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a b s t r a c t

New accelerated nonlinear conjugate gradient algorithms which are mainly modifications
of Dai and Yuan’s for unconstrained optimization are proposed. Using the exact line search,
the algorithm reduces to the Dai and Yuan conjugate gradient computational scheme. For
inexact line search the algorithm satisfies the sufficient descent condition. Since the step
lengths in conjugate gradient algorithms may differ from 1 by two orders of magnitude
and tend to vary in a very unpredictable manner, the algorithms are equipped with an
acceleration schemeable to improve the efficiency of the algorithms. Computational results
for a set consisting of 750 unconstrained optimization test problems show that these new
conjugate gradient algorithms substantially outperform the Dai–Yuan conjugate gradient
algorithm and its hybrid variants, Hestenes–Stiefel, Polak–Ribière–Polyak, CONMIN
conjugate gradient algorithms, limited quasi-Newton algorithm LBFGS and compare
favorably with CG_DESCENT. In the frame of this numerical study the accelerated scaled
memoryless BFGS preconditioned conjugate gradient ASCALCG algorithm proved to be
more robust.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Conjugate gradient methods represent an important class of unconstrained optimization algorithms with strong local
and global convergence properties and modest memory requirements. A survey on their definition including 40 conjugate
gradient algorithms for unconstrained optimization is given in [1]. A discussion of development of different versions of
nonlinear conjugate gradient methods, with special attention to global convergence properties is presented in [2].
In this paper we suggest new nonlinear conjugate gradient algorithms for the solution of min f (x), where f : Rn → R is

continuously differentiable and bounded below. Our algorithms are mainly modifications of the Dai and Yuan [3] conjugate
gradient computational scheme. In these algorithms the direction dk+1 is computed as a linear combination between−gk+1
and sk, i.e. dk+1 = −θk+1gk+1 + βNk sk, where gk = ∇f (xk) and sk = xk+1 − xk. The parameter θk is computed in such a
way that the direction dk+1 is the Newton direction or it satisfies the conjugacy condition. On the other hand, βNk is a proper
modification of Dai and Yuan’s computational scheme in such a way that the direction dk+1 at every iteration satisfies the
sufficient descent condition. For the exact line search the proposed algorithms reduce to theDai and Yuan conjugate gradient
computational scheme.
The paper has the following structure. In Section 2 we present the development of the conjugate gradient algorithms

with sufficient descent condition as modifications of the Dai–Yuan computational scheme, while in Section 3 we prove
the global convergence of these algorithms under strong Wolfe line search conditions. In Section 4 we present the
accelerated algorithms, showing their global convergence and in Section 5 we compare the computational performance of
the new conjugate gradient schemes against the Dai and Yuan method and its hybrid variants [4], Hestenes and Stiefel [5],
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Polak–Ribière [6] and Polyak [7], CG_DESCENT in [8], CONMIN in [9], as well as LBFGS in [10], using 750 unconstrained
optimization test problems from the CUTE [11] library along with some other large-scale unconstrained optimization
problems presented in [12]. Using the Dolan and Moré performance profiles [13] we prove these new accelerated
conjugate gradient algorithms outperform the Dai–Yuan algorithm as well as its hybrid variants, Hestenes–Stiefel,
Polak–Ribière–Polyak, CONMIN, LBFGS and compare favourably with CG_DESCENT by Hager and Zhang. The accelerated
scaled memoryless BFGS preconditioned conjugate gradient ASCALCG algorithm [14] proved to be more robust.

2. Modifications of the Dai–Yuan conjugate gradient algorithm

For solving the unconstrained optimization problem

min
{
f (x) : x ∈ Rn

}
, (2.1)

where f : Rn → R is continuously differentiable and bounded belowwe consider a nonlinear conjugate gradient algorithm:

xk+1 = xk + αkdk, (2.2)

where the stepsize αk is positive and the directions dk are computed by the rule:

dk+1 = −θk+1gk+1 + βNk sk, d0 = −g0, (2.3)

where

βNk =
‖gk+1‖2

yTk sk
−
‖gk+1‖2 (sTkgk+1)

(yTk sk)2
, (2.4)

and θk+1 is a parameter to be determined which follows. Here yk = gk+1 − gk and sk = xk+1 − xk.
The line search in the conjugate gradient algorithms for αk computation is often based on the standard Wolfe

conditions [15,16]:

f (xk + αkdk)− f (xk) ≤ ραkgTk dk, (2.5)

gTk+1dk ≥ σg
T
k dk, (2.6)

where dk is a descent direction and 0 < ρ ≤ σ < 1.
Observe that if f is a quadratic function and αk is selected to achieve the exact minimum of f in the direction dk, then

sTkgk+1 = 0 and the formula (2.4) for β
N
k reduces to the Dai and Yuan computational scheme [3]. However, in this paper we

refer to general nonlinear functions and inexact line search.
We were led to this computational scheme by modifying the Dai and Yuan algorithm

