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Abstract. In this work we present the performance profile of 23 conjugate gradient algorithms 
implemented in CGALL package The conjugate gradient algorithms are classified in 5 groups: 
classical (HS, FR, PRP, PRP+, CD, LS and DY); hybrid (hDY, hDYz, GN, HuS, TaS and LS-
CD); scaled (BM, BM+, sPRP and sFR); modified (ASDC, A, ACGSD and ACGSDz) and 
parametric (DL and DL+). We give computational evidence that ACGSD, PRP+, hDYz and BM 
conjugate gradients are the top performer among the algorithms considered in this study. 

 
1. Introduction. 
In this work we present the computational performance profile of the conjugate gradient 
algorithms. We analyze 23 conjugate gradient algorithms which are implemented in CGALL 
package. CGALL is a Fortran package. 
The conjugate gradient algorithms are defined by the following recurence: 
                                                 1k k k kx x dα+ = + , 

1 1k k k ksd g β+ += − + 0 0d g= −,  
where kα  is the steplength determined by the Wolfe line search and the parameter kβ  is 
computed as in Table 1.  
 

Table 1. Conjugate gradient algorithms considered in CGALL package. 
Nr. File Formula Name 
1. Z1 

1
T

HS k k
k T

k k

y g
y s

β +=  
Hestenes and Stiefel (HS) 

2. Z2 
1 1

T
FR k k
k T

k k

g g
g g

β + +=  
Fletcher and Reeves (FR) 

3. Z3 
1

T
PRP k k
k T

k k

y g
g g

β +=  
Polak-Ribiere and Polyak (PRP) 

4. Z4 
10,

T
PRP k k
k T

k k

y gmax
g g

β + +⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 

Polak-Ribiere and Polyak + 
(PRP+) 

5. Z5 
1 1

T
CD k k
k T

k k

g g
g d

β + += −  
Conjugate Descent – Fletcher 
(CD) 

6. Z6 
1

T
LS k k
k T

k k

y g
g d

β += −  
Lui and Storey (LS) 
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7. Z7 
1 1

T
DY k k
k T

k k

g g
y s

β + +=  
Dai and Yuan (DY) 

8. Z8 
1( )T

DL k k k
k T

k k

g y ts
y s

β + −
=  

Dai and Liao (DL) 

9. Z9 
1 10,

T T
DL k k k k
k T T

k k k k

y g s gmax t
y s y s

β + + +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
 

Dai and Liao + (DL+) 

10. Z10 
1 1 1 1

2

( )(
( )

T T T
ASDC k k k k k k

k T T
k k k k

g g y g s g
y s y s

β + + + += −
)

 
Andrei Sufficient Descent 
Condition. 
Please, see the paper for AML, 
AML5382. 
( 1 0T

k ky Q + = ) 
11. Z11 { }{ }, ,hDY DY HS DY

k k kmax c minβ β β= kβ  Hybrid DY (hDY) 

12. Z12 { }{ }0, ,hDYz HS DY
k kmax minβ β= kβ  Hybrid DY zero (hDYz) 

13. Z13 { }{ }, ,GN FR PRP FR
k k kmax minβ β β= − kβ  Gilbert and Nocedal (GN) 

14. Z14 { }{ }0, ,HuS PRP FR
k kmax minβ β= kβ  Hu and Storey (HuS) 

15. Z15 0
otherwise

,PRP PRP FR
TaS k k
k FR

k

kβ β β
β

β
⎧ ≤ ≤

= ⎨
⎩

 
Touati-Ahmed and Storey (TaS) 

16. Z16 { }{ }0, ,LS CD LS CD
k kmax minβ β− = kβ  Hybrid LS, CD (LS-CD) 

17. Z17 
1( )T

BM k k k
k T

k k

y s g
y s

θβ +−
=  

Birgin and Martinez,  
Scaled Perry 

18. Z18 
1 10,

T T
BM k k k k
k T T

k k k k

y g s gmax
y s y s

θβ + + +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
 

Brigin and Martinez + 

19. Z19 
1 1

T
sPRP k k k
k T

k k k k

y g
g g

θβ
α θ

+ +=  
Scaled Polak-Ribiere-Polyak 
(sPRP) 

20. Z20 
1 1 1

T
sFR k k k
k T

k k k k

g g
g g

θβ
α θ
+ + +=  

Scaled Fletcher-Reeves (sFR) 

21. Z21 
1

1
( )( )1 T T

A T k k k k
k k kT T

k k k k

y y s gy g
y s g g

β +
+

⎛
= −⎜ ⎟

⎝

⎞

⎠
 

Andrei (Sufficient descent 
condition from PRP) 
Please, see Remark 8.3.3 and 
formula (8.3.130) in the book: 
Neculai Andrei, “Criticism of the 
Unconstrained Optimization 
Algorithms Reasoning”. 

