear algebraic system of equations 
                                                                     ,Ax b=                                                                (1) 
where A  is a symmetric and positive definite matrix, as well as the functional 

                                                         
1( ) ,
2

T Tx x Ax x bΦ = −                                                    (2) 

which is strictly convex. Then, there is a unique solution *x  of the problem 
                                                                     min ( ).xΦ                                                           (3) 
Since ( ) ,x Ax b∇Φ = −  it follows that the minimization problem (3) is equivalent to the 
linear algebraic system of equations (1).  

For solving (3) consider the following iterative method. Let 0x  be an approximate 
solution of (3) and assume that the residual 0.k kr b Ax= − ≠  Choose a search direction 

 and determine 0kd ≠
                                                 ( k kt R

min x td
∈

)Φ + .                                                       (4) 

With these we have 

                                     21( ) ( ) ( ).
2

T T
k k k k k k kt x td t d Ad td r xΨ = Φ + = − +Φ                          (5) 

Having in view that A  is a positive definite matrix, then  Therefore,  has 
an unique minimum obtained from the necessary condition 

0.T
k kd Ad > ( )tΨ

                                                        ( ) 0,T T
k k k kt td Ad d r′Ψ = − =

i.e. 

                                                                    .
T
k k

k T
k k

d rt
d Ad

=                                                        (6) 

With this, the new approximation to the minimum point *x  of (3) is 
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  k                                                               1 ,k k kx x t d+ = +                                                      (7) 
where kt is given by (6). Of course, if 1 1 0,k kr b Ax+ += − ≠  we can repeat the above process 
of one dimensional line search using a new search direction 1.kd +  
 Now, let see the efficiency of the bov ethod, by computing the red a e m uction of the 

we make a step from kx  to 1kx +functional Φ  when . From (5) and (6) we obtain
                              ( ) ( ( ) ( ) ( ) ( )k k k k k k k k

 
 1)x x + x x t d x tΦ −Φ = Φ −Φ + Φ −Ψ  

       

=

21
2

T T
k k k k k kt d Ad t d r= − +  

( )2

                                                           0.T
k kd Ad

T
k kd r

= >                                                              (8) 

erefore the functionalΦ reduce its value a ngTh lo  the above line step if and only if the residual 
s not

 a o
 

kr  orthogonal on the search direction .kd  
 To complete the method and to have an lgorithm t  minimize (2) we have to 
consider a way to select the search direction kd  at step  As we know, given the 
approximation k

i

.k
x , the most rapid decreasing of the functional Φ  is in the negative direction 

of its gradient in .kx  This is exactly the method of steepest descent [Cauchy, 1847]. 
oice of the search direction is 

kr=                                              (9) 
 iterative formula is 

Therefore, the local optimum ch
                                                  ( )k k kd x b Ax= −∇Φ = − .
Therefore, for quadratic functions the

                                                           1 .k k kT
k k

T
k kr rx x r

r Ar+ = +                                                   (10)                       

With this we have the following steepest  
                     

e orithm 

 descent algorithm

Steepest d scent alg
1. Select 0x  and set 0 0.r b Ax= −  
2. for .0,1,..k = until convergence do: 

,r r v=  

k k k k

3.      ,k kv Ar=  

4.      kt r( ) /( )T T
k k k k

5.      ,1x x t r+ = +  

k kt v−  
  ♦ 

6.      1k kr r+ = .
7. end for

 
Some remarks are in order: 
1) The cost of the steepest descent algorithm consists of one matrix-vector product in step 3 
and two scalar products in p 4. 
2) In te

 ste
 s p 6 the residual is computed in a recursive manner using the residual from the 

erion for topping the algorithm is to test if

 1kr +

step .k  
3) A crit  s  ,kr ε≤ where ε is a tolerance specified, 

Observe that, for solution 
usually 610 .ε −=  

*x of (1), for every nx R∈ , we can write: 
* * *( ) ( ) 2( ( ) ( )).Tx x A x x x x− − = Φ −Φ  
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Therefore, x is a minimum po  Φint of  if and only if it minimiz

                   

es the norm 
* * *( ) ( )T

A
x x x x A x− = − −                            x                                        (11) 

f the error of .x  o
 
Theorem 1. Let A  be a n n× − symmetric ite matrix with eigenvalues 

1 2 .n

 and positive defin
λ λ λ≤ ≤ ≤…  For every initial point 0x  the sequence kx  generated by the steepest 

descent algorithm converges to the solution *x of (1) and 

                                              * *1
0

1

.
k

n
k A A

n

x x x xλ λ
λ λ

⎛ ⎞−
− ≤ −⎜ ⎟+⎝ ⎠

                                       (12) 

 
Proof. Consider an arbitrary point nx R∈  and the corresponding residual  The 
step taken by the steepest descent algorithm is 

                 

.r b Ax= −

( )
2 2

2 2
T T

r r
y x b Ax x b Ax

r Ar r Ar r Ar
− + − = + −  

2

2
T

r

( )( )I t x A x= − ( ) ,t x b+  
2

where 
2

( ) /(t x r r Ar= ).T  Therefore the error is 

                                       ( )* *( ) ( )y x I t x A x t x b x− = − + −  

( ) * *( ) ( )I t x A x t x Ax x= − + −  

( )( )*( )                                                  .I t x A= −  

Now, let us consider b

x x−

( )( ) ,z I A xσ σ σ= − + .R where σ ∈  For every Rσ ∈  we have 
* *( )

A
x z xσ≤ − .