βDYk =
gTk+1gk+1
yTk sk

,

in order to have the sufficient descent condition, as well as some other properties for an efficient conjugate gradient
algorithm. Using a standardWolfe line search, the Dai and Yuan method always generates descent directions and under the
Lipschitz assumption it is globally convergent. In [17] Dai established a remarkable property relating the descent directions
to the sufficient descent condition, showing that if there exist constants γ1 and γ2 such that γ1 ≤ ‖gk‖ ≤ γ2 for all k, then
for any p ∈ (0, 1), there exists a constant c > 0 such that the sufficient descent condition gTi di ≤ −c ‖gi‖

2 holds for at
least bpkc indices i ∈ [0, k], where bjc denotes the largest integer≤j. In our algorithm the parameter βk is selected in such
a manner that the sufficient descent condition is satisfied at every iteration. As we know, despite the strong convergence
theory that has been developed for the Dai and Yuanmethod, it is susceptible to jamming, that is it begins to take small steps
without making significant progress to theminimum.When iterates jam, yk becomes tiny while ‖gk‖ is bounded away from
zero. Therefore, βNk is a proper modification of the β

DY
k .

Theorem 2.1. If θk+1 ≥ 1/4, then the direction dk+1 = −θk+1gk+1 + βNk sk, (d0 = −g0), where β
N
k is given by (2.4) satisfies

the sufficient descent condition

gTk+1dk+1 ≤ −
(
θk+1 −

1
4

)
‖gk+1‖2 . (2.7)

Proof. Since d0 = −g0, we have gT0 d0 = −‖g0‖
2, which satisfy (2.7). Multiplying (2.3) by gTk+1, we have

gTk+1dk+1 = −θk+1 ‖gk+1‖
2
+
(gTk+1gk+1)(g

T
k+1sk)

yTk sk
−
‖gk+1‖2 (sTkgk+1)

2

(yTk sk)2
. (2.8)
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Now, using the inequality uTv ≤ 1
2 (‖u‖

2
+ ‖v‖2), where u, v ∈ Rn, we have:

(gTk+1gk+1)(g
T
k+1sk)

yTk sk
=

[
(yTk sk)gk+1/

√
2
]T [√

2(gTk+1sk)gk+1
]

(yTk sk)2

≤

1
2

[ 1
2 (y

T
k sk)

2 ‖gk+1‖2 + 2(gTk+1sk)
2 ‖gk+1‖2

]
(yTk sk)2

=
1
4
‖gk+1‖2 +

(gTk+1sk)
2 ‖gk+1‖2

(yTk sk)2
. (2.9)

Using (2.9) in (2.8) we get (2.7). �

To conclude, the sufficient descent condition from (2.7), the quantity θk+1−1/4 is required to be nonnegative. Supposing
that θk+1 − 1/4 > 0, then the direction given by (2.3) and (2.4) is a descent direction. Dai and Yuan [3,4] present conjugate
gradient schemes with the property that gTk dk < 0 when y

T
k sk > 0. If f is strongly convex or the line search satisfies the

Wolfe conditions, then yTk sk > 0 and the Dai and Yuan scheme yields a descent. In our algorithm observe that, if for all
k, θk+1 > 1/4, and the line search satisfies the Wolfe conditions (2.5) and (2.6), then for all k the search direction (2.3) and
(2.4) satisfies the sufficient descent condition. It is well known that if the Wolfe line search conditions are satisfied, then
yTk sk > 0 and the steplength αk is bounded away from zero [8]. Observe that y

T
k sk > 0 is crucial in (2.4) for β

N
k computation.

Note that in (2.7) we bound gTk+1dk+1 by−(θk+1 − 1/4) ‖gk+1‖
2, while for the computational scheme of Dai and Yuan only

the non-negativity of gTk+1dk+1 is established.
To determine the parameter θk+1 in (2.3) we suggest the following two procedures.
(A) When the initial point x0 is near the solution of (2.1) and the Hessian of function f is a nonsingular matrix we know

that the Newton direction is the best line search direction. Therefore, to get a good algorithm for solving (2.1) this is a very
goodmotivation to choose the parameter θk in such away that for every k ≥ 1 the direction dk+1 given by (2.3) is the Newton
direction. Therefore, from the equation

−∇
2f (xk+1)−1gk+1 = −θk+1gk+1 + βNk sk (2.10)

after some algebra we get

θk+1 =
1

sTk∇2f (xk+1)gk+1

[
‖gk+1‖2

yTk sk

(
1−

sTkgk+1
yTk sk

)
sTk∇

2f (xk+1)sk + sTkgk+1

]
. (2.11)

Observe that the choice (2.11) does not imply that dk+1 given by (2.3) is the Newton direction. This is only a technical
operation to get θk+1 as in (2.11). The salient point in this formula for θk+1 is the presence of the Hessian. For large-scale
problems, choices for the update parameter that do not require the evaluation of the Hessian matrix are often preferred
in practice to the methods that require the Hessian in each iteration. Therefore, in order to have an algorithm for solving
large-scale problems we assume that in (2.10) we use an approximation Bk+1 of the true Hessian ∇2f (xk+1) and let Bk+1
satisfy the quasi-Newton equation Bk+1sk = yk. This leads us to:

