
 1

Accelerated adaptive Perry conjugate gradient algorithms based on

the self-scaling memoryless BFGS update

Neculai Andrei
Research Institute for Informatics,

Center for Advanced Modeling and Optimization

8-10 Averescu Avenue, Bucharest 1, Romania

E-mail: nandrei@ici.ro

January 16, 2017

Abstract. An accelerated adaptive class of nonlinear conjugate gradient algorithms is suggested.

The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate

gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26

(1978) 1073-1078], which depends by a positive parameter. The value of this parameter is

determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient

search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius

norm. Two variants of the parameter in the search direction are presented as those given by: Oren

and Luenberger [S.S. Oren, D. G. Luenberger, Self-scaling variable metric (SSVM) algorithms. I.

Criteria and sufficient conditions for scaling a class of algorithms. Management Sci., 20 (1973/74)

845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, Optimal conditioning of self-scaling

variable metric algorithms. Math. Program., 10 (1976) 70-90]. The corresponding algorithm,

ACGSSV, is equipped with a very well known acceleration scheme of conjugate gradient

algorithms. The global convergence of the algorithm is given both for uniformly convex and

general nonlinear functions under the exact or the Wolfe line search. Using a set of 800

unconstrained optimization test problems, of different structure and complexity, we prove that

selection of the scaling parameter in self-scaling memoryless BFGS update leads to algorithms

which substantially outperform the CG-DESCENT, SCALCG, and CONMIN conjugate gradient

algorithms, being more efficient and more robust. However, the conjugate gradient algorithm

ADCG based on clustering the eigenvalues of the iteration matrix defined by the search direction is

more efficient and slightly more robust than our ACGSSV algorithm. By solving five applications

from the MINPACK-2 test problem collection with
610 variables, we show that the adaptive Perry

conjugate gradient algorithms based on the self-scaling memoryless BFGS update, endowed with

the acceleration scheme, is top performer versus CG_DESCENT.

Key words: Unconstrained optimization; conjugate gradient algorithms; Wolfe conditions; self-scaling

memoryless BFGS update; sufficient descent condition; conjugacy condition; Frobenius norm

MSC: 49M07; 49M10; 65K05; 90C06

1. Introduction

For solving large-scale unconstrained optimization problems

 min{ () : },nf x x R (1.1)

where : nf R R is a continuously differentiable function, bounded from below, one of the

most elegant, simple and powerful method is the conjugate gradient method. This method is

characterized by low memory requirements and strong local and global convergence properties.

Starting from an initial guess 0

nx R a nonlinear conjugate gradient method generates a

sequence { }kx as:

mailto:nandrei@ici.ro

 2

 1 ,k k k kx x d   (1.2)

where 0k  is obtained by line search and the directions
kd are generated as:

1 1 ,k k k kd g s   

0 0.d g  (1.3)

In (1.3)
k is known as the conjugate gradient parameter and ().k kg f x  Notice that the

standard formulation of conjugate gradient method uses the search direction defined as

1 .k k k kd g d    However, in our paper we consider the search direction 1kd  given as in (1.3),

where
1 .k k k k ks x x d   Since k is any scalar, this simple modification of the standard

conjugate gradient method does not change the significance of the parameter k in (1.3).

Usually, the stepsize
k is computed to satisfy some line search conditions [4]. In the

convergence analyses and implementation of conjugate gradient algorithms the standard Wolfe

conditions [5, 6]

 () () ,T

k k k k k k kf x d f x g d    (1.4)

 1 ,T T

k k k kg d g d  (1.5)

where kd is a descent direction and 0 1,    often have been considered. Also, the strong

Wolfe line search conditions consisting of (1.4) and

 1 ,T T

k k k kg d g d   (1.6)

can be used.

The search direction ,kd assumed to be a descent one plays the main role in these

methods. Different conjugate gradient algorithms correspond to different choices for the scalar

conjugate gradient parameter k [7]. On the other hand the stepsize k guarantees the global

convergence in some cases and is very important in efficiency.

