Nonlinear Conjugate Gradient Algorithms
with Modified Secant Condition

Neculai Andrei

Research Institute for Informatics, Center for Advanced Modeling and Optimization,§-10, Averescu
Avenue, Bucharest 1, Romania, E-mail: nandrei@ici.ro

Abstract.

Combining the Newton direction with the direction of conjugate gradient algorithms, and using the
modified secant equation of Zhang, Deng and Chen [12] and Zhang and Xu [13] we obtain a class
of conjugate gradient algorithms. Under common assumptions, these algorithms are globally
convergent. The numerical results and comparisons with classical conjugate gradient algorithms
show that our conjugate gradient algorithms are more effective than the classical variants.
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1. Introduction
Consider the following unconstrained optimization problem

min f(x), xUJR", (1)
where f:R" — R is continuously differentiable and its gradient is available. Conjugate
gradient methods for solving this problem are iterative methods that generates a sequence x, of

approximations to the minimum x" of £, of the following form:

X =X H0,d;, )

dyn = ~8pu T Bidy, 3)
where g, = Uf(x,), a, is selected to minimize f(x)along the search direction d, , and
B, is a scalar parameter. The iterative process is initialized with an initial point x, and
d, = —g,. Lots of versions of conjugate gradient methods, corresponding to the selection
procedure of parameter 3, , are already known. In this paper we consider a way to get a
conjugate gradient algorithm by combining the Newton direction with the direction of
conjugate gradient algorithms (3) and using the modified secant equation of Zhang, Deng and
Chen [12] and Zhang and Xu [13]. In section 2 we present the method and the corresponding
algorithm. In section 3 the global convergence analysis is given together with some variants of
the main algorithm. Section 4 presents some numerical results and comparisons among
conjugate gradient algorithms, including the comparison with CONMIN [10].

2. The method
For solving (1) we consider the iterative process (2), where for k& =0,1,...the step size a, is
positive and the directions d, are generated by:

Ay = 760181 T Bisi (4)
in which 8,,, and 3, are parameters which follow to be determined and s, = x,,, — X, .

To determine [3, consider the following procedure. As we know, the Newton
direction for solving (1) is given by d,,, = =00’ f(x,,,)” &,.,. Therefore, from the equality
— 0 f (%) o=~ Bpn&uut Bisy, we get:
B, = 6015, O f (X081 Sk &iw
¢ $¢ 07 f(x,40)5,

)



Using the Taylor development we have: s, 0 f(x,,, F y,,where y, =g,,, —g,.

For quasi-Newton methods, an approximation matrix B, to the Hessian [1° f(x,)is
updated so that a new matrix B, satisfies the classical secant equation B, s, = y,. Zhang,
Deng and Chen [12] and Zhang and Xu [13] extended this condition and obtained a class of
modified secant condition which use both the available gradient and function value information

in two successive points. Their class of modified secant condition is in the form:
B, s.= z,,where:

4 = Yy +§&uuk’ W, = 6(fk _fk+1) +3(gk +gk+1)TSk

k
and u, [0 R" is any vector such that s, u, # 0. Zhang, Deng and Chen [12] proved that if

HS ‘ H is sufficiently small, then for any vector u, with s, u, #0,
3
SkTmzf(xkﬂ)Sk_ SkTyk: O(Hsk ‘ ), (6)
4
SkTDZf(ka )Sk_ SkTZk: O(‘ ) (7)

hold. The above equations show that the quantity s,zzk given by the modified secant updating

Sk

matrix approximates the second-order curvature s; [° f(x,,,)s, with a higher accuracy than

the quantity S,f y, does. Therefore, it seems reasonable to use in (5) the higher accuracy

modified secant condition result, i.e. to consider:
By =)' g
B, = e+ Ve~ Sk K+l . where Z =y +p, (Tlﬁ u,
k

5S¢ 2y
and P, is a scalar parameter which follows to be determined. With these, the direction can be
computed as