A
y −  

We prove that for 12 /( )nσ σ λ λ= ≡ +  the inequality 

* *1

1

( ) n
A A

n

z x x xλ λσ
λ λ

−
− ≤ −

+
 

ndeed, let us consider the errorsis satisfied. I  *e x x= −  and  then 
                   

*( ) ,e z xσ= −

( )* *( )e z x I A x b xσ σ σ= − = − + −  

( ) ( ) .* *I A x Ax x I Aσ σ σ− + − = −

Observe that the m

e=  

atrix I Aσ−  is symmetric with eigenvalues 1 .jσλ−  Therefore its spectral 
norm is given by 

11
2

1 1

22max 1 , 1 .n n

n n n

I A
1

λ λ λλσ
λ λ λ λ λ

⎧ ⎫ −⎪ ⎪− = − − =⎨ ⎬+ +⎪ ⎪⎩ ⎭
 

λ+
ith these we get 

                 

W
 

* 1/ 2 1/ 2

2 2
( )

AA
y x e A e A I A eσ− ≤ = = −  

                                            1/ 2 1/ 21 1
2 2

1 1

( ) n n ,
A

n n

I A A e A e eλ λ λ λσ
λ λ λ λ

− −
= − ≤ =

+ +
 

and (12) is obtained by induction.  ♦ 
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Remark 1. If 1λ  and nλ  are the eigenvalues of  as defined in theorem 1 and  
is the condition number of  with respect to the Euclidian norm, then the steepest descent 
algorithm is characterized by the following reduction factor: 

A 1( ) /nAκ λ= λ
A

                                                     *
1 ,k k

*

A A
x x x xη −− ≤ −                                              (13) 

where 

                                                      1

1

( ) 1.
( ) 1

n

n

A
A

λ λ κη
λ λ κ

− −
= =

+ +
                                                 (14) 

Hence, the smaller the condition number of , the faster the steepest descent algorithm. In 
particular, when then 

A
( ) 1,Aκ = 0η =  and the gradient algorithm find the minimum point in 

one step. 
 
Example 1. Consider 

( )2 2
1 2

1 01 1( ) ,
02 2

Tx x x x γ
γ

⎡ ⎤
Φ = = +⎢ ⎥

⎣ ⎦
x  

where 0.γ > The minimum point is * 0x =  and *( ) 0.xΦ =  The eigenvalues of A  are 1 and 
.γ  We apply the steepest descent algorithm starting at the point 0 ( ,1).x λ=  In this case we 

can derive the following analytic solution for iterates: 

1( )
1 ,
1

k

kx γγ
γ

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

        2( )
1 ,
1

k

kx γ
γ

⎛ ⎞−
= −⎜ ⎟+⎝ ⎠

 

and the corresponding function values is 
2 2

0
( 1) 1 1( ) ( )

2 1 1

k k

k .x xγ γ γ γ
γ γ

⎛ ⎞ ⎛ ⎞+ − −
Φ = = Φ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

For this example we see that the convergence is linear, i.e. at each iteration the error is 
reduced as a geometric series, by the factor  For 2 2( 1) /( 1)γ γ− + . 1γ =  the exact solution is 
obtained in one iteration. For γ  not far from one the convergence is rapid. The convergence 
is very slow for 1γ  or 1.γ  For different values of γ , Table 1 contains the number of 
iterations (# iter) necessary to get the solution for which 9

2
10 .kr

−≤  
 

Table 1. Steepest descent algorithm for example 1. 
Number of iterations. 

γ  #iter γ  # iter 
10 117 110−  94 

210  1284 210−  824 
310  13989 310−  7082 
410  151401 410−  59298 

 
This bad performance of the steepest descent algorithm for ill conditioned problems is 
explained by the fact that the level curves of Φ  are very deformed ellipses. The method is 
zig-zagging through the flat and step-sided valley { }2

0: ( ) ( ) .x R x x∈ Φ ≤ Φ  Although, the 

minimum is situated in the 1x  direction, along the iterations the gradient is commuting from  

1x  direction to 2x  direction, this slowing the convergence of the algorithm. For ill-
conditioned problems, this is the typical behavior of the steepest descent algorithm. 
 



♦  Conjugate Direction Methods for Systems of Linear Algebraic Equations  ♦ 
 

5

2. The conjugate direction method 
 
As we have already seen to avoid the zig-zagging of the steepest descent algorithm we must 
consider some other methods for search direction computation. We ask for an ideal line 
search which would have the following property. 
 