 In an attempt to use quasi-Newton techniques in conjugate gradient algorithms essentially

Perry [1] derived the conjugate gradient parameter k in (1.3) by equating the conjugate gradient

search direction 1k k kg s  to the quasi-Newton direction 1

1 1,k kB g

  where 1kB  is an

approximation of the Hessian, i.e.

 1

1 1 1.k k k k kg s B g 

      (1.7)

After some simple algebraic manipulation from (1.7) we get the Perry’s choice for k and the

corresponding search direction as:

 1 1 ,
T T

k k k k
k T

k k

y g s g

y s
  

 (1.8)

 1 1 1 1.
T T

Pk k k k
k k k kT T

k k k k

s y s s
d I g Q g

y s y s
   

 
      

 
 (1.9)

Observe that the formal equality (1.7) is only a technical argument to get a value for the conjugate

parameter .k

If in (1.2) an exact line search direction is performed, then (1.8) is identical to the

Hestenes and Stiefel [8] conjugate gradient algorithm. Observe that 1

P

kQ  is not symmetric and

does not satisfy the quasi-Newton (secant) condition. However, the corresponding Perry’s

direction (1.9) satisfies the Dai and Liao [9] conjugacy condition, 1 1(),T T

k k k kd y u g s   with 1.u 

Now, it is worth saying that if the quasi-Newton direction 1

1 1k kB g

  is contained into the cone

 3

generated by 1kg  and ,ks then
k cannot alone ensure the equality (1.7). It is clear that the

above condition (1.7) guarantees that
1k k kg s  and the quasi-Newton direction 1

1 1k kB g

  are

„coincident” and not just collinear [10]. In order to skip over this limitation we introduce an

appropriate scaling of the quasi-Newton direction and consider the equality:

 1

1 1 1,k k k k k kg s B g  

      (1.10)

where
k is a positive scalar parameter. As above, from (1.10) equality, after simple algebraic

operations we get the scaled Perry conjugate gradient parameter and the corresponding search

direction as:

 1 1 ,
T T

k k k k k
k T

k k

y g s g

y s


  

 (1.11)

 1 1 1 1.
T T

k k k k
k k k k kT T

k k k k

s y s s
d I g P g

y s y s
   

 
      

 
 (1.12)

Observe that 1kP  in (1.12) is not symmetric and so the known quasi-Newton condition is not

satisfied. Therefore, strictly speaking 1kP  is not a memoryless quasi-Newton update. Now, by

adding in 1kP  from (1.12) the term 1(/)T T

k k k k ky s y s g  we force the symmetry, thus obtaining a

new search direction as:

 1 1 1,k k kd P g    (1.13)

known as the symmetrical scaled Perry conjugate gradient direction, where

 1 .
T T T

k k k k k k
k kT T

k k k k

s y y s s s
P I

y s y s



   (1.14)

Observe that 1kP  is a symmetric matrix, but it does not satisfy the quasi-Newton condition.

In an effort to get efficient conjugate gradient algorithms by forcing the quasi-Newton

condition to hold, Shanno [11] and Andrei [12] obtained high performances memoryless BFGS

updates and scaled memoryless BFGS preconditioned updates, respectively. The Shanno

computational scheme, analyzed in [13], has global convergence for convex functions and inexact

line search [14], but in general, it may not converge, even when the line search is exact [15].

However, the Shanno algorithm is convergent if the restarts are used, but the speed of

convergence can decrease. On the other hand the computational scheme by Andrei [12], further

analyzed in [16], ensures the sufficient descent property for uniformly convex functions and

global convergence for general functions under the exact line search. Both algorithms of Shanno

and Andrei have good numerical performances being able to solve large-scale unconstrained

optimization problems of different structure and complexity. It is worth mentioning here another

way of developments for a class of new spectral conjugate gradient methods, which is a

modification of the spectral Perry's conjugate gradient method such that it possesses sufficient

descent property for any (inexact) line search, presented by Yu in [17] and by Yu, Guan and Chen

in [18].

In this paper, we consider another way of developments by not forcing the quasi-Newton

condition to hold. Instead, we suggest some adaptive choices for the parameter k in (1.14) in

such a way to reduce the distance between the search direction matrix 1kP  and the self-scaled

memoryless BFGS update, one of the best variant of the memoryless quasi-Newton methods.