θk+1 =
1

yTkgk+1

[
‖gk+1‖2 −

‖gk+1‖2 (sTkgk+1)
yTk sk

+ sTkgk+1

]
. (2.12)

Observe that if θk+1 given by (2.12) is greater than or equal to 1/4, then according to Theorem 2.1 the direction (2.3) satisfies
the sufficient descent condition (2.7). On the other hand, if in (2.12) θk+1 < 1/4, then we take ex abrupto θk+1 = 1 in (2.3).
(B) The second procedure is based on the conjugacy condition. Dai and Liao [18] introduced the conjugacy condition

yTkdk+1 = −ts
T
kgk+1, where t ≥ 0 is a scalar. This is indeed very reasonable since in real computations the inexact line search

is generally used. However, this condition is very dependent on the nonnegative parameter t , for which we do not know any
formula to choose in an optimal manner. Therefore, even if in our developments we use the inexact line search we adopt
here a more conservative approach and consider the conjugacy condition yTkdk+1 = 0. This leads us to:

θk+1 =
1

yTkgk+1

[
‖gk+1‖2 −

‖gk+1‖2 (sTkgk+1)
yTk sk

]
. (2.13)

As above, if θk+1 given by (2.13) is greater than or equal to 1/4, then according to Theorem 2.1 the direction (2.3) satisfies
the sufficient descent condition (2.7). On the other hand, if in (2.13) θk+1 < 1/4, then we take θk+1 = 1 in (2.3).
Observe that since sTkgk+1 → 0 along the iterations, θk given by (2.12) obtained from the Newton direction paradigm is

very similar to (2.13) based on the conjugacy condition. Besides, θk+1 from (2.13) can be written as

θk+1 =
‖gk+1‖2

‖gk+1‖2 − gTk gk+1

[
1−

(sTkgk+1)
yTk sk

]
.
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Since at every iteration dk is a descent direction and αk is computed by the Wolfe line search (2.5) and (2.6), it follows that
gTk gk+1 → 0. (This is reminiscence from the steepest descent method.) Therefore, along the iterations, θk → 1.
In [4] Dai and Yuan proved the global convergence of a conjugate gradient algorithm for which βk = βDYk tk, where

tk ∈ [−c, 1] with c = (1 − σ)/(1 + σ). Our algorithm is a proper modification of the Dai and Yuan’s with the following
property.
Observe that

βNk =
‖gk+1‖2

yTk sk

[
1−

sTkgk+1
yTk sk

]
= βDYk rk, (2.14)

where

rk = 1−
sTkgk+1
yTk sk

. (2.15)

From the second Wolfe condition it follows that sTkgk+1 ≥ σ s
T
kgk = −σy

T
k sk + σ s

T
kgk+1, i.e.

sTkgk+1 ≥
−σ

1− σ
yTk sk.

Since by the Wolfe condition yTk sk > 0, it follows that
sTk gk+1
yTk sk
≥
−σ
1−σ . Hence rk ≤

1
1−σ . Therefore,

βNk ≤ β
DY
k

1
1− σ

. (2.16)

3. Convergence analysis

In this section we analyze the convergence of the algorithm (2.2), (2.3), (2.4), and (2.12) or (2.13) where d0 = −g0. In the
following we consider that gk 6= 0 for all k ≥ 1, otherwise a stationary point is obtained. Assume that:
(i) The level set S = {x ∈ Rn : f (x) ≤ f (x0)} is bounded.
(ii) In a neighborhood N of S, the function f is continuously differentiable and its gradient is Lipschitz continuous, i.e. there exists
a constant L > 0 such that ‖∇f (x)−∇f (y)‖ ≤ L ‖x− y‖, for all x, y ∈ N .

Under these assumptions on f there exists a constant Γ ≥ 0 such that ‖∇f (x)‖ ≤ Γ for all x ∈ S. In order to prove the
global convergence, we assume that the step size αk in (2.2) is obtained by the strong Wolfe line search, that is,

f (xk + αkdk)− f (xk) ≤ ραkgTk dk, (3.1)∣∣g(xk + αkdk)Tdk∣∣ ≤ σgTk dk (3.2)
where ρ and σ are positive constants such that 0 < ρ ≤ σ < 1.
For any conjugate gradient algorithmwith a strongWolfe line search, we have the following results given by Lemmas 3.1

and 3.2, which were first proved in [19,15,16]. For completeness, we present them here without proofs.