„If the approximations 1 2, , , kx x … x  are determined by exact line searches 
along the directions , then the minimum point 1 2, , , kd d d… 1kx +  of the 
functional Φ  along the line ,k kx td+  ,t R∈  should minimize  on the 

affine subspace 

Φ

{ }0 1, , kx span d d+ …  which is generated by all the 

previous directions .” 1 2, , , kd d d…
 
Therefore, if we are able to generate linear independent directions satisfying this property, 
then the corresponding method is not only convergent, as we have seen above, but it is finite, 
because after at most  steps it finds the minimum point of n Φ  on nR , since 

{ }0 1, , n
n .x span d d R+ … =  We say that the method has the finite termination property. 

 
Definition 1. Let n nA R ×∈  be a symmetric and positive definite matrix. The set of vectors 

 is called 1 2, , , n
kd d d R∈… A− conjugate if 0jd ≠  for all 1, ,j k= …  and  for 

all  and  

0T
j id Ad ≠

, 1, ,i j k= … .i j≠
 
Theorem 2. Let 0

nx R∈  be the initial approximation of *x  and  iterates 
determined by a line search procedure for minimizing (2), where the directions  are 
mutually 

1 2, ,x x …

1 2, ,d d …
A− conjugate. Then 1kx +  minimizes the functional Φ  over the affine space 

{ }0 1, , kx span d d+ … . 
 
Proof. Consider a point { }0 1, , k ,x x span d d∈ + …  then x  has the following representation 

,kx x td= +  where t  and R∈

0
1

.
k

j j
j

x x dξ
=

= +∑  

With this we have 
2

0
1

1( ) ( ) .
2

k
T T T

j j k k k k
j

x x t d Ad td r t d Adξ
=

Φ = Φ + − +∑  

If  for all  then 0T
j kd Ad = 1, , ,j k=

2
0

1( ) ( )
2

T T
k k kx x t d Ad tdΦ = Φ + − r  

and the problem of minimizing Φ  over { }0 1, , kx span d d+ …  is decoupled into two 
minimizing sub-problems. The first one consists of minimizing the functional Φ  over 

{ }0 1, , kx span d d+ …  and the second one is minimizing the functional  

2
0

1( ) ,
2

T T
k k kt t d Ad td rΨ = −  
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which is independent by x  but depends only by the current search direction  .kd
The minimum  of kt Ψ  is 

0 .
T
k

k T
k k

d rt
d Ad

=  

But, we have 

                                             
1

0
1

k
T T
k k k j j

j
d r d b A x t d

−

=

⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
1

0
1

k
T
k j

j
d b Ax t Ad

−

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ j

T
k

 

                                                      
1

0 0
1

.
k

T T
k j k j

j
d r t d Ad d r

−

=

= − =∑
Therefore 

.
T
k k

k T
k k

d rt
d Ad

=  ♦ 

 
If the directions  are mutually conjugate, i.e. jd 0,T

i jd Ad = for ,i j≠  then the minimization 

of  over the affine subspace Φ { }0 1, , kx span d d+ …  can be replaced by the consecutive  

line searches along the directions . Hence, for solving the linear system , 
the following conjugate direction algorithm can be presented. 

k

1 2, , , kd d d… Ax b=

 
Conjugate direction algorithm 
1. Select 0x  and set 0 0.r b Ax= −  
2. for 0,1,...k = until convergence do: 
3.      choose  such that kd 0,T

k jd Ad =  for 0, , 1j k= −…  and  0,T
k kd r ≠

4.       ( ) /(T T
k k k k kt d r d Ad= ),

k5.      1 ,k k kx x t d+ = +  
6.      1 1.k k kr r Ax+ += −  
7. end for  ♦ 

 
 
3. The conjugate gradient method 
 
As we know, two vectors , nx y R∈  are A− conjugate if and only if they are orthogonal with 
respect to the scalar product , T

A
.x y y A= x  Therefore, if  are conjugate, 

then they are linearly independent. Given a set of linearly independent vectors 
we can construct a set of  

1 2, , , kd d d… A−

1, , ,n
nv v R∈… n A− conjugate vectors using the Gram-Schmidt 

orthogonalization algorithm of  with respect to the inner product 1, , nv … v .,. .
A

 
To implement the conjugate direction algorithm we have to specify a procedure for 

the directions  selection in such a manner thatkd 0k jd Ad = , for all  and 

 The first condition is satisfied by the 

0, , 1j k= −…
0.T

k kd r ≠ A−orthogonal complement of any vector 
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{ }1, , kv span d d∉ …  with respect to { }1, , .kspan d d…  To fulfill the second requirement we 

select  i.e. ,kv r=

                                                        
1

1
.

Tk
j k

k k jT
j j j

d Ar
d r d

d Ad

−

=

= −∑                                                 (15) 

Therefore, 
1

1
0,

Tk
j kT T T T

k k k k j k k kT
j j j

d Ar
d r r r d r r r

d Ad

−

=

= − = >∑  

which means that  is an direction satisfying the above second requirement. The following 
proposition shows that the sum in (15) reduces to the last term. 

kd

 
Proposition 1. Let 0

nx R∈  be given and assume that 1, , kx x…  are generated by the 
conjugate direction algorithm, where directions are given by (15). Then the vectors  and 

 satisfy: 
jr

jd

                                                       0,T
k jr r =     0, , 1,j k= −…                                            (16) 

                                                      0,T
j kd Ar =   1, , 1.j k= −…                                            (17) 

 
Proof. From (15) we have  

1

1
.