 4

The structure of the paper is as follows. In Section 2 we present a short review of the self-

scaled memoryless BFGS update by Oren [19], with Oren and Luenberger [2] and Oren and

Spedicato [3] formulae for scaling parameter computation. Section 3 presents accelerated

adaptive symmetrical scaled Perry conjugate gradient algorithms based on minimizing the

difference between the matrix
1kP 
 and the self-scaling memoryless BFGS update matrix. In

Section 4 the global convergence of the algorithm is proved, both for uniformly convex and

general nonlinear functions. Section 5 presents numerical results and comparisons of the

suggested algorithms versus CG-DESCENT by Hager and Zhang [20], accelerated SCALCG by

Andrei [12], CONMIN by Shanno and Phua [21] and ADCG by Andrei [22]. It is proved that this

class of algorithms based on a symmetrization of the scaled Perry conjugate gradient direction

and on minimizing the distance between this symmetrical scaled Perry conjugate gradient

direction matrix and the self-scaling memoryless BFGS update is more efficient and more robust

than the conjugate gradient algorithms considered in these studies, at least for this set of

numerical experiments.

2. Scaled memoryless BFGS update

As we know the quasi-Newton methods are one of the best methods for solving unconstrained

optimization problems. They do not require explicit second order derivatives and they have very

good local and global convergence properties [23]. Having an approximation 2 1()k kH f x  of

the inverse Hessian, these methods determine a new approximation 2 1

1 1()k kH f x 

  which

satisfies the so called secant equation which includes the second order information. The best

quasi-Newton method with strong theoretical properties and very favorable numerical

performances is BFGS update [4]. This update is given by:

 1 1 .
T T T T

k k k k k k k k k k k
k k T T T

k k k k k k

s y H H y s y H y s s
H H

y s y s y s


 
    

 
 (2.1)

In order to improve the performances of this method, the so called scaled quasi-Newton updates

have been developed [4]. The purpose of these methods is to improve the condition number of the

successive approximations to the inverse Hessian by replacing kH in (2.1) with ,k kt H where

0kt  is known as the scaling parameter. Two very well known and effective formulae for kt

computation are those given by Oren and Luenberger [2]:

1T

k k k
k T

k k

s H s
t

y s



 , (2.2)

or by Oren and Spedicato [3]:

 .
T

k k
k T

k k k

y s
t

y H y
 (2.3)

The scaled BFGS update with one of the above parameters (2.2) or (2.3) is called self-scaling

BFGS update [19].

In order to get an efficient method for solving large-scale problems, at every iteration, the

matrix kH is replaced by the identity matrix thus avoiding saving the matrix .kH Therefore the

self-scaling memoryless BFGS update is obtained as:

2

1 1 ,k

T T T
kt k k k k k k

k k k kT T T

k k k k k k

ys y y s s s
H t I t t

y s y s y s


 
    

 
 

 (2.4)

 5

able to solve large-scale unconstrained optimization problems of different structures and

complexities. In this context, the memoryless versions of the scaling parameters (2.2) and (2.3)

can be written, respectively as:

2

,
k

k T

k k

s
t

y s
 (2.5)

2

,
T

k k
k

k

y s
t

y
 (2.6)

where . stands for the Euclidian norm. The self-scaling memoryles BFGS update is given by

(2.4), where the scaling parameter
kt is computed as in (2.5) or (2.6). Using another way of

developments as those given by Shanno [11] and Andrei [12] in the following we consider an

adaptive choice of the parameter
k in (1.14) based on the self-scaling memoryless BFGS

update.