Lemma 3.1. Let αk be obtained by the strong Wolfe line search (3.1) and (3.2). Suppose that the assumptions (i) and (ii) and dk
is a descent direction. Then

∞∑
k=0

−αkgTk dk <∞. � (3.3)

Lemma 3.2. Let αk be obtained by the strong Wolfe line search (3.1) and (3.2). Suppose that the assumptions (i) and (ii) and dk
is a descent direction. Then the so-called Zoutendijk condition holds

∞∑
k=0

(gTk dk)
2

‖dk‖2
<∞. � (3.4)

Based on these results, for the conjugate gradient method (2.2) where

dk = −θkgk + αk−1βNk−1dk−1 (3.5)

and θk > 1/4, with a strong Wolfe line search, we can prove the following lemma and its corollary which are essential for the
convergence of our algorithms. Lemma 3.3 is a variant of the Theorem 2.3 of Dai et al. [20].

Lemma 3.3. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient method (2.2) and (3.5) where
θk > 1/4, with the strong Wolfe line search (3.1) and (3.2). Then either

lim inf
k→∞

‖gk‖ = 0, (3.6)
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or
∞∑
k=0

‖gk‖4

‖dk‖2
<∞. (3.7)

Proof. Since for any k ≥ 0, θk > 1/4, it follows that dk is a descent direction. From (3.5) since for all k ≥ 0, gTk dk < 0 we
have

‖dk‖2 ≥ (αk−1βNk−1)
2
‖dk−1‖2 − θ2k ‖gk‖

2 . (3.8)

On the other hand, from (3.5) we get

gTk dk − αk−1β
N
k−1g

T
k dk−1 = −θk ‖gk‖

2 .

Since dk is a descent direction, it follows that

αk−1β
N
k−1g

T
k dk−1 +

∣∣gTk dk∣∣ = θk ‖gk‖2 .
Therefore,

αk−1
∣∣βNk−1∣∣ ∣∣gTk dk−1∣∣+ ∣∣gTk dk∣∣ ≥ θk ‖gk‖2 .

From the strong Wolfe condition we have that

σαk−1
∣∣βNk−1∣∣ ∣∣gTk−1dk−1∣∣+ ∣∣gTk dk∣∣ ≥ θk ‖gk‖2 . (3.9)

But for any a, b, σ ≥ 0 the following inequality (a + σb)2 ≤ (1 + σ 2)(a2 + b2) holds. Considering a =
∣∣gTk dk∣∣ and

b = αk−1
∣∣βNk−1∣∣ ∣∣gTk−1dk−1∣∣, then (3.9) yields to

(gTk dk)
2
+ (αk−1β

N
k−1)

2(gTk−1dk−1)
2
≥ c ‖gk‖4 , (3.10)

where c = θ2k /(1+ σ
2) is a positive constant. Therefore, from (3.10) we get

(gTk dk)
2

‖dk‖2
+
(gTk−1dk−1)

2

‖dk−1‖2
=

1
‖dk‖2

[
(gTk dk)

2
+
‖dk‖2

‖dk−1‖2
(gTk−1dk−1)

2
]

≥
1
‖dk‖2

[
c ‖gk‖4 + (gTk−1dk−1)

2
(
‖dk‖2

‖dk−1‖2
− (αk−1β

N
k−1)

2
)]
.

From (3.8) observe that

‖dk‖2

‖dk−1‖2
≥ (αk−1β

N
k−1)

2
− θ2k

‖gk‖2

‖dk−1‖2
.

Therefore,

(gTk dk)
2

‖dk‖2
+
(gTk−1dk−1)

2

‖dk−1‖2
≥
‖gk‖4

‖dk‖2

[
c − θ2k

(gTk−1dk−1)
2

‖dk−1‖2
1
‖gk‖2

]
, (3.11)

where θk > 1/4. From Lemma 3.2 we know that

lim
k→∞

(gTk−1dk−1)
2

‖dk−1‖2
= 0.

Therefore, if (3.6) is not true, then

lim
k→∞

(gTk−1dk−1)
2

‖dk−1‖2
1
‖gk‖2

= 0.

Therefore, from (3.11) we get that

(gTk dk)
2

‖dk‖2
+
(gTk−1dk−1)

2

‖dk−1‖2
≥ c
‖gk‖4

‖dk‖2

holds for all sufficiently large k. Hence, the inequality (3.7) follows from the Zoutendijk condition (3.4) in Lemma 3.2. �
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Corollary 3.1. Suppose that the assumptions (i) and (ii) hold and consider any conjugate gradient method (2.2) and (3.5), where
dk is a descent direction, i.e. θk > 1/4, and αk is obtained by the strong Wolfe line search (3.1) and (3.2). If∑

k≥1

1
‖dk‖2

= ∞, (3.12)

then

lim inf
k→∞

‖gk‖ = 0. (3.13)

Proof. Suppose that there is a positive constant γ such that ‖gk‖ ≥ γ for all k ≥ 0. Then, from Lemma 3.3 we have∑
k≥0

1
‖dk‖2

≤
1
γ 4

∑
k≥0

‖gk‖4

‖dk‖2
<∞.