22. Z22 
1 1

2

( )(
( )

T T T
ACGSD k k k k k k

k T T
k k k k

y g y g s g
y s y s

β + += − 1)+  
Andrei (Sufficient descent 
condition from DY) (ACGSD)  
Please see paper for SIOPT, 
#067836. 
( 1 1 0T

k k ky Q g+ + = ) 
23. Z23 

10, 1
T T

ACGSDz k k k k
k T T

k k k k

y g s gmax
y s y s

β +⎧ ⎫⎛
= −⎨ ⎬⎜

⎩ ⎭⎝
1+ ⎞
⎟
⎠

 
Andrei (Sufficient descent 
condition from DY zero) 
(ACGSDz) 
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In the scaled conjugate gradient the searching direction is computed as  

1 1 1k k k kd g ksθ β+ + += − + , 
where the parameter kθ  is the inverse of the Rayleigh quotient : 

1

T
k k

k T
k k

s s
y s

θ + =  

and  1 ,k k ks x x+= − 1 .k ky g g+= − k

 
The test problems are the unconstrained problems in the CUTE library, along with other 
large-scale optimization problems. We selected 75 large-scale unconstrained optimization 
problems in extended or generalized form. For each function we have considered ten 
numerical experiments with the number of variables n = 1000 2000 10000, , ,… .   
All algorithms implement the Wolfe line search conditions with σ1 0 0001= .  and 2 0.9σ = , 

and the same stopping criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute 

component of a vector. 
 
The comparisons of algorithms are given in the following context. Let and be 
the optimal value found by ALG1 and ALG2, for problem 

f i
ALG1 f i

ALG2

i = 1 750, ,… ,  respectively. We 
say that, in the particular problem  the performance of ALG1 was better than the 
performance of ALG2 if:  

i,

f fi
ALG

i
ALG1 2 10− < −3  

and the number of iterations, or the number of function-gradient evaluations, or the CPU time 
of ALG1 was less than the number of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to ALG2, respectively. 
All codes are written in double precision Fortran and compiled with f77 (default compiler 
settings) on an Intel Pentium 4, 1.8GHz workstation. CGALL package was designed and 
written by Andrei. The Dolan-Moré performance profile is given by means of PERF2N and 
PERFNN Fortran programs, written by Andrei. 
 

 
2. Performance Profiles of Classical Conjugate Gradient Algorithms 
In this section we present the performance profile of Dolan and Moré, corresponding to the 
classical conjugate gradient algorithms implemented in CGALL. Table 2 presents the 
classical conjugate gradient algorithms. 
 

Table 2. Classical conjugate gradient algorithms. 
Nr. File Formula Name 
1. Z1 

1
T

HS k k
k T

k k

y g
y s

β +=  
Hestenes and Stiefel (HS) 

2. Z2 
1 1

T
FR k k
k T

k k

g g
g g

β + +=  
Fletcher and Reeves (FR) 

3. Z3 
1

T
PRP k k
k T

k k

y g
g g

β +=  
Polak-Ribiere and Polyak (PRP) 

4. Z4 
10,

T
PRP k k
k T

k k

y gmax
g g

β + +⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 

Polak-Ribiere and Polyak + 
(PRP+) 

5. Z5 
1 1

T
CD k k
k T

k k

g g
g d

β + += −  
Conjugate Descent – Fletcher 
(CD) 
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6. Z6 
1

T
LS k k
k T

k k

y g
g d

β += −  
Lui and Storey (LS) 

7. Z7 
1 1

T
DY k k
k T

k k

g g
y s

β + +=  
Dai and Yuan (DY) 

 

 
Fig. 2.1. Performance profile of Polak-Ribière-Polyak (PRP) and Polak-Ribière-Polyak+ (PRP+).  

 
 

 
Fig. 2.2. Performance profile of Hestenes-Stiefel (HS) and Polak-Ribière-Polyak+ (PRP+).  
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Fig. 2.3. Performance profile of Polak-Ribière-Polyak+ (PRP+) and Dai-Yuan (DY).  