(CAns _Sk)Tng
SkTyk L A

diyy = =0,0gn + Sp- )

The following particularizations are obvious:
1) If p, =0 and 6,,, =1, then (8) is the direction considered by Perry [9]. At the same time

(8) is the direction obtained by Dai and Liao [4] by using the conjugacy condition
dl.y, =-tgl,s,, for t =1. If 8, # 0, then (8) is the scaled Perry direction.
2)If p, =0 and O,,, #0, then (8) is the spectral conjugate gradient direction of Birgin and

Martinez [2], or the direction considered by Andrei [1] in his scaled memoryless BFGS
preconditioned conjugate gradient algorithms.

3)If p, =0 and S_]Tg,ﬁl =0 for j=0,1,...,k, then from (8) we get

9 T
k+éyk §k+l 5 ©)

ak k gk gk

which is the direction corresponding to a generalization of the Polak and Ribiére formula. Of

course, if 8,,, =6, =1 in (9), we get the classical Polak and Ribiére formula.

diy =084 +

4) If Sf g, =0, j=0,1,...,k, and the successive gradients are orthogonal, then from (8)

T
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0 o Sis (10)
0,8 &
which is the direction corresponding to a generalization of the Fletcher and Reeves formula. If
8,., =0, =1, we get the classical Fletcher and Reeves formula.
5) If 6,,, =1and we sety, =z, , then we get for [, the formula considered by Yabe and
Takano [11, p.207] for ¢ =1. Parameter /= 0 is coming from the conjugacy condition of Dai
and Liao [4] which is conserved by Yabe and Takano in their algorithm.

diy =080 +



6) Observe that if the function f is a strictly convex quadratic function and the step length is
obtained by the exact line search, then @, =0 and s,g,, =0. In this case

B =6.1Ys Yiua! S. Y Which correspond to the scaled Hestenes and Stiefel formula within the
framework of the linear conjugate gradient methods.

To ensure the convergence of the algorithm (2), with d,,, given by (8), we need to
constrain the choice of . We consider line searches that satisfy the strong Wolfe conditions:

f(xk+akdk)_f(xk)go-lakglz k> (11)
‘Df(xk-i- akdk)T dkis - O'zg/{dka (12)

where 0 <0, <0, <l
0,,, selection. Form (4) we see that 8,,, can be considered as a scalar approximation to the
inverse Hessian. According to the procedures for a scalar estimation to the inverse Hessian we
get a family of scaled conjugate gradient algorithms. The following procedures can be
considered [1]:
0,., spectral. This is given as the inverse of the Rayleigh quotient: 6,,, =S/S /Y, S.-
8,,, anticipative. This is only a half step from the spectral procedure. The value for parameter

0,,, is selected as: 6,,, =1/ y,,, where:
_ 2 1 T

Yin = ddek CY,? [f(xkﬂ)_f(xk) —a,8; dk]' (13)
Observe that for convex functions y,,, > 0. It is worth saying that in the two-point step size
gradient method Dai, Yuan and Yuan [6] interpret the choice for the step size from the angle
interpolation and arrive at the same formula as given in (13). With these the corresponding
algorithm can be described as follows:

Algorithm CGMSE (Conjugate Gradient with Modified Secant Equation)

Step 1. | Select the initial point x, 0 R" , set d, = —g, and k = 0.

Step 2. | Compute o, > 0 satisfying the Wolfe line search conditions.

Step 3. | Compute the parameters 6, ,, (spectral or anticipative) and 3, .

Step 4. | Direction computation. Define: d,,, ==0,,,8,., + B,s,. If (a restart criterion is
satisfied, for example the Powell criterion)
2
T
‘g/mgk >O'2Hg/c+l ) (14)

then restart the iterations by d,,, ==8,,,g,.,-

Step 5. Set x,,, =x, +a,d,. If a criterion for stopping the iterations is satisfied, then
stop, otherwise set £ = k +1 and go to step 2.