However, this contradicts (3.12) from the Corollary 3.1, i.e. the Corollary 3.1 is true. �

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold and consider the algorithm (2.2), (2.3), (2.4) and (2.12) or (2.13),
where dk+1 is a descent direction and αk is obtained by the strong Wolfe line search (3.1) and (3.2). If there exists a constant
γ ≥ 0 such as γ ≤ ‖∇f (x)‖ , 1/4 ≤ θk ≤ τ , where τ is a positive constant and the angle ϕk between gk and dk is bounded,
i.e. cosϕk ≤ ξ ≤ 0 for all k = 0, 1, . . . , then the algorithm satisfies lim infk→∞ gk = 0.

Proof. Observe that yTk sk = g
T
k+1sk − g

T
k sk ≥ (σ − 1)gTk sk. But g

T
k sk = ‖gk‖ ‖sk‖ cosϕk. Since dk is a descent direction it

follows that gTk sk ≤ ‖gk‖ ‖sk‖ ξ ≤ 0 for all k = 0, 1, . . . , i.e.

yTk sk ≥ −(1− σ) ‖gk‖ ‖sk‖ ξ .

With these, from (2.16) we have

βNk ≤
‖gk+1‖2

yTk sk

1
1− σ

≤
‖gk+1‖2

−(1− σ)2ξ ‖gk‖ ‖sk‖
≤

Γ 2

−(1− σ)2ξγ ‖sk‖
=

η

‖sk‖
,

where

η =
Γ 2

−(1− σ)2ξγ
.

Therefore

‖dk+1‖ ≤ |θk+1| ‖gk+1‖ +
∣∣βNk ∣∣ ‖sk‖ ≤ τΓ + η

‖sk‖
‖sk‖ = τΓ + η.

This relation shows that∑
k≥1

1
‖dk‖2

≥
1

(τΓ + η)2

∑
k≥1

1 = ∞. (3.14)

Hence, from Corollary 3.1 it follows that lim infk→∞ ‖gk‖ = 0. �

4. AMDYN and AMDYC algorithms

Nocedal [21] pointed out that in conjugate gradient methods the step lengths may differ from 1 in a very unpredictable
manner. They can be larger or smaller than 1 depending on how the problem is scaled. This is in very sharp contrast to
the Newton and quasi-Newton methods, including the limited memory quasi-Newton methods, which accept the unit
steplengthmost of the time along the iterations, and therefore usually they require only few function evaluations per search
direction. Numerical comparison between conjugate gradient methods and the limited memory quasi Newton method
in [10] shows that the latter is more successful [22]. One explanation of efficiency of this limited memory quasi-Newton
method is given by its ability to accept unity step lengths along the iterations. In this section we take advantage of this
behavior of conjugate gradient algorithms and consider an acceleration scheme of the above conjugate gradient algorithms.
Basically the acceleration scheme modifies the step length αk in a multiplicative manner to improve the reduction of
the function values along the iterations (see [23]). In an accelerated algorithm instead of (2.2) the new estimation of the
minimum point is computed as

xk+1 = xk + γkαkdk,
where

γm = −
ak
bk
,
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ak = αkgTk dk, bk = −αk(gk − gz)
Tdk, z = xk + αkdk and gz = ∇f (z). Hence, if bk 6= 0, then xk+1 = xk + γkαkdk,

otherwise xk+1 = xk + αkdk. Therefore, using the definitions of gk, sk, yk and the above acceleration scheme we present
the following conjugate gradient algorithms which are accelerated, modified versions of the Dai and Yuan algorithm with a
Newton direction (AMDYN) or with a conjugacy condition (AMDYC).
AMDYN and AMDYC algorithms
Step 1. Initialization. Select x0 ∈ Rn and the parameters 0 < ρ < σ < 1. Compute f (x0) and g0. Consider d0 = −g0 and

α0 = 1/ ‖g0‖. Set k = 0.
Step 2. Test for continuation of iterations. If ‖gk‖∞ ≤ 10−6, then stop, otherwise set k = k+ 1.
Step 3. Line search. Compute αk satisfying the Wolfe line search conditions (2.5) and (2.6).
Step 4. Compute: z = xk + αkdk, gz = ∇f (z) and yk = gk − gz .
Step 5. Compute: ak = αkgTk dk, and bk = −αky

T
kdk.

Step 6. Acceleration. If bk 6= 0, then compute γk = −ak/bk and update the variables as xk+1 = xk + γkαkdk, otherwise
update the variables as xk+1 = xk + αkdk. Compute fk+1 and gk+1. Compute yk = gk+1 − gk and sk = xk+1 − xk.
Step 7. θk+1 computation. For the algorithm AMDYN, θk+1 is computed as in (2.12). For the algorithm AMDYC, θk+1 is

computed as in (2.13). If θk+1 < 1/4, then we set θk+1 = 1.
Step 8. Direction computation. Compute d = −θk+1gk+1 + βNk sk, where β