 
 

 
Fig. 2.4. Performance profile of Hestenes-Stiefel (HS) and Dai-Yuan (DY).  
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Fig. 2.5. Performance profile of Polak-Ribière-Polyak+ (PRP+) and Liu-Storey (LS).  

 
 
 

 
Fig. 2.6 Performance profile of Feltcher-Reeves (FR), Conjugate-Descent (CD) and Dai-Yuan (DY).  
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Fig. 2.7 Performance profile of Hestenes-Stiefel (HS), Polak-Ribière-Polyak+ (PRP+) and Liu-Storey 

(LS).  
 

 
Fig. 2.8. Performance profile of HS, FR, PRP, PRP+, CD, LS, DY. 
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Hager and Zhang1 present an excellent survey of conjugate gradient algorithms insisting on 
their global convergence properties. The conjugate gradient algorithms are classified in two 
large groups:  

- methods with 
2

1kg +  in the numerator of kβ , like FR, CD, DY and 

- methods with  in the numerator of 1
T
kg y+ k kβ , like HS, PRP, PRP+, LS. 

Despite the strong convergence theory that has been developed for methods with 
2

1kg +  in 

the numerator of kβ , all these methods are susceptible to jamming, i.e. they begin to take 
small steps without making a significant progress to the minimum. On the other hand, the 
methods with  in the numerator of 1

T
kg y+ k kβ  possess a built-in restart feature that addresses 

the jamming phenomenon. The methods with  in the numerator of  1
T
kg y+ k kβ  automatically 

adjust kβ  to avoid jamming, having better computational performances than the performance 

of methods with 
2

1kg +  in the numerator of kβ . This is illustrated in Figure 1.8 above, 
where the CPU performance profile of all classical conjugate gradient algorithms is presented. 
 
We notice in Figure 1.8 that the performance profile of the classical methods, are grouped as 
the classification of Hager and Zhang. The methods with  in the numerator of 1

T
kg y+ k kβ  (HS, 

PRP, PRP+, LS) are more robust. 
 
In Figure 1.7 we see that the LS and PRP+ algorithms are top performer in their class. They 
are the most robust, having the best computational performances. 
 
 
3. Performance Profiles of Hybrid Conjugate Gradient Algorithms 
In this section we consider the hybrid conjugate gradient algorithms where the parameter kβ  
is computed as in Table 3. These methods represent a combination of the classical conjugate 
gradient methods proposed to exploit the attractive properties both of methods with 2

1kg +  in 

the numerator of kβ  and the methods with  in the numerator of 1
T
kg y+ k kβ . 

 
Table 3. Hybrid conjugate gradient algorithms.  

Nr. File Formula Author(s) 
1. Z11 { }{ }, ,hDY DY HS DY

k k kmax c minβ β β= kβ  Hybrid DY (hDY) 

2. Z12 { }{ }0, ,hDYz HS DY
k kmax minβ β= kβ  Hybrid DY zero (hDYz) 

3. Z13 { }{ }, ,GN FR PRP FR
k k kmax minβ β β= − kβ  Gilbert and Nocedal (GN) 

4. Z14 { }{ }0, ,HuS PRP FR
k kmax minβ β= kβ  Hu and Storey (HuS) 

5. Z15 0
otherwise

,PRP PRP FR
TaS k k
k FR

k

kβ β β
β

β
⎧ ≤ ≤

= ⎨
⎩

 
Touati-Ahmed and Storey 
(TaS) 

6. Z16 { }{ }0, ,LS CD LS CD
k kmax minβ β− = kβ  Hybrid LS, CD (LS-CD) 

 
 

                                                           
1 W.W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods. Pacific Journal of 
Optimization, 2 (2006), pp. 35-58. 
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Fig. 3.1. Performance profile of Hybrid Dai-Yuan (hDY) and Hybrid Dai-Yuan zero (hDYz). 

 

 
Fig. 3.2. Performance profile of Hybrid Dai-Yuan zero (hDYz) and Gilbert-Nocedal (GN). 
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Fig. 3.3. Performance profile of Hybrid Dai-Yuan zero (hDYz) and Hu-Storey (HuS). 

 
Fig. 3.4. Performance profile of Hybrid Dai-Yuan zero (hDYz) and Touati-Ahmed and Storey (TaS). 

 
 
 
 
 
 
 
 
 
 

 10



 

 
Fig. 3.5. Performance profile of Hybrid Dai-Yuan zero (hDYz) and  

Liu-Storey and Conjugate-Descent (LS-CD). 
 

