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Abstract. A modification of the Dai-Yuan conjugate gradient algorithm is proposed. Using 
the exact line search, the algorithm reduces to the original version of the Dai and Yuan 
computational scheme. For inexact line search the algorithm satisfies both the sufficient 
descent and conjugacy condition. A global convergence result is proved when the Wolfe line 
search conditions are used. Computational results, for a set consisting of 750 unconstrained 
optimization test problems, show that this new conjugate gradient algorithm substantially 
outperforms the Dai and Yuan conjugate gradient algorithm and is close to its hybrid variants. 
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1. Introduction 
For solving the unconstrained optimization problem 
                                                           { }min ( ) : ,nf x x R∈                                                  (1) 

where  is continuously differentiable, Dai and Yuan [7] suggested the following 
nonlinear conjugate gradient algorithm: 

f R Rn: →

                                                             x x dk k k+ k= +1 α ,                                                     (2) 
where the stepsize α k is positive and the directions are computed by the rule: dk
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where g f xk k= ∇ ( )  and y g gk k k= −+1 , s x xk k k= −+1 . Using a standard Wolfe line 
search, the Dai and Yuan method always generates descent directions and under Lipschitz 
assumption it is globally convergent. In [5] Dai established a remarkable property relating the 
descent directions to the sufficient descent condition, showing that if there exist constants γ 1  

and γ 2  such that γ γ1 ≤ ≤gk 2 for all k , then for any p ∈ ( , )0 1 , there exists a constant 

such that the sufficient descent condition c > 0 g d c gi
T

i ≤ −
2

i holds for at least ⎣ ⎦pk  
indices i k∈ [ , ],0 where ⎣ ⎦j  denotes the largest integer ≤ j. 
 In this letter we present a modification of the Dai and Yuan computational scheme in 
order to satisfy both the sufficient descent condition and the conjugacy condition in the frame 
of conjugate gradient methods as: 
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The method (5)-(8) is a method that belongs to the family of scaled conjugate gradient 
methods introduced by Birgin and Martínez [3]. Observe that if f is a quadratic function and 
α k is selected to achieve the exact minimum of f  in the direction , then and 
the formula (7) for 

dk s gk
T

k+ =1 0
β k

a reduces to the Dai and Yuan computational scheme (4). However, in 
this paper we consider general nonlinear functions and inexact line search. 
In our algorithm the parameter β k is selected in such a manner that the sufficient descent 
condition is satisfied every iteration. Besides, the parameters θ k+1  and δ k  are chosen that the 
conjugacy condition  always holds, independent of the line search. y dk

T
k+ =1 0
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Proof. Since d g0 = 0− , we have g d gT
0 0 0

2
= − ,  which satisfy (9). Multiplying (5) by 
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Using (11) in (10) we get (9).  
Hence, the direction given by (5) and (7) is a descent direction. Dai and Yuan [7,8] 

present conjugate gradient schemes with the property that g dk
T

k < 0  when  If y sk
T

k > 0.
f is strongly convex or the line search satisfies the Wolfe conditions, then and the 

Dai and Yuan scheme yield descent. In our algorithm observe that, if for all 
y sk

T
k > 0

k , 1kθ +  is 
positive and 1 1/ 4 ,k kθ δ+ >  and the line search satisfies the Wolfe conditions, then for all k  
the search direction (5) and (7) satisfy the sufficient descent condition. Note that in (9) we 
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T
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2
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To determine the parameters θ k+1  and δ k observe that  
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Now, by symmetrization of Q as k+1
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and considering the conjugacy condition y dk
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after some algebra we get: 
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From (16) observe that θ δ θk k+ +− k=1 1 4 3 4 1/ ( ) ( / ) . Therefore, if for all k , θ k+ ≥1 0, i.e. if 
, then for all g yk

T
k+ >1 0 k  the search direction given by (5) and (7) with (16) satisfy the 

sufficient descent condition. 
dk+1

 
2. CGSD Algorithm 
Considering the definitions of gk , sk and we present the following Conjugate Gradient 
with Sufficient Descent condition: 

yk

Step 1. Initialization. Select and the parameters x R n
0 ∈ 0 11 2< < <σ σ .  Compute f x( )0  

and g0 .  Consider d g0 0= − and α 0 01= / g .  Set k = 0.  

Step 2. Test for continuation of iterations. If  gk ∞
−≤ 10 6 , then stop, else set k k= +1.  

Step 3. Line search. Compute α k satisfying the Wolfe line search conditions 
                                           f x d f x g dk k k k k k

T
k( ) ( )+ ,− ≤α σ α1                                     (17) 
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and update the variables x x dk k k+ = k+1 α . Compute f xk( ),+1  gk+1 , s x xk k= −+1 k  and 
y g gk k k= −+1 .  