N
k is computed as in (2.4). If

gTk+1d ≤ −10
−3
‖d‖2 ‖gk+1‖2 , (4.1)

then define dk+1 = d, otherwise set dk+1 = −gk+1. Compute the initial guess αk = αk−1 ‖dk−1‖ / ‖dk‖, set k = k + 1 and
continue with step 2. �
It is well known that if f is bounded along the direction dk then there exists a stepsize αk satisfying theWolfe line search

conditions (2.5) and (2.6). In our algorithm when the angle between d and −gk+1 is not acute enough, then we restart the
algorithmwith thenegative gradient−gk+1 [4].More sophisticated reasons for restarting the algorithmshave beenproposed
in the literature [24], but we are interested in the performance of a conjugate gradient algorithm that uses this restart
criterion, associated to a direction satisfying the sufficient descent condition. Under reasonable assumptions, conditions
(2.5), (2.6) and (4.1) are sufficient to prove the global convergence of the algorithm.
The initial selection of the step length crucially affects the practical behavior of the algorithm. At every iteration k ≥ 1

the starting guess for the step αk in the line search is computed as αk−1 ‖dk−1‖2 / ‖dk‖2. This selection, was considered for
the first time by Shanno and Phua in CONMIN [9]. It is also considered in the packages: SCG in [25] and ASCALCG in [14].
For uniformly convex functions, like in [23], we can prove that the sequence generated by AMDYN or AMDYC converges

linearly to the solution of the problem (2.1).

Proposition 4.1. Suppose that f is a uniformly convex function on the level set S = {x : f (x) ≤ f (x0)}, and dk satisfies the
sufficient descent condition gTk dk < −c1 ‖gk‖

2, where c1 > 0, and ‖dk‖2 ≤ c2 ‖gk‖2, where c2 > 0. Then the sequence generated
by AMDYN or AMDYC converges linearly to x∗, solution to the problem (2.1). �

5. Numerical results and comparisons

In this section we present the computational performance of a Fortran implementation of the AMDYN and AMDYC
algorithms on a set of 750 unconstrained optimization test problems.We selected 75 large-scale unconstrained optimization
problems in extended or generalized form [12]. For each function we have considered ten numerical experiments with the
increasing number of variables n = 1000, 2000, . . . , 10 000. All algorithms implement the Wolfe line search conditions
with ρ = 0.0001 and σ = 0.9, and the same stopping criterion ‖gk‖∞ ≤ 10−6, where ‖.‖∞ is the maximum absolute
component of a vector. The comparisons of algorithms are given in the following context. Let f ALG1i and f ALG2i be the optimal
value found by ALG1 and ALG2, for problem i = 1, . . . , 750, respectively. We say that, in the particular problem i, the
performance of ALG1 was better than the performance of ALG2 if∣∣f ALG1i − f ALG2i

∣∣ < 10−3 (5.1)

and the number of iterations, or the number of function-gradient evaluations, or the CPU time of ALG1 was less than the
number of iterations, or the number of function-gradient evaluations, or the CPU time corresponding to ALG2, respectively.
All codes are written in double precision Fortran and compiled with f77 (default compiler settings) on an Intel Pentium

4, 1.8 GHz workstation. All these codes are authored by Andrei.
In the first set of numerical experiments we compare AMDYN versus AMDYC. In Table 1 we present the number of

problems solved by these two algorithmswith aminimum number of iterations (#iter), a minimum number of function and
its gradient evaluations (#fg) and the minimum cpu time.
Both algorithms have similar performances. However, subject to the cpu timemetric, AMDYNproves to be slightly better.

In the following we shall compare AMDYN versus some known conjugate gradient algorithms.
In the second set of numerical experiments we compare the AMDYN algorithm with the Dai and Yuan (DY) algorithm.

Fig. 1 presents the Dolan–Moré performance profile for these algorithms subject to the cpu timemetric.We see that AMDYN
is the top performer, being more successful and more robust than the Dai and Yuan algorithm. When comparing AMDYN
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Table 1
Performance of AMDYN versus AMDYC. 750 problems.

AMDYN AMDYC =

# iter 83 105 562
# fg 152 147 451
CPU 143 119 488

Fig. 1. Performance profile of AMDYN versus DY.

with the Dai and Yuan algorithm (Fig. 1), subject to the number of iterations, we see that AMDYNwas better in 619 problems
(i.e. it achieved the minimum number of iterations in 619 problems). DY was better in 27 problems and they achieved the
same number of iterations in 60 problems, etc. Out of 750 problems, only for 706 of them does the criterion (5.1) hold.
Dai and Yuan [4] studied the hybrid conjugate gradient algorithms and proposed the following two hybrid methods:

βhDYk = max
{
−
1− σ
1+ σ

βDYk ,min
{
βHSk , β

DY
k

}}
, (5.2)