3. Accelerated adaptive Perry conjugate gradient algorithms

Search direction. In this section we deal with an adaptive choice for the parameter
k in the

Perry symmetrical, scaled memoryless iteration matrix 1kP  given by (1.14). Having in view that

the self-scaling memoryless BFGS update is one of the best quasi-Newton methods and observing

the similarity between the structures of the search direction matrix 1kP  (1.14) and the self-scaling

memoryless BFGS update (2.4), we suggest computing the parameter k as solution of the

following minimization problem:

2

1
0

min ,
k

k F
D





 (3.1)

where 1 1 1
kt

k k kD P H    and .
F

 is the Frobenius matrix norm. Since
2

1 1 1(),T

k k kF
D tr D D   it

follows that the minimization problem (3.1) is equivalent to:

  1 1
0

min () .
k

T

k ktr D D


 


 (3.2)

From (1.14) and (2.4) we have

1 ,
T

k k
k k kT

k k

s s
D A

y s
  

where
2

1 .
T T T T T

kk k k k k k k k k k
k k k kT T T T T

k k k k k k k k k k

ys y y s s y y s s s
A I t I t t

y s y s y s y s y s

 
       
 
 

Therefore,

 1 1

T T
T Tk k k k
k k k k k kT T

k k k k

s s s s
D D A A

y s y s
  

  
    
  

 2

2
.

()

T T T T
T Tk k k k k k k k

k k k k k k kT T T
k k k k k k

s s s s s s s s
A A A A

y s y s y s
     

Since T
k kA A is independent by ,k after some simple algebraic manipulations we get:

 
4 2 4 2 4 2

2

1 1 2 2 3
2 2 2 2 .

() () ()

k k k k k kT

k k k k k k k k kT T T T T

k k k k k k k k k k

s s s y s s
tr D D t t

y s y s y s y s y s
          

 6

Since the coefficient of 2
k is always positive, it follows that the second degree function defining

 1 1

T

k ktr D D  is always convex. Therefore, the unique solution of the minimization problem (3.2)

is given by:

2

2 2
1 .

T T
k k k k k

k k T

k k k k

y y s y s
t

y s s s


 
    

  

 (3.3)

 Observe that if the line search satisfies the Wolfe conditions (1.4) and (1.5), then for any

0,k  0.T

k ky s  From the Wolfe conditions and the inequality
2 2

/ / ,T T
k k k k k ky s s y y s it

follows that
2 2 2/ () 1.T

k k k ks y y s  Since 0kt  for any 0,k  from (3.3) we have that 1.k 

Therefore, from (1.13) and (1.14) our algorithm is given by (1.2) where

 1 1 1
1 1 ,

T T T

k k k k k k
k k k k kT T T

k k k k k k

y g s g s g
d g s y

y s y s y s
  

 

 
     

 
 (3.4)

and k is computed as in (3.3). Observe that this is a three term search direction. For an exact

line search, 1kg  is orthogonal to ,ks i.e. the search direction (3.4) reduces to the Hestenes and

Stiefel direction [8].

The parameter k given by (3.3) defines a class of algorithms according to the choices of

the scaling parameter
kt in (3.3). Selecting 1kt  we get:

2

1 1 .
k

k T

k k

y

y s
   (3.5)

On the other hand, selecting kt as in (2.5) (Oren-Luenberger) or (2.6) (Oren-Spedicato)

respectively we get:

2 2

22
,

()

T
k kOL k k

k T

k k k

s y y s

y s s
   (3.6)

2

2 2 2

()
2 .

T T
OS k k k k
k

k k k

y s y s

s y s
    (3.7)

Observe that 1 1.k  Since, as we said,
2 2 2/ () 1,T

k k k ks y y s  it follows that 1OL

k  and

1.OS

k  Notice that for 1,kt  from (1.14) and (2.4), 1

1 1,k kP H  i.e. for this value of the scaling

parameter the symmetrical scaled Perry search direction matrix 1kP  is exactly the self-scaling

memoryless BFGS update. Besides, for 1

k k  the search direction (3.4) satisfies the Dai and

Liao [9] conjugacy condition, i.e. 1 1().T T

k k k ky d s g   An interesting result is given by the

following proposition, showing an optimal property of 1.k

Proposition 3.1. If 1,kt  then

2

1
k

k T

k k

y

y s
   is the unique minimizer of 1 .kD 

Proof. For 1,kt 

 7

2

1 1 .
T

k k k
k k T T

k k k k

y s s
D

y s y s


 
   
 
 