Tj
i j

j j T
i i i

d Ar
r d d

d Ad

−

=

= +∑ i  

Now 
1

1

.
Tj
i jT T T

k j k j k iT
i i i

d Ar
r r r d r d

d Ad

−

=

= +∑  

But , for all  i.e. (16) holds. To prove (17), for 0T
k ir d = 1, , ,i = … j 1, , 1,j k= −…  we can 

write: 

                            1
1 1

1

Tj
i j

j j idT
i i i

d Ar
d r

d Ad
+

+ +
=

= −∑ 1
1

1

Tj
i j

j iT
i i i

d Ar
b Ax d

d Ad
+

+
=

= − −∑  

                                    ( ) 1

1
.

Tj
i j

j j j iT
i i i

d Ar
b A x t d d

d Ad
+

=

= − + −∑  

Since  we have 0,jt ≠

1
1

1

1 Tj
i j

j j j T
ij i

d Ar
Ad r d d

t d
+

+
=

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ i

iAd
 

and for 1, , 1j k= −…  

1
1

1

1 0,
Tj
i jT T T T

k j k j k j k iT
ij i i

d Ar
r Ad r r r d r d

t d Ad
+

+
=

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ =  

i.e. (17) hold. ♦ 
 
Therefore, from (15), using proposition 1, it follows that 

                                             1
1

1 1

.
T
k k

k k k k k kT
k k

d Ard r d r d
d Ad

β−
1− −

− −

= − = +                                    (18) 
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.k

Hence, in this process it is not necessary to store the search directions along the iterations to 
perform the orthogonalization, but only the most recent direction. A−
 
Remark 2. It is possible to improve the efficiency of the algorithm, observing that 
                                                                (19) 1 1 ( )k k k k k k kr b Ax b A x t d r t Ad+ += − = − + = −
This saves one matrix-vector multiplication 1kAx +  in every iteration, because the product 

 is already computed in step 4 of the conjugate direction algorithm. ♦ kAd
 
With this, for  from (19) we have 2,k ≥

1 1
1

1 ( )k k
k

Ad r r
t− −
−

= − .k  

The orthogonality of residuals yields to 

1 1
1 1

1 1( )T T
k k k k k k k

k k

d Ar r r r r r
t t− −
− −

= − = − .T

1−

 

On the other hand 

1 1 1 1 1 2 1( )T T T
k k k k k k k kd Ad d A r d d Arβ− − − − − − −= + =  

                                                       1 1 1
1 1

1 1( )T T
k k k k k

k k

r r r r r
t t 1.− − −
− −

= − = −  

Therefore, from (18) we get the following expression for the direction: 

                                                  1
1 1

.
T

k k
k k k k k kT

k k

r rd r d r d
r r

β 1− −
− −

= + ≡ +                                    (20) 

Additionally, it is possible to get a new algebraic expression for the step length  Indeed .kt

1( )T T
k k k k k k k kd r r d r r rβ −= + = ,T  

which was computed in (20). 
Having in view algebraic manipulations, finally we arrive to the following algorithm of 
conjugate gradients, which basically is the method of Hestenes and Stiefel [1952]. 
 

Conjugate gradient algorithm 
1. Select 0x  and set 0 0.r b Ax= −  Set  and 0 0

Tr rα = 0 0 0.d r=  
2. for 0,1,...k =  until convergence do: 
3.      ,k ks Ad=  

4.       /( ),T
k k k kt dα= s

k5.      1 ,k k kx x t d+ = +  
6.       1 ,k k kr r t s+ = − k

17.      1 1 ,T
k k kr rα + + +=  

8.      1 1 / ,k k kβ α α+ +=  
9.      1 1 1 .k k kd r dkβ+ + += +        
7. end for  ♦ 

 
We already know that the solution of (1) satisfies 

                                                     ( )2* 2 ( ) ( )
A

*x x x− = Φ −Φ x                                          (21) 
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for every .nx R∈  Hence, the estimate kx  minimizes the error *e x x= −  with respect to the 

norm .
A

 over the affine space { }0 0 , , k .x span d d+ …  The representation of 

{ }0 , , kspan d d…  is given by the following proposition which is important to establish the 
error bound for the conjugate gradient algorithm. 
 
Definition 2 Let n nA R ×∈  and  be given. Then the linear space nb R∈

{ }1( , ) , , , k
kK b A span b Ab A b−= …  

is called the the Krylov space of  corresponding to  k − A .b
 
Proposition 2. Assume that the search directions  are defined by the conjugate 
gradient algorithm. Then 

0 , , kd d…

{ } { }0 0 0, , , , , k
kspan d d span r Ar A r=… … 0 .  