 
Fig. 3.6. Performance profile of Gilbert-Nocedal (GN) and Hu-Storey (HuS). 
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Fig. 3.7. Performance profile of Gilbert-Nocedal (GN) and Touati-Ahmed and Storey (TaS). 

 
 

 
Fig. 3.8. Performance profile of hybrid Dai-Yuan zero (hDYz), Gilbert-Nocedal (GN) and  

Hu-Storey (HuS). 
 
 

From these Tables we se that the hybrid Dai-Yuan zero (hDYz) is the best variant of hybrid 
conjugate gradient algorithms. 
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4. Performance Profiles of Scaled Conjugate Gradient Algorithms 
The scaled conjugate gradient algorithms are defined by the recurrence: 
                                                       1k k k kx x dα+ = + , 

1 1 1k k k kd g ksθ β+ + += − + , 
where the parameter kθ  is the inverse of the Rayleigh quotient : 

1

T
k k

k T
k k

s s
y s

θ + =  

and   The parameter 1 ,k k ks x x+= − 1 .k ky g g+= − k kβ  is computed as in Table 4. 
 

Table 4. Scaled conjugate gradient algorithms.  
Nr. File Formula Name 
1. Z17 

1( )T
BM k k k
k T

k k

y s g
y s

θβ +−
=  

Birgin and Martinez,  
Scaled Perry 

2. Z18 
1 10,

T T
BM k k k k
k T T

k k k k

y g s gmax
y s y s

θβ + + +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
 

Brigin and Martinez + 

3. Z19 
1 1

T
sPRP k k k
k T

k k k k

y g
g g

θβ
α θ

+ +=  
Scaled Polak-Ribiere-Polyak 
(sPRP) 

4. Z20 
1 1 1

T
sFR k k k
k T

k k k k

g g
g g

θβ
α θ
+ + +=  

Scaled Fletcher-Reeves (sFR) 

 
 

 
Fig. 4.1. Performance profile of Birgin-Martínez (BM) and Birgin-Martínez+ (BM+). 
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Fig. 4.2. Performance profile of Birgin-Martínez (BM) and scaled Polak-Ribiere-Polyak (sPRP). 

 
 
 

 
Fig. 4.3. Performance profile of Birgin-Martínez (BM) and scaled Fletcher-Reeves (sFR). 
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Fig. 4.4. Performance profile of Polak-Ribière-Polyak (PRP) and scaled Polak-Ribière-Polyak (sPRP). 

 
 
 

 
Fig. 4.5. Performance profile of Fletcher-Reeves (FR) and scaled Fletcher-Reeves (sFR). 
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Fig. 4.6. Performance profile of Fletcher-Reeves (FR) and Polak-Ribière-Polyak (PRP). 

 
 
 

 
Fig. 4.7. Performance profile of scaled Fletcher-Reeves (sFR) and scaled Polak-Ribière-Polyak (sPRP). 
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Fig. 4.8. Performance profile of BM, sPRP and sFR. 

 
 
The Figures above give the computational evidence that Birgin-Martínez (BM) conjugate 
gradient algorithm is the top performer in this class. The Polak-Ribière-Polyak (PRP) 
algorithm is way more competitive than Fletcher-Reeves (FR), both in original and scaled 
variants.  
 
 
5. Performance Profiles of Parametric Conjugate Gradient Algorithms 
As we have already seen in the above Figures (Fig. 2.8, Fig. 3.8 and Fig. 4.8) the PRP+, 
hDYz and BM are the best conjugate gradient algorithms, subject to the CPU time metric. 
The hybrid and parametric conjugate gradient methods have been introduced in order to 
combine the good properties of these methods and to exploit the attractive features of them. 
The parametric family of conjugate gradient methods was mainly designed to integrate the 
conjugate gradient algorithms in the same manner as the quasi-Newton methods have been 
combined together by introducing parameters. 
In CGALL only two parametric conjugate gradient algorithms are implemented as in Table 5. 
We selected only the Dai and Liao parametric conjugate gradient method since it has only one 
parameter , which can by very easy modified. However we implemented in CGALL the DL 
and DL+ algorithms with  Different values for t  give different computational results, 
and for general functions it is very difficult to predict an advantageous value for . 

t
1.t =

t
 
 

Table 5. Parametric conjugate gradient algorithms.  
1. Z8 

1( )T
DL k k k
k T

k k

g y ts
y s

β + −
=  

Dai and Liao (DL) 

2. Z9 
1 10,

T T
DL k k k k
k T T

k k k k

y g s gmax t
y s y s

β + + +⎧ ⎫
= −⎨ ⎬

⎩ ⎭
 

Dai and Liao + (DL+) 
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Fig. 5.1. Performance profile of Dai-Liao (DL) (t=1) and Dai-Liao+ (DL+) (t=1). 