Therefore, having in view the definition of the induced matrix norm [24] we have:
2

1 1

1
max 1 max ,

k T

k k k k kTTx x
k kk k

y
D D x s s x

y sy s
 

 

 
    

 
 

where { : 1}.nx x   But, argmax .T k
k

x
k

s
s x

s
  Therefore,

2

1 1 .
k k

k k kT T
k k k k

y s
D s

y s y s


 
   
 
 

Hence, we can see that 1

1argmin .k kD  

As we have already seen the value of
k given by (3.3) ensures that the scaled Perry

symmetric iteration matrix 1kP  is as close as possible to the self-scaling memoryless BFGS

update 1.
kt

kH  The search directions of the self-scaling memoryless BFGS algorithm satisfies the

descent condition 0,T

k kg d  0,k  [4]. Unlike the quasi-Newton methods, in conjugate

gradient algorithms the descent condition has a crucial role. Therefore, in the following theorem a

value of k is determined in such a way that additionally to minimize the Frobenius norm of the

1kD  matrix it ensures the descent condition of the search direction (3.4).

Theorem 3.1. If

2

2 ,
k

k T

k k

y

y s
  then the search direction (3.4) satisfies the descent condition, i.e.

1 1 0,T

k kg d   0.k 

Proof. From (3.4) we have:

2

2 1 1 1
1 1 1

()() ()
2 .

T T T
T k k k k k k
k k k kT T

k k k k

y g s g s g
g d g

y s y s
  

      (3.8)

Now, using the classical inequality
2 21

,
2

Tu v u v  
 

 where , nu v R are arbitrary vectors

and considering:

 1

1
() ,

2

T

k k ku y s g  12() ,T

k k kv s g y (3.9)

we get:

1 1 1 1 1 1

2 2

()() ()()() [1/ 2()] [2()]

() ()

T T T T T T T T

k k k k k k k k k k k k k k k k

T T T

k k k k k k

y g s g y g y s s g y s g s g y

y s y s y s

      

2 22 2

21 1
2 21

12 2

1 1
() 2()

1 ()2 2
.

() 4 ()

T T

Tk k k k k k

k k
k kT T

k k k k

y s g s g y
s g

g y
y s y s

 




 
 

   

Hence,

 8

22
2 1

1 1 1

1 ()
2 .

2

T
kT k k

k k k kT T

k k k k

ys g
g d g

y s y s


  

 
    

  

 (3.10)

Therefore, if
2

2 / ,T

k k k ky y s  then 1 1 0,T

k kg d   i.e. the search direction satisfies the descent

condition. 

Therefore, using the Theorem 3.1 the following simple adaptive strategy for computing

the search direction in our algorithm can be presented. Using (3.3) compute:

2

2 2
1 ,

T T
k k k k k

k k T

k k k k

y y s y s
t

y s s s


 
    

  

 (3.11)

where 1kt  or it is given by (2.5) or (2.6).

The value of k is computed in an adaptive manner as follows:

2

2

, if 2 / ,

2 / , otherwise.

T

k k k k k

k
T

k k k

y y s

y y s

 


 
 


 (3.12)

Stepsize computation and acceleration scheme. In ACGSSV the stepsize k is computed using

the Wolfe line search conditions (1.4) and (1.5). Conjugate gradient algorithms are characterized

by the fact that the stepsize may differ from 1 by two order of magnitude in a very unpredictable

manner [25]. They can be larger or smaller than 1 depending on how the problem is scaled. This

behavior of the stepsize in conjugate gradient algorithms is in sharp contrast to the Newton,

quasi-Newton, or the limited memory quasi-Newton methods, which accept the unit stepsize for

most of the final iterations. Therefore, in conjugate gradient algorithms there is more room to

change the stepsize given by the Wolfe line search conditions. This is done by the so called the

acceleration scheme. A description of the acceleration scheme for the conjugate gradient

algorithms is presented in [26]. The idea is as follows. In order to improve the reduction of the

function values along the iterations, the acceleration scheme modifies in a multiplicative manner

the stepsize k computed by the Wolfe line search conditions (1.4) and (1.5). In accelerated

algorithm instead of (1.2) the new estimation of the minimum point of (1.1) is computed as

 1k k k k kx x d    , (3.13)

where

 k
k

k

a

b
   , (3.14)

,T

k k k ka g d () ,T

k k k z kb g g d   ()zg f z and k k kz x d  . Therefore, if 0,kb 

then the new estimation of the solution is computed as 1k k k k kx x d    , otherwise

1k k k kx x d   . In [26] it is proved that the acceleration scheme is linear convergent.