 
Proof. For the statement is trivial because 0k = 0 0.d r=  Suppose that it already has been 
shown for some  Then .k n<
                                         1 1 1k k kd r dkβ+ + += +  
                                                 1k k k kr t Ad dkβ += − +  
                                                 1 .k k k k k k kd d t Ad d1β β−= − − + +                                           (22) 
But, ,  Hence kd 1 0( , ).k kd K r A− ∈

{ }0 1 1 0, (k kspan d d K r A+ +⊂… , ).  

The inverse inclusion follows from (22) and 0.kt ≠   ♦ 
 
 To prove the convergence of the conjugate gradient algorithm we must consider an 
expression for the error. As before denote by the error of *

0 ,e x x= − 0 0.x  Then from 

 it follows that  i.e. the elements of the 
Krylov space  can be written as 

*
0 0 0( )r b Ax A x x Ae= − = − = 0 0

α
=

=∑ j

1
0 ,j jA r A e+=

0( , )kz K r A∈

0
1

,
k

j
j

j
z A e   Rα ∈ . 

Therefore, the error  corresponding to the k -th iteration *
ke x x= − k kx  satisfies 

                                  
0 0

22 *

( , )k
k A Ax x K r A

e min x
∈ +

= − x  

                                           
0

2*
0( , )k Az K r A

min x x z
∈

= − +  

                                           
1

2

0 1 0 0, ,
.

k

k
k AR

min e Ae A e
α α

α α
∈

= + + +
…

…                                     (23) 

 
Now, let us consider  as the set of polynomials kP p  of maximum degree  such that 

 Then (23) can be expressed as 
k

(0) 1.p =

                                                           2
0( ) ,

k
k A p P

e min p A e
∈

= 2

A
                                             (24) 
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showing that the error of the k -th iterate can be expressed as the product of a polynomial 
( )p A  in matrix A  and the initial error 

nient form of the error let us consider the spectral 

                         

where 

0.e  
 In order to get a more conve
decomposition of A as 

                                     
1

,
n

T
j j

j
A z zλ

=

=∑                                                        (25) j

,jz  1, , ,j n= …

1 2

 is an orthonormal set of eigenvectors corresponding to the 

eigenvalues 0 .nλ λ λ< ≤ ≤ ≤  Observe that 

2
n

T T
j j j j

i j j
z zλ

= =

=∑  

since 

2
n

T
i j i i jA z z z zλ λ= ∑

, 1 1
,

.T
i j ijz z δ=  By induction we can prove that 

Tz

j=

ents, it follows that the error of the 

                                            

1
.

n
i i

j j j
j

A zλ
=

=∑  

The error e  can be expressed as 0

                                                                0 .
n

j je zγ=∑                                                          (26) 
1

Having in view the above developm -th iterate can be 
written as 

k

2
2

1
min ( ) .

n

k j jA
j

j

A

e pγ λ
=

= ∑        z                                           (27) 

But 
2

1 1 1
( ) ( )j j j j j j

j i jA

( )
n n n

i i ip z p p zγ λ γ λ
= = =

⎜ ⎟z Aγ λ
⎛ ⎞⎛ ⎞

= ⎜ ⎟
⎝ ⎠ ⎝

j=
                          (28) 

nt representation of the error o

⎠
∑ ∑ ∑  

                                                           ( )
2

2 ( ) .
n

j j jpγ λ λ=∑                         
1

Therefore, we get a very importa f kx  as: 

( )
2

2 2 ( )
k

n

k A p P
e min pγ λ λ

∈
= ∑ .                                         (29)                                                     

1
j j j

j=

Using (29) we can determine a rough upper bound of the convergence properties of the 
conjugate gradient algorithm. Indeed, from 

2 2
n

j j0
1

A
j

e λ γ∑  
=

=

we obtain an estimation of the values ( )jp λ  by the maximum of p  on the spectrum of 

                                                   

:A  

0( )
( ) .

k
k A Ap P A

e min max p e
λ σ

λ
∈ ∈

≤                                           (30) 

The constant 

( )
( )

kp P A
min max p

λ σ
λ

∈ ∈
 

is not easy to evaluate. However, the following bound is useful 

1( )
( ) ( )

nA
max p max p
λ σ λ λ λ

λ λ
∈ ≤ ≤

≤  
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e follo sto get th wing e timation 

1( )
( ) ( ) ,

k n
kp P A

min max p max p
λ σ λ λ λ

λ λ
∈ ∈ ≤ ≤

≤  

where ( )kp x  is a k -degree polynomial for which (0) 1kp =  and it is easy to evaluate 

1 nλ λ λ
max ( ) .kp λ
≤ ≤

The Chebyshev polyno re the right polynomial for this 

  

mials of the first kind a
ial estimate. This polynom has the following definition in the interval [ 1,1] :−  

( )( ) cos arccos( ) .kT x k x=                                                                                                 (31) 

It is easy to see that is a polynomial by the use of the following identities: 
cos sin sin ,

  