βhDYzk = max
{
0, min

{
βHSk , β

DY
k

}}
, (5.3)

where βHSk = y
T
kgk+1/y

T
k sk, showing their global convergence when the Lipschitz assumption holds and the standard Wolfe

line search is used. The numerical experiments of Dai and Ni [26] proved that the second hybrid method (hDYz) is the
better, outperforming the Polak–Ribière [6] and Polyak [7] method. In the third set of numerical experiments we compare
the Dolan–Moré performance profile of AMDYN versus Dai–Yuan hybrid conjugate gradient βhDYk subject to the cpu time
metric, as in Fig. 2. Observe that the differences are substantial. Again AMDYN is the top performer.
In the fourth set of numerical experiments, in Fig. 3, we compare the Dolan–Moré performance profile of AMDYN

versus the Dai–Yuan hybrid conjugate gradient βhDYzk subject to the cpu time metric. Again observe that AMDYN is the
top performer.
In the fifth set of numerical experiments we compare AMDYN versus the Hestenes–Stiefel conjugate gradient algorithm

(βHSk = y
T
kgk+1/y

T
k sk). Fig. 4 presents the performance profiles of these algorithms. The HS method has the property that the

conjugacy condition yTkdk+1 = 0 always holds, independent of the line search. On the other hand, the AMDYN algorithm
satisfies theDai–Liao conjugacy condition yTkdk+1 = −s

T
kgk+1which is a littlemore relaxed than the pure conjugate condition

yTkdk+1 = 0.
In the sixth set of numerical comparisons we consider AMDYN versus the Polak–Ribière–Polyak conjugate gradient

algorithm (βPRPk = y
T
kgk+1/g

T
k gk). Fig. 5 presents the performance profiles of these algorithms subject to the cpu timemetric.

The PRP method, like HS, posses a very important built-in restart feature that addresses jamming directly. The idea is that
PRP (and HS) method automatically adjust the value of the parameter βPRPk to avoid jamming. In general, the performance
of these methods (PRP and HS) is better than the performance of some other conjugate gradient methods (for example
DY) [2]. However, from Fig. 5 observe that AMDYN is the top performer again among these algorithms. AMDYN inherits
some convergence properties from the Newton method (see (2.10)).
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Fig. 2. Performance profile of AMDYN versus hDY.

Fig. 3. Performance profile of AMDYN versus hDYz.

In the next set of numerical experiments we compare AMDYN versus CG_DESCENT in [8]. Fig. 6 presents the Dolan and
Moré cpu time performance profile of AMDYN versus CG_DESCENT with the Wolfe line search. Presently CG_DESCENT is
the practical conjugate gradient algorithm with a better reputation. CG_DESCENT is a modification of HS and was devised
in order to ensure sufficient descent, independent of the accuracy of the line search. Hager and Zhang [8] proved that the
direction dk in their algorithm satisfies the sufficient descent condition gTk dk ≤ −(7/8) ‖gk‖

2.
At every iteration, the AMDYN algorithm satisfies the sufficient descent condition (2.7), where θk → 1. Therefore, at

least in the last part of the iterations AMDYN satisfies the sufficient descent condition gTk dk ≤ −(3/4) ‖gk‖
2. CG_DESCENT

has a very advanced line search procedure that utilizes the ‘‘approximateWolfe conditions’’ which provides amore accurate
way to check the usual Wolfe conditions when the iterates are near a local minimum of the function f . On the other hand,
AMDYN uses an acceleration scheme which modifies the step length given by the classical Wolfe condition (2.5) and (2.6)
in order to improve the reduction of the function values along the iterations.
In the following, we compare AMDYN versus COMNIN in [9]. Fig. 7 presents the performance profiles of these algorithms.
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Fig. 4. Performance profile of AMDYN versus HS.

Fig. 5. Performance profile of AMDYN versus PRP.

COMNIN in [9] is a conjugate gradient algorithm which may be interpreted as a memoryless BFGS quasi-Newton
algorithm optimally scaled in the sense of Oren and Spedicato [27]. In CONMIN the scaling is combined with the Powell’s
restart criterion. The direction dk+1 in CONMIN is computed as

dk+1 = −Hk+1gk+1 + Akyk − Bksk, (5.4)

where Hk+1 is the BFGS approximation of the inverse Hessian which at every iteration is initialized with identity matrix
and Ak and Bk are specific matrices. The main drawback of this method is that if Hk+1 contains useful information about
the Hessian of the function f , then we are better off using the search direction dk+1 = −Hk+1gk+1 since the addition of the
last terms in (5.4) may prevent dk+1 from being a descent direction unless the line search is sufficiently accurate. The same
is the case for the AMDYN algorithm. The parameter θk+1 in (2.3) given by (2.12) is computed to get as much as possible
information from the inverse Hessian by the secant condition. However, the approximation of the inverse Hessian used in
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Fig. 6. Performance profile of AMDYN versus CG_DESCENT.

Fig. 7. Performance profile of AMDYN versus CONMIN.