With these, using the definitions of g k , ,ks yk and the above developments we can

present the following class of conjugate gradient algorithms based on the self-scaling memoryless

BFGS update.

 9

Algorithm ACGSSV

Step 1. Select the initial starting point 0x and compute: 0 0()f f x and 0 0().g f x Set

0 0d g  and 0.k  Select a value for the parameter  .

Step 2. Test a criterion for stopping the iterations. For example, if kg 

 , then stop;

otherwise continue with step 3.

Step 3. Using the Wolfe line search conditions (1.4) and (1.5) determine the stepsize .k

Step 4. Compute: k k kz x d  , ()zg f z and .k k zy g g 

Step 5. Compute:
T

k k k ka g d , and
T

k k k kb y d  .

Step 6. If 0,kb  then compute /k k ka b   and update the variables as

1k k k k kx x d    , otherwise update the variables as 1k k k kx x d   . Compute

1kf  and 1.kg  Compute 1k k ky g g  and 1 .k k ks x x 

Step 7. Select a variant of the algorithm, i.e. compute the value of the parameter kt as: 1kt 

or
2

/ T

k k k kt s y s or
2

/ .T

k k k kt y s y

Step 8. Compute k as in (3.12), where k is computed as in (3.11).

Step 9. Compute the search direction 1kd  as in (3.4).

Step 10. Restart criterion. If the restart criterion of Powell
2

1 10.2T

k k kg g g  is satisfied,

then set 1 1k kd g   .

Step 11. Compute the initial guess  k k k kd d  1 1 / , set k k 1 and continue with

step 2. 

Observe that the algorithm ACGSSV includes three variants according to the value of the scaling

parameter ,k computed as in (3.5), (3.6) or (3.7).

When the Powell restart condition [27] is satisfied, then we restart the algorithm with the

negative gradient 1.kg  Some more sophisticated reasons for restarting the conjugate gradient

algorithms have been proposed in the literature [28]. However, in this paper we are interested in

the performance of a conjugate gradient algorithm that uses this restart criterion of Powell

associated to a direction determined on the basis of the self-scaling memoryless BFGS update.

Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion are

sufficient to prove the global convergence of the algorithm.

The first trial of the stepsize crucially affects the practical behavior of the algorithm. At

every iteration 1k  the starting guess for the stepsize k in the line search procedure is

computed as 1 1 / .k k kd d  

ACGSSV is defined by the search direction (3.4) and (3.12) where 1kt  or it is given by

(2.5) or (2.6), as well as by the Wolfe line search conditions (1.4) and (1.5) and by the

acceleration scheme (3.13) and (3.14). Intensive numerical experiments, presented in Section 5,

proved that the acceleration scheme improves the performances of the algorithm subject to the

number of iterations, to the number of function and its gradient evaluations, or computing time

metrics. It is worth saying that the above acceleration scheme is working in conjugate gradient

methods and it is independent by the conjugate gradient search direction [26]. However, it is quite

possible that without acceleration a given conjugate gradient algorithm performs poorly, no

matter how elaborated the search direction is. Therefore, to get ACGSSV as an efficient and

 10

robust conjugate gradient algorithm the stepsize ,k computed by means of the Wolfe line search

conditions, is modified by the above acceleration procedure.

4. Global convergence analysis

The global convergence analysis of the above algorithms is based on bounding the norm of the

search direction (see [29] or [30]). In this section we prove the global convergence of the above

algorithms under the following basic assumptions:

(i) The level set  0: () ()nS x R f x f x   is bounded.