( )kT x
cos( ) cosα β+ = α β α β−  

cos( ) cos( ) 2cos cos .α β α β α+ + − =  β
arccos( )xLet us denote θ = . Then we have 

                           0 ( ) cos(0 ) 1,T x θ= =  

1( ) cos(1 ) ,T x xθ= =                             
2 2 2 2

2 ( ) cos(2 ) 1T x θ= = cos sin 2cos 2 1,xθ θ θ− = − = −  
k                           ( ) ( ) cos((T x T x k 1) ) cos(( 1) )1 1k k θ θ+ −  

   T x
+ −

                                                    k x
+ = +

2cos( ) cos 2 ( ).kθ θ= =  
Generally we have the following recurrence: 
                                                   0 ( ) 1,T x =  1( ) ,T x x=  

1 1( ) 2 ( ) ( ).k k kT x xT x T x+ −= −  
Solving the above recurrence equation we obtain the explicit form of the Chebyshev 
polynomials as: 

( ) ( )2 21( ) 1 1 ,
2

k k

kT x x x x x⎡ ⎤= + − + − −⎢ ⎥⎣ ⎦
 

which is valid in the interval , figures 1-4.  ( , )−∞ ∞

 
Fig.1. Chebyshev polynomials 1 2( ), ( ).T x T x  

 
Fig. 2. Chebyshev polynomials 3 4( ), ( ).T x T x  
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Fig.3. Chebyshev polynomials 7 8( ), ( ).T x T x  

 
 10 11( ), ( ).T x T x  Fig.4. hebyshev polynomials C

The translated and scaled Chebyshev polynomial is defined as 
2( ; , ) ,k k

a b xT x a b T
b a
+ −⎛ ⎞= ⎜ ⎟−⎝ ⎠

 

where we have ( ; , ) 1kT x a b <  for all [ , ].x a b∈  
 

The Chebyshev polynomials are very useful for convergence study of iterative 
methods. Their most interesting property in this respect is that they have the smallest 

ximum
problem: 
ma  norm. As we have already said, we are interesting in solving the minimization 

[ , ]kp P x a b∈ ∈
 ( ) .min max p x

A solution to this problem is given by the shifted and scaled Chebyshev polynomial 
 

[ , ]

2 ( )
1( ) max .

k

k

p P x a b

k k

x a bT
b amin max p x
a b a bT T
b a b a

∈ ∈

− +⎛ ⎞
⎜ ⎟−⎝ ⎠= =

+⎛ ⎞ +⎛ ⎞
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

   

If , then a b= − 1,k
a bT
b a
+⎛ ⎞ =⎜ ⎟−⎝ ⎠

but in more general cases we need an upper bound for 

1
a b

−
+⎛ ⎞

kT
b a⎜ ⎟−⎝ ⎠

. To obtain this bound we use the following proposition 

 
Proposition 3. If 0 a b< < , then 

[ , ]
( ) 2 .

kp P x a b

amin max p x
b∈ ∈

⎜ ⎟≤
⎜ ⎟

 
1

1

b

a

⎛ ⎞
−⎜ ⎟

+⎜ ⎟
⎝ ⎠

k

Proof. We have 
b ax
b a

=
−

 so 
+ 2 21 ,abx

a
− =

−
 

2
2 ( )1 b a b ax x

b a b a
− +

+ − = =
− −

 and 
b

2 1 .b ax x
b a
−

− − =
+

 Therefore 
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1b a b a⎛+ +⎛ ⎞ .
2

k

kT
b a b a

⎞
≥ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

  ♦ 

eorem of convergence rate of conjugate gradient algorithm can be 
proved. 
 

With this the following th

n nA R ×∈ 1λ  and nλTheorem 3. Let  be symmetric and positive definite and denote by  the 

ely. Let smallest and the largest eigenvalue of respectiv,A 0x  be any initial vector and kx  be 

the -th approximate to the solution k *x  of Ax b=  obtained by means of the conjugate 
gradient algorithm. Then the following error estimate 

                                             * *
0

1
k

  2k 1A A
x x x x− ≤ −⎜ ⎟⎜ ⎟                                       (32) 

κ⎛ ⎞−
κ +⎝ ⎠

holds, where 1/nκ λ λ=  is the condition number of .A  
 
Proof. From the estimate 

1
0( )k kA

n
A

e max p eλ≤  choosing  
λ λ λ≤ ≤

1

1

( ; , )( )
(0; , )

k n
k

k n

T xp x
T

λ λ
λ λ

=  

and having in view that 1( ; , ) 1T x λ λk n <  for 1[ , ],nx λ λ∈  we have 
1

0 1
0

1 1

.
(0; , )

nA
k kA A

k n n

e
e T

T
λ λ

λ λ λ λ

−
⎛ ⎞+

≤ = ⎜ ⎟−⎝ ⎠
 e

ow, using the proposition 3 we get the conclusion of the theorem. ♦ N
 
 Therefore, k A

e is bounded above by a sequence that converges to zero. Moreover, 
the decrease is monotone and this explains why the method of conjugate gradient can be 
regarded as an iterative one. Observe that the closer κ  is to one, the faster the convergence of 
the method. A  we can sees , the convergence of the algorithm depends on the distribution of 

ll eigenvalues of the matrix Aa .  
 of convergence of the 

conjugate gradient algorithm. Besides, the finite termination property is not reflected by the 
conclusion (32) of the theorem. Since the matrix  has most  distinct eigenvalues, then 
for every polynomial  for which 