 
 
 

 
Fig. 5.2. Performance profile of Dai-Liao (DL) (t=1) and Polak-Ribière-Polyak+ (PRP+). 
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Fig. 5.3. Performance profile of Dai-Liao (DL) (t=1) and hybrid Dai-Yuan zero (hDYz). 

 
 
 
 

 
Fig. 5.4. Performance profile of Dai-Liao (DL) (t=1) and Birgin-Martínez (BM). 
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6. Performance Profiles of Modified Conjugate Gradient Algorithms 
In this section we present some conjugate gradient algorithms obtained by modification of 
classical conjugate gradient algorithms in order to satisfy the conjugacy condition as well as 
the sufficient descent condition. These algorithms are described in Table 6. 
 

Table 6. Modified conjugate gradient algorithms.  
1. Z10 

1 1 1 1
2

( )(
( )

T T T
ASDC k k k k k k

k T T
k k k k

g g y g s g
y s y s

β + + + += −
)

 
Andrei Sufficient Descent 
Condition. 
Please, see the paper for AML, 
AML53822. 
( 1 0T

k ky Q + = ) 
2. Z21 

1
1

( )( )1 T T
A T k k k k

k k kT T
k k k k

y y s gy g
y s g g

β +
+

⎛
= −⎜ ⎟

⎝

⎞

⎠
 

Andrei (Sufficient descent 
condition from PRP) 
Please, see Remark 8.3.3 and 
formula (8.3.130) in the book: 
Neculai Andrei, “Criticism of the 
Unconstrained Optimization 
Algorithms Reasoning”. 

3. Z22 
1 1

2

( )(
( )

T T T
ACGSD k k k k k k

k T T
k k k k

y g y g s g
y s y s

β + += − 1)+  
Andrei (Sufficient descent 
condition from DY) (ACGSD)  
Please see paper for SIOPT,  
Manuscris #0678363. 
( 1 1 0T

k k ky Q g+ + = ) 
4. Z23 

10, 1
T T

ACGSDz k k k k
k T T

k k k k

y g s gmax
y s y s

β +⎧ ⎫⎛
= −⎨ ⎬⎜

⎩ ⎭⎝
1+ ⎞
⎟
⎠

 
Andrei (Sufficient descent 
condition from DY zero) 
(ACGSDz) 

 
Fig. 6.1. Performance profile of ASDC and A (from PRP). 

                                                           
2 Neculai Andrei, Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy 
conditions for unconstrained optimization. Submitted AML, paper No. 5382, November 20, 2006. 
3 Neculai Andrei, Another nonlinear conjugate gradient algorithm with conjugacy and sufficient 
descent conditions for unconstrained optimization. Submitted SIOPT, paper No. 067836, December 22, 
2006. 
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Fig. 6.2. Performance profile of A (from PRP) and ACGSD (from DY). 

 
 

 
Fig. 6.3. Performance profile of ACGSD (from DY) and ACGSDz. 
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Fig. 6.4. Performance profile of ACGSD (from DY) and Polak-Ribiere-Polak+ (PRP+). 

 
 
 

 
Fig. 6.5. Performance profile of ACGSD (from DY) and Hybrid Dai-Yuan zero (hDYz). 
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Fig. 6.6. Performance profile of ACGSD (from DY) and Birgin-Martínez (BM). 

 
 

 
Fig. 6.7. Performance profile of ACGSD (from DY) and Dai-Liao (DL). 
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7. Conclusion 
We have presented the performance profile of 23 conjugate gradient algorithms implemented 
in CGALL package. All algorithms are implemented in the same manner, and use the Wolfe 
line search conditions and the same stopping criterion 610kg −

∞
≤ . From the above Figures 

it follows that the best variants of conjugate gradient algorithms are PRP+, hDYz, BM 
( 1kθ + spectral), DL and ACGSD (from DY).  
Figure 7.1 shows the performance profile of the most competitive conjugate gradient 
algorithms implemented in CGALL package. We see that ACGSD (from DY) is the most 
robust conjugate gradient algorithm, at least for this set of test functions. 

 

 
Fig. 7.1. Performance profile of PRP+, hDYz, BM, DL, ACGSD (from DY). 
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