(ii) In a neighborhood N of S the function f is continuously differentiable and its

gradient is Lipschitz continuous, i.e. there exists a constant 0L  such that

() () ,f x f y L x y    for all , .x y N

Since { ()}kf x is a decreasing sequence, it is clear that the sequence { }kx generated by the

proposed algorithm ACGSSV is contained in .S Under these assumptions on f there exists a

constant 0  such that ()f x  for all .x S Notice that the assumption that the function

f is bounded below is weaker than the usual assumption that the level set is bounded.

The following proposition shows that the Wolfe line search always gives a lower bound

for the stepsize .k

Proposition 4.1. Suppose that kd is a descent direction and the gradient f satisfies the

Lipschitz condition

() ()k kf x f x L x x   

for all x on the line segment connecting kx and 1,kx  where L is a positive constant. If the line

search satisfies the Wolfe conditions (1.4) and (1.5), then

2

(1)
.

T

k k
k

k

g d

L d





 (4.1)

Proof. Subtracting
T

k kg d from both sides of (1.5) and using the Lipschitz continuity we get

2

1(1) () .T T T

k k k k k k k k k k kg d g g d y d y d L d      

Since kd is a descent direction and 1,  we get the conclusion of the proposition ■

The following proposition, often called the Zoutendijk condition, is used to prove the global

convergence of the nonlinear conjugate gradient algorithms. Originally, it was obtained by Wolfe

[5, 6] and Zoutendijk [31] under the Wolfe line search (1.4) and (1.5). In the following, we shall

prove that the Zoutendijk condition holds under the Wolfe line search.

Proposition 4.2. Suppose that kd is a descent direction and the gradient f satisfies the

Lipschitz condition () () ,k kf x f x L x x    where L is a positive constant. If the line

search satisfies the Wolfe conditions (1.4) and (1.5), then

2

2

0

()
.

T
k k

k k

g d

d

  (4.2)

Proof. Using (4.1), from (1.4) we get

 11

2

2

(1)()
() () .

T
k k

k k k k

k

g d
f x f x d

L d

 



  

Now, combining this inequality with assumption (i) we obtain (4.2), known as Zoutendijk

condition. ■

For uniformly convex functions we can prove that the norm of the direction
1kd 
 computed as in

(3.4) where
k is computed as in (3.5) or (3.6) or (3.7) is bounded above.

Theorem 4.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm ACGSSV

where the search direction
kd is given by (3.4) and

k is computed as in (3.5) or (3.6) or (3.7).

Suppose that
k is computed by the Wolfe line search (1.4) and (1.5). Suppose that f is a

uniformly convex function on ,S i.e. there exists a constant 0  such that

2

(() ()) ()Tf x f y x y x y     (4.3)

for all , .x y N If the search direction
kd satisfies the descent condition 0,T

k kg d  0,k  then

there exists a positive constant M such that for any 0,k 

 .kd M (4.4)

Proof. From Lipschitz continuity we have .k ky L s On the other hand, from uniform

convexity it follows that
2
.T

k k ky s s Now, from (3.5), (3.6), (3.7), Lipschitz continuity,

uniform convexity and the Cauchy-Schwarz inequality we have:

2 22 2
1

2
1 1 1 ,

k k

k T

k k k

y L s L

y s s



     

2 2 2 2 22 2

2 4 22 22
,

()

T
k k k k kOL k k

k T

k k k k k

s y s L s L sy s L
L

y s s s s



     

2 2 22

2 2 2 2 2 2

()
2 2 3 .

T T
k k kOS k k k k

k

k k k k k k

y s L sy s y s
L

s y s s y s
        

Therefore, k in (3.4) is bounded above. From (3.4) using Lipschitz continuity, uniform

convexity and the Cauchy-Schwarz inequality we have: 1 2 .k k

L
d 

 


 
   Since k in

(3.4) is bounded above it follows that 1kd  is bounded above, i.e. 1 ,kd M  where

2 .k

L
M 

 

 
   Therefore, (4.4) is true. ■

Theorem 4.2. Suppose that the assumptions (i) and (ii) hold. Consider the three term conjugate

gradient algorithm (1.2), where for all 0,k  the search direction kd given by (3.4) is a descent

direction and the stepsize k is determined by the strong Wolfe line search conditions. If

2

0

1
,

k kd

  (4.5)

then the algorithm converges in the sense that

 12

 liminf 0.k
k

g


 (4.6)

Proof. We proceed by contradiction. Suppose that (4.6) does not hold, i.e. there exists a constant

0,  such that kg  for all 0.k  From (3.4) we can write:

 1 1 ,k k k k k kd g s y      (4.7)

where

 1 1 ,
T T
k k k k

k kT T
k k k k

y g s g

y s y s
    1 .