Step 4. Direction computation. Compute d gk k k
a

ks= − ++ +θ β1 1 , where θ k+1 , δ k  and 
β k

a are computed as in (16 ) and (7) respectively. If  
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then define dk+ d=1 ,  otherwise set d gk+ k+= −1 .1  Compute the initial guess 

α αk k k kd d= − −1 1 / ,  set k k= +1 and continue with step 2.  
 The first trial for the steplength kα  in the line search is the same considered by 
Shanno and Phua [12] and Birgin and Martínez [3]. It is well known that if f is bounded 
along the direction  there exists a stepsize ,kd α k  satisfying the Wolfe line search conditions 
(17) and (18). We used the same restarting procedure used by Birgin and Martínez [3], i.e. 
when the angle between  and d − +gk 1 is not acute enough, then we restart the algorithm with 
the negative gradient − +gk 1 .  Under reasonable assumptions, conditions (17), (18), i.e. the 
Wolfe conditions, and (19) are sufficient to prove the global convergence of the algorithm 
(see for example [11]). However, we consider this aspect in the next section.  
 
3. Convergence analysis for general nonlinear functions 
Theorem 2. Suppose that for all  there exists the positive constants 0k ≥ ω  and , such 
that 

Ω
0 kω θ< ≤ ≤ Ω . If  the level set { }L x R f x f xn= ∈ ≤: ( ) ( )0  is bounded and the 

Lipschitz condition ∇ −∇ ≤ −f x f y L x y( ) ( )  holds, then for the computational scheme 
(5)-(8) with a line search satisfying the Wolfe conditions (17) and (18) , either gk = 0  for 
some k  or  
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Proof. Suppose that gk ≠ 0  for all k  and liminf .
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Therefore, using (22), the descent property yields: 
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4. Numerical results and comparisons 
In this section we present the computational performance of a Fortran implementation of the 
CGSD algorithm on a set of 750 unconstrained optimization test problems. The Fortran 77 
implementation of the present method is based on the Fortran 77 implementation of the SCG 
method [3] provided by the authors, as well as on the Fortran 77 implementation of SCALCG 
algorithm presented in [2]. We compare the performance of CGSD algorithm to the Dai and 
Yuan conjugate gradient algorithms. Dai [6] and Dai and Yuan [7,9] studied the hybrid 
conjugate gradient algorithms and proposed the following two hybrid methods: 
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k kβ β= kβ
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                                        (30) 

Therefore, we compare CGSD to DY, hDY and hDYz. All codes are written in double 
precision Fortran using the same style of programming and compiled with f77 (default 
compiler settings) on an Intel Pentium 4, 1.8GHz workstation. 
 The test problems are the unconstrained problems in the CUTE [4] library, along with 
other large-scale optimization problems presented in [1]. We selected 75 large-scale 
unconstrained optimization problems in extended or generalized form. For each function we 
have considered 10 numerical experiments with number of variables 

  n = 1000 2000 10000, , ,…
 All algorithms implement the Wolfe line search conditions (17)-(18) with 
σ1 0 0001= .  and 2 0.9σ = , and the same stopping criterion gk ∞

−≤ 10 6 , where .
∞

is the 
maximum absolute component of a vector. 
 The numerical comparison follows the lines of the experiments performed in [2] and 
[3]. Let and be the optimal value found by ALG1 and ALG2, for problem 

 respectively. We say that, in the particular problem  the performance of 

ALG1 was better than the performance of ALG2 if:  

f i
ALG1 f i

ALG2

i = 1 750, ,… , i,
f fi

ALG
i
ALG1 2 10− < −3 and the number 

of iterations, or the number of function-gradient evaluations, or the CPU time of ALG1 was 
less than the number of iterations, or the number of function-gradient evaluations, or the CPU 
time corresponding to ALG2, respectively. 

In Figure 1, we consider CPU time to compare the performance of CGSD to that of 
DY, hDY and hDYz, by using the profiles of Dolan and Moré [10]. Figure 2 presents the 
performance of these algorithms and CONMIN by Shanno and Phua [12]. From Figure 1 we 
see that the best performance, relative to the CPU time metric, was obtained by CGSD and 
hDYz; hDYz being slightly more robust. However, as we see in Figure 2, the top performer is 
CONMIN, a BFGS preconditioned conjugate gradient algorithm. 
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Fig. 1. Performance based on CPU time for 

CGSD versus DY, hDY and hDYz. 

 
Fig. 2. Performance based on CPU time for 

CGSD versus DY, hDY, hDYz and CONMIN. 
 
5. Conclusion 
We have presented a new conjugate gradient algorithm for solving unconstrained 
optimization problems. The parameter a

kβ  is a modification of the Dai and Yuan 
computational scheme in such a manner that the direction generated by the algorithm 
satisfies both the sufficient descent condition and the conjugacy condition, independent of the 
line search. Under standard Wolfe line search conditions we proved the global convergence of 
the algorithm. The computational evidence showed that the performance of our algorithm 
CGSD was higher than those of the Dai and Yuan conjugate gradient algorithm and its hybrid 
variants, for a set consisting of 750 problems. 
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