AMDYN is scantier than that used in CONMIN. In Fig. 7 we have the computational evidence that subject to the cpu time
metric, AMDYN is the top performer and outperforms COMNIN.
In another set of numerical experiments we compare AMDYN versus ASCALCG [14], as in Fig. 8. In Fig. 9 the performance

profiles of AMDYN, CG_DESCENT and ASCALCG algorithms are presented.
ASCALCG is an accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm with Beale–Powell

restart criterion, in which the parameter scaling the gradient is selected as the spectral gradient. The top curve in Fig. 8
corresponds to ASCALCG. Observe that subject to the cpu time metric, ASCALCG is more robust. Also, it is worth seeing in
Fig. 8 that for τ = 1, relative to the cpu time metric AMDYN is better. However, for τ > 1, ASCALCG turns out to be faster
and more robust than AMDYN, at least for this set of numerical experiments.
On the other hand, from Fig. 9 we see that among these conjugate gradient algorithms, ASCALCG is the top performer.

Also, for τ = 1, relative to the cpu time metric, CG_DESCENT is the best algorithm. In this computational scheme the
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Fig. 8. Performance profile of AMDYN versus ASCALCG.

Fig. 9. Performance profile of AMDYN versus CG_DESCENT and ASCALCG.

direction dk+1 is generated by the rule:

dk+1 = −gk+1 + βHZk dk, βHZk =
1
yTkdk

(
yk − 2

‖yk‖2

yTkdk
dk

)T
gk+1. (5.5)

This scheme is obtained by deleting a term from the search direction for thememoryless quasi-Newton scheme of Perry [28]
and Shanno [29,30]. Observe that CG_DESCENT is amodification of HS andwas devised in order to ensure sufficient descent,
independent of the accuracy of the line search. These algorithms (and codes) differ in many respects. Although the update
formula for direction computation in ASCALCG (see (2.9) and (2.17) in [14]) is more complicated than (2.3), (2.4) and (2.12)
or (5.5), in numerical experiments this computational scheme proved to be efficient and more robust than AMDYN and
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Fig. 10. Performance profile of AMDYN versus LBFGS (m = 3).

CG_DESCENT respectively. However, since each of these codes is different in the number of parameters which can be
modified by the user to establish a context of optimization (AMDYN has 8 parameters, CG_DESCENT has 26 parameters
while ASCALCG has 10 parameters) and in the amount of linear algebra required in each iteration, it is quite clear that
different codes will be superior in different problem sets.
Finally we compare AMDYN versus limited memory quasi-Newton L-BFGS (m = 3) in [10] as in Fig. 10, where m is the

number of pairs (sk, yk) used. Observe that AMDYN is the top performer.
One explanation is that the linear algebra in the LBFGS code to update the search direction is more time consuming

than the linear algebra in AMDYN. On the other hand the steplength in LBFGS is determined at each iteration by means
of the line search routine MCVSRCH, which is a slight modification of the routine CSRCH written in [31]. More deeply,
the conjugate gradient algorithms possess the so called regularization property [32], which is closely linked to the ill-
conditioned (ill-posed) problems. This property is connected with a search in the subspace of the dominant Hessian
eigenvectors, i.e. the eigenvectors corresponding to the maximal eigenvalues. Thus the search along the direction given
by a conjugate gradient algorithm means the search is given in the subspace of the Hessian dominant eigenvectors. The
subspace of eigenvectors corresponding to the small eigenvalues is implicitly neglected, thus providing the regularization
effect. In practice, it is observed that the convergence is fast during the first iterations. Then it slows down after a relatively
small number of iterations. Possibly, this is linked to the number of Hessian dominant eigenvalues [33]. From this viewpoint,
the regularization is an important property of conjugate gradient algorithms [32].

6. Conclusion

In this paper we have presented new conjugate gradient algorithms for solving large-scale unconstrained optimization
problems. The parameter βk is a modification of the Dai and Yuan computational scheme in such a manner that at every
iteration the direction dk generated by the algorithm satisfies the sufficient descent condition, independent of the line
search. Under strong Wolfe line search conditions we proved the global convergence of the algorithm. Using a large set
of 750 test unconstrained optimization problems, with the number of variables in the range [1000, 10000], a numerical
study concerning the behavior of these new algorithms versus some known conjugate gradient algorithms and the limited
memory quasi-Newton L-BFGS algorithm has been presented. We have the computational evidence that the performance
of our algorithm AMDYN is higher than that of known conjugate gradient algorithms including: the Dai and Yuan conjugate
gradient algorithmand its hybrid variants, Hestenes–Stiefel, Polak–Ribière–Polyak, CONMIN and the limited-memory quasi-
Newton LBFGS (m = 3). The AMDYN algorithm compares favorably with CG_DESCENT, which is one of the fastest
conjugate gradient algorithms for large-scale unconstrained optimization. In the metrics and problems presented both
AMDYN and CG_DESCENT seem to perform similarly. However, in the frame of this numerical study the accelerated scaled
memoryless BFGS preconditioned conjugate gradient ASCALCG algorithm [14] proved to be more robust than AMDYN.
This brings us to the question of preconditioning which is not straightforward. At present a large number of conjugate
gradient algorithms is known [1]. The research effort to get the fastest and the more robust is still very active. For
example the accelerated conjugate gradient algorithm with guaranteed sufficient descent and conjugacy conditions is very
promising [34].
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