3. Convergence analysis

The strong Wolfe conditions (11), (12) and the Beale-Powell restart criterion (14) are sufficient
to prove the global convergence of the algorithm under reasonable assumptions. More exactly,
the convergence of the algorithm CGMSE follows immediately from the analysis given by
Yabe and Takano [11], and Dai and Liao [4]. Under basic standard assumptions: 1) The level

set {XD R": f(xg f (XO)} at x, is bounded. 2) The function f is continuously differentiable

and its gradient is Lipschitz continuous, i.e. there exists a constant L >0 such that

loror ooy L oy

function, i.e. there exists a constant U > 0 such that:

FO)2 f+ T (o pp S e

the following theorem can be proved:

, forall X,y[IL, and supposing that f is a uniformly convex

2

, forall x,y L,




Theorem 1. (Yabe and Takano [11]) Suppose that the function f satisfy the above basic

assumptions and it is a uniformly convex function. Consider the conjugate gradient algorithm

(2)-(3) where d, is given by (8) and O, satisfies the strong Wolfe line search conditions. If

L=y, then for any p, 20, liminf ||gk||=0. If L>u, then lim ||gk||=0, for
K- 0o N

— —

L
3L-p)
For general functions based on ideas of Gilbert and Nocedal [8] and Dai and Liao [4], the
following theorem can also be proved:
Theorem 2 (Yabe and Takano [11]) Suppose that the function f satisfy the above basic

assumptions and consider the conjugate gradient algorithm (2)-(3) where
DB 6 Vi Ein OE— Si Z
DSZYk"'pkwk’ 0 SkTyk+pko‘)f)

2
d, satisfies the sufficient descent condition g, d, < —cHgk H , where ¢ >0 is a constant, and

O0<p <

B, = max

0< <— £ then
Pk 3(1+0, -20,)

Q, satisfies the strong Wolfe line search conditions. If
liminf |g,[=0.
00

The above theorems give us some insights how to choose the parameter O, along the iterations
of the algorithm CGMSE. The following procedures can be considered. Each of them is
specifying a variant of the general CGMSE algorithm.

1. Algorithm CGMSE-UCI. From theorem 1 we see that if L > [/, then 3(L7L-u) > % Therefore,

theorem 1 shows that there exists a constant P >1/3 such that if 0< p, < p’, then
lim H g H = 0. Generally, the positive constants L and U, which are intrinsic characteristics

., 00
of the function f, are not evaluated. In this algorithm we select:

L

NECD) "
where we suggest the following estimations:
Le=[yl/s] and  pe=2(f = fios +glas) /s (16)

Observe that if g/,,d,,, >0, i.c. the direction d,,, is not a descent one, then a restart direction
d,,, =—0,,8,., is considered in the algorithm. Therefore, for every k =1 the algorithm
generates descent directions. Now, using the strong Wolfe line search conditions we have:

_ 2(f = fin +ng+1Sk) > 2a, (0, _al)grd
= L

e 2 = 2 k
Js.] 5.

Therefore, the above estimation of [, can be negative, and in these cases p, <1/3. On the

other hand, by strong Wolfe conditions we have: @, =3a,(1-20, +0,)g/d,, showing

again that also @, can be negative. However, along the iteration g,? d, is going to zero, and as
a consequence @, — 0 and p, — 1/3.
2. Algorithm CGMSE-UC2. In this algorithm we consider the following strategy for p,
computation:
- Le
SREET

where L, and U, are computed as above.

and if p, >1/3,then p, =1/3, (17)



3. Algorithm CGMSE-GF. Following the theorem 2, in this algorithm we select
a 1-0, (18)
P30+ 0, -20))
where 0, and 0, are parameters in Wolfe line search conditions. Since 0 <0, <0, <1 itis

clear that the upper bound for p, is less than 1/ 3.
4. Algorithm CGMSE-CC. If we impose the conjugacy condition y,{d w1 =0, where the
direction d,,, is given as in (8), then we obtain the following formula for p,
—_ (S/fg/m )(y/fsk)
‘ 0,0, (Vi &11)
Introducing (19) in (8), we get B, =6,V O/ S Y, ic. the conjugacy condition for

(19)

nonlinear optimization yields to the scaled Hestenes and Stiefel method which is in the context
of the linear conjugate gradient methods.
5. Algorithm CGMSE-DC. Assume that 3, 20 and the current search direction d, is a

descent direction, i.e. g;d, <0. In order to find a 3, that produces a descent direction
2
T
Ern +Bkgk+lsk <0.