 Theorem 3 provides very coarse upper bounds of the speed

A  at n
,kq P∈ ( ) 0,jq λ =  1, , ,j n= … from (29) it follows: 

                         ( ) ( )
2 2

2 2 2  
1 1kp P j j∈ = =

( ) ( ) 0.
n n

k j j j j j jA
e min p qγ λ λ γ λ λ= ≤ =∑ ∑                            (33) 

 
Theorem 4. Let n nA R ×∈ kx   be symmetric and positive definite and b

the solution 

e the approximate to 
*x  of (1) given by the conjugate gradient algorithm. If  has  distinct 

 gradient algorithm achieves 
A m n≤

eigenvalues, then in exact arithmetic, the conjugate *
kx x=  

after at most iterations. 
 
Proof. If  has the distinct eigenvalues 

m

A 1 ,mλ λ< < then selecting 

j

q ( )
1

( )
m

jλ λ λ
=

= −∏  
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in (33) we get 
2 0.m A

e =  ♦ 
 
The following result was proven by Axelsson (1976). 
 

 Assume thaTheorem 5. t 1 2 na b 1n m n mλ λ λ≤ ≤ ≤ ≤  and le thλ λ− − +≤ ≤ ≤ ≤ t en  ,k m≥  
( )

* *
0

1
2 .

1

k m

k A A

b
ax x x x
b
a

−
⎛ ⎞
⎜ ⎟
⎜ ⎟− ≤ −
⎜ ⎟

+⎜ ⎟
⎝ ⎠

 

 
Proof. In the estimate 

−

1
0( )

n
k kA A

e max p e
λ λ λ

λ
≤ ≤

≤  select 

1 1j n j
k mT

b a

2

) 1 .
k mm

k

a bT
b a
a b

(p

λ
λλ

−
+ −⎛ ⎞

⎜ ⎟⎛ ⎞ −⎝ ⎠= −⎜ ⎟⎜ ⎟ +λ= − +
−
⎛ ⎞⎝ ⎠

∏  

⎜ ⎟−⎝ ⎠
Obviously, ( ) 0k jp λ =  for all jλ , with , 1, 1j n n m,n= − − + . But, when [ , ],a b… λ∈  

1

1,
n j

λ
λ − +

− <   1, , .1 j m= …  

Hence, 
2

,
k m

ka b a

a bT
b am

λ λ
( )

b

k m

max p ax
a bT
b a

λ

λ
≤

−

≤
+⎛ ⎞

⎜ ⎟−⎝ ⎠

rest of eigenva

−

≤ ≤ ≤

+ −⎛ ⎞
⎜ ⎟−⎝ ⎠  

which prove the theorem. ♦ 
 
This result is very useful when a few of the largest eigenvalues are well separated from the 

lues. In this case, m is small and k m−  is not too m m k . 
he matrix A  seldom has a small number m

uch different fro
 T n<<  of distinct eigenvalues, but more

t int
 

plausibly its spectrum is distributed in a number of m  disjoin ervals jI , 1, , ,j m= …  of 
small length. In this case, after m  iterations, the conjugate gradient a duce a 
small residual. Indeed, selecting a polynomial q  of degree m  with he   

lgorithm will pro
 having t

eigenva
(0) 1q =

lues distributed in these intervals jI , then the upper bound of the reduction of the 

error in m  iterations, i.e. { }max ( ) ,q λ ( A )j jλ being the eigenvalues of , will be small. The 

following example illustrates this situation. 
 
Example 2. In order to see the effect of clustered eigenvalues on the speed of convergence of 
the conjugate gradient algorithm, let us consider the linear system ,Ax b=  where A  is a 
diagonal matrix and b is chosen in such a way that the solution of the system is always 

[1,1,...,1].x =  The criterion for stopping the iteration is 610 .kb Ax −− ≤  Consider 

1000n =  and four distributions of the eigenvalues:  (1,2,..., )A diag n= with ( ) 1000;Aκ =  
 diagonal matrix with elements uniformly distributed in [0,1) with ( ) 994.637;Aκ =  a a
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iagonal matrix with elements distributed in 10 intervals with d ( ) 19.0178,Aκ = and a 
diagonal matrix with elements distributed in 5 intervals with ( ) 9.00975Aκ = .  

Figure 5 illustrate the speed of convergence  for 
these four cases in a semi-logarithmic scale.  