O’/ YIS, then d,,, isa

descent direction for function f. Therefore using (8), after some algebra, the following value

d,. the following condition must be satisfied: g/, d,,, ==6,,

Suppose that 3, = 0and d, is a descent direction. If B, <6, ,,

for p, can be considered:
_ (0,8, *5, )Tgk+l )(SkTyk)
k= 2 . (20)
01 0, Hgkﬂ
However, introducing (20) in (8) we get the scaled Dai and Yuan conjugate gradient method:

ﬁk = 0k+1 gk+1 Z/Ska [5]

4. Numerical results and comparisons
In this section we present the numerical performances of the above algorithms. All codes are
written in Fortran using the same style of programming and compiled with 77 (default
compiler settings) on an Intel Pentium 4, 1.8GHz workstation. The test problems are the
unconstrained problems in the CUTE [3] library, along with other large-scale optimization test
problems. We selected 50 large-scale unconstrained optimization test problems in extended or
generalized form. For each test function we have considered 10 numerical experiments with
number of variables n =1000,2000,...,10000.

In all algorithms the Wolfe line search conditions are implemented with g, = 0.0001
and 0, =0.9. In our implementation we have considered the one-dimensional line search used
in CONMIN by Shanno and Phua [10] or SCG by Brigin and Martinez [2]. The initial guess of

the step length at the first iteration is a, =1/ HgOH' At the following iteration, in all
algorithms, the starting guess for the step O, is computed as a,_, Hdk—l H2 /Hdkuz' In all

experiments we stopped the iterations whenever
T
lg|. e, o a,leld|<e,|f(x)) @1)

is satisfied, where |||, denotes the maximum absolute component of a vector and € = 10°°
and £, = 107,

Tables 1 and 2 contain the global characteristics of conjugate gradient methods. In this
study we classified all these methods in three classes. The first one contains the conjugate
gradient methods using the modified secant equation, the second one include the scaled Perry,

the scaled Polak and Ribiére and the scaled Fletcher and Reeves methods. The last one contains
the classical methods. In all these methods we have considered the Powell restart criterion (14).




When this criterion is satisfied, then the scaled descent direction is considered:
d,,, =-0,.,g,.,, where 8,,, is computed in a spectral or an anticipative manner.

Table 1. Global characteristics of the algorithms. 500 problems.

?] «+1 Spectral. Powell restart with the direction d sl = -0 18
Algorithm # iterations # fg cpu time (sec)
CGMSE-UC1 133929 233656 1825.78
CGMSE-UC2 154521 257672 1923.14
CGMSE-GF 148493 274809 2067.38
CGMSE-CC 141419 250514 1858.20
CGMSE-DC 139085 255765 1921.00
scaled Perry 142915 268377 2046.68
scaled Polak-Ribiére 136272 237097 1883.96
scaled Fletcher-Reeves 135281 254043 1923.65
Polak- Ribiére 333109 427364 3551.11
Polak- Ribiére + 333109 427364 3551.45
Fletcher-Reeves 421166 501361 4044.06
Hestenes-Stiefel 139066 250335 1928.44
Dai-Yuan 142292 265919 1930.56
Dai-Liao (t=1) 142684 258510 1925.06

Table 2. Global characteristics of the algorithms. 500 problems.

?] .+ anticipative. Powell restart with the direction d 4 = -0 184
Algorithm # iterations # fg cpu time (sec)

CGMSE-UC1 154354 265045 2075.68
CGMSE-UC2 133289 237544 1880.03
CGMSE-GF 177843 291372 2163.74
CGMSE-CC 137091 245724 1817.70
CGMSE-DC 140456 254687 1913.70
scaled Perry 147978 279341 2102.58
scaled Polak-Ribiére 124380 230439 1795.64
scaled Fletcher-Reeves 136930 247807 1878.74
Polak- Ribiére 200695 269301 2539.04
Polak- Ribiére + 200695 269301 2539.11
Fletcher-Reeves 254331 336275 2868.05
Hestenes-Stiefel 137013 248784 1895.90
Dai-Yuan 137924 249193 1895.75
Dai-Liao (t=1) 140330 2552717 1922.42

In Table 1 we have the computational evidence that for 8,,, spectral the most efficient
algorithm is CGMSE-UCI1. The most inefficient was Fletcher-Reeves. In fact, subject to the
number of function evaluations, CGMSE-UC1 was about 2 times more efficient than Fletcher-
Reeves, and about 2.2 faster. From Table 2 we can see that for 8,,, anticipative the scaled
Polak-Ribiére algorithm is the most efficient. However, it is not much better than CGMSE-CC,
since the difference is only about 22 seconds for solving the set of 500 problems.

In the second set of numerical experiments we compare the best algorithm CGMSE-
UC1 with CONMIN. The CONMIN package by Shanno and Phua [10] solved all these 500
unconstrained optimization test problems in 87611 iterations, 945363 function evaluations and
3789.50 seconds. Subject to the number of function evaluations, we see that for this set of 500
test problems, CGMSE-UCI with 6, ,, spectral is about 4 times more performant. On the other
hand it is about 2 times faster than CONMIN. Figures 1 and 2 show the Dolan and Moré [7]
performance profile of CGMSE-UC1 versus CONMIN referring to the number of function
evaluations and cpu time metrics, respectively. For each algorithm we plot the fraction of



problems for which the algorithm is within a factor of the best of the number of function
evaluations and cpu time metrics, respectively. The left side of these Figures gives the
percentage of the test problems, out of 500, for which an algorithm is more performant. The
right side gives the percentage of the test problems that were successfully solved by each of the
algorithms. Mainly, the right side represents a measure of the algorithm’s robustness. The top
curve corresponds to the algorithm that solved the most problems in a number of function
evaluations (Figure 1) or in a cpu time (Figure 2) that was within a given factor T of the best
number of function evaluations or cpu time, respectively. Since the top curve in Figures 1 and 2
corresponds to CGMSE-UCI, this algorithm is clearly better than CONMIN.

e

CGMSE-UCT

CGMSE-UC1

N

CONMIN CONMIN

Function evaluations metric, 500 problems cpu time metric, 500 problems

L L L L L L L
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Fig. 1. CGMSE-UC1 with Z] w41 Spectral versus Fig. 2. CGMSE-UC1 with Z] w41 Spectral versus
CONMIN. Function evaluations metric. CONMIN. cpu time metric.

5. Conclusions

In this paper we have presented a class of conjugate gradient algorithms by combining the
Newton direction with the classical conjugate gradient direction and by using the modified
secant condition given by Zhang, Deng and Chen [12] and Zhang and Xu [13]. Under common
assumptions the algorithms are globally convergent. The modified secant condition in the
frame of conjugate gradient algorithms has been also considered by Yabe and Takano [11], but
using the conjugacy condition of Dai and Liao [4]. The algorithm of Yabe and Takano depends
on two parameters O and t. For different choices of these parameters, the performance of their

algorithm, as illustrated on 4 unconstrained optimization problems, can be quite different. In
this paper we use the modified secant condition in a more natural context and suggest some
formulas for parameter O computation. The numerical study indicates that our conjugate

gradient algorithms with modified secant condition and spectral selection of scaling parameter
8,,, are more performant and more robust than the classical conjugate gradient algorithms.
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