Figure 6 illustrates the situation in which the matrix  has 999 eigenvalues 
uniformly distributed in and the last one equal with 1000. In t ase condition number 
of 

of the conjugate gradient algorithm

A
 [0,1) his c

A is 
 This is a typical behavior of the conjugate gradient algorithm. Observe that when the 
eigenvalues are well clustered into a small number of intervals, then the reduction of the error 
is accelerated, only a few iterations are needed to get a solution with the imposed accuracy. If 
the largest and the smallest eigenvalues of  are few in number (or clustered closely 
together), then the conjugate gradient algorith  will converge much more quickly than the 
analysis based just on

( ) 996182.625.Aκ =  

A
m

A ’s condition number would indicate. 
 
 

 
Fig. 5. Speed of convergence for clustered eigenvalues. 

Evolution of 
2kb Ax− , subject to the number of iterations. 
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Fig. 6. Speed of convergence for a large clustered eigenvalue. 

2kEvolution of b A− ect to the number of iterations. 

 

x , subj

 

Now consider the situation in which the matrix is diagonal, with , and with 
different sets of distinct eigenvalues. The convergence properties are summarized in the 
following table: 
 

# of distinct eigenvalues 2 10 20 50 100 500 1000 

A  1000n =

# of iterations to converge 3 11 21 43 62 142 188 
 
We see that the number of iterations to converge grows with the number of distinct 
eigenvalues. In absence of roundoff, we know that conjugate gradient would take exactly the 
same number of iterations as the number of distinct eigenvalues (see theorem 4). However, in 
floating point arithmetic the behavior of conjugate gradient algorithm can differ significantly 
from its behavior in exact arithmetic [Demmel, 1997]. 
 
Example 3. Let us consider the system Ax b= , where: 
 

2 1
1 2

2 1
1 2

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

,   

1
0

0
1

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Figure 7 illustrates n of
 

 
2kAx , subject to the number of it the evolutio b erations to get the 

solution with  accuracy.  

−
610−
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Fig. 7.  Speed of convergence. 

Evolution of 
2kb Ax− , subject to the number of iterations. 

 

The eigenvalues of A  are 2 1 cos
1i

i
n
πλ ⎛ ⎞= −⎜ ⎟+⎝ ⎠

. Figure 8 is a plot of the eigenvalues of A  

for  Observe that the largest eigenvalue is 21.n = 2 1 cos 4.
1n

n
n
πλ ⎛ ⎞= − ≈⎜ ⎟+⎝ ⎠

 The smallest 

eigenvalue is 1 2 1 cos .
1⎠n

πλ ⎛ ⎞= −⎜ ⎟+⎝
 For small  we have i

 
22i iπ π⎛ ⎛⎛ ⎞ 2

22 1 cos 2 1 1 .
1 2( 1) 1i

i
n n n

πλ
⎞⎞ ⎛ ⎞= − ≈ − − =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
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Fig. 8. The eigenvalues of .A  

 
Therefore,  is positive definite with condition number  
 

A

2

2
1

4( 1) ,n nλ
λ π

+
≈  for large 

 
In this case the behavior includes long „plateaus” in the convergence, with 

.n  

2kb Ax−
Greenbaum
applied to the sy

decreasing little for many iterations. An explanation of this behavior is given in 
 and Strakos [1992] where it is shown that the conjugate gradient algorithm 

stem Ax b=  in floating point arithmetic behaves exactly like conjugate 
gradient applied to  in exact arithmetic, where  is close to  in the following 
sense: 

Ax b= A A
A  has a much larger dimension than A , but the eigenvalues of A  all lie in narrow 

clusters around the eigenvalues of .A  
 
 
 
Example 4. Let us consider the system Ax b= , in which: 
 

B I−⎡ ⎤
I B I

A
I B I

I B

⎢ − −⎢ ⎥
−⎣ ⎦

1 4 1
1 4

⎢ ⎥− −⎢ ⎥
⎢ ⎥=

⎥

⎢ ⎥

,   where  

4 1
1 4

B

−
1

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥=
⎢ ⎥− −⎢ ⎥
⎢ ⎥

 

−⎣ ⎦
 
and 1 1n nB R ×∈ , the matrix A  having locks on the main diagonal. Therefore,2n b n nA R ×∈ , 
where  The right-hand-side term  is sele d in such a way that the solution of the 1 2.n n n=  b cte
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ystem is . Considering s [1,1,...,1]Tx = 5000,n =  the speed of convergence for different 
values of and is illustrated in Figure 9.  
 

1n 2n

 
Fig. 9. Speed of convergence. 

Evolution of 
2

 
kb Ax− , subject to the number of iterations. 

The eigenvalues of A  are: 

2 24sin 4sini jπ πλ
⎛ ⎞ ⎛ ⎞

= +  
1 22( 1) 2( 1)n n+ +⎝ ⎠ ⎝ ⎠

ij ⎜ ⎟ ⎜ ⎟

Figure 10 is a plot of the eigenvalues of A  for 11n =  and 21n = . Observe that the largest 1 2

eigenvalue is max 8λ =  and the smallest eigenvalue is 2
min 8sin ( / 2)λ π= . Therefore, A  is 

positive definite with condition number 
 

max 4λ
2

minλ π
≈ . 
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Fig. 10. The eigenvalues of .A  
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