T
k k

k T
k k

s g

y s
  (4.8)

From (4.7), using Lipschitz continuity and uniform convexity, we have

1 1 1k k k k k k k k k k kd g s y s g y            

 1
1 1

T
k k

k k k k k k k k kT
k k

s g
s g y s g y

y s
   

      

 1 1 11 .k k k k k k k

L L
s g g s g 

 
  

 
      

 

Therefore

 1 11 .k k k k

L
s d g


 

 
   

 
 (4.9)

From (4.7) we also have
2

1 1 1 1 1.
T T T
k k k k k k k k kg d g s g y g        

Therefore, using again Lipschitz continuity and uniform convexity, we have
2

1 1 1 1 1 1 1 1 1
T T T T T T

k k k k k k k k k k k k k k k k kg s g y g g d g d s g y g                

21

1 1 1 1 1 1 1 1 .
T

T T T T Tk k
k k k k k k k k k k k k kT

k k

s g L
g d s g y g g d s g g

y s
 




            

Therefore

2

1 1 1 11 .T T
k k k k k k

L
g g d s g


   

 
   

 
 (4.10)

Now, let us define

 .

T
k k

k

k

g d
t

d
 (4.11)

Hence, from (4.10) we obtain
2

11
1

1 1

1 .

T
k kk k

k k k

k k k

d gg dL
t

d d d
 






 

 
   

 

Now, using the strong Wolfe line search (1.6), we get

2

1
1

1 1

1 .
k k k

k k

k k

g sL
t t

d d









 

 
   

 
 (4.12)

Using (4.9) in (4.12) we get
2

1 1 1
1

1 1

(1 /)
1 .

k k k
k k

k k

g d L gL
t t

d d






  


 

  
   

 

After some simple algebraic manipulations we get

 13

2

1
1

1 1

1
1 1 .

k
k k k

k k

gL L
t t t

g d
 

 




 

    
        

    

 (4.13)

From Zoutendijk condition (4.2) it follows that
2

0

.k

k

t


 

Therefore,

 lim 0.k
k

t


 (4.14)

From Theorem 4.1 we know that kd is bounded. Moreover, since kg  for all 0,k  from

(4.13) it follows that

1

1
lim 1 1 0.k
k

k

L L
t

g


 


  
     

  

Therefore, there exists an integer 0k such that

 1

1
1 1 ,

2
k k

L L
t g

 


   
     

   
 (4.15)

for all 0.k k Hence, from (4.13) we get

2

1
1

1

2
().

k
k k

k

g
t t

d L











 


Now, from (4.14), we have

2

1
1

10 0

2
() .

k
k k

kk k

g
t t

d L









 

   


  (4.16)

Since 1 ,kg   it follows that (4.16) contradicts (4.5), i.e. liminf 0.k
k

g


 ■

The following theorem ensures the sufficient descent property of the iterative method (1.2) and

(3.4) for the general nonlinear functions under the exact line search. This result is necessary to

complete the convergence analysis of the algorithm given by (1.2) where the search direction is

computed as in (3.4).

Theorem 4.3. Suppose that the assumptions (i) and (ii) hold for the objective function f in (1.1).

If in the iterative method (1.2) and (3.4) the exact line search is used, then the search directions

satisfy the sufficient descent condition
2
,T

k k kg d g  0.k 

Proof. For 0,k  0 0d g  and so
2

0 0 0 .Tg d g  If the exact line search is applied, then

1 0,T
k ks g   0.k  Therefore, from (3.8) we have that

2
,T

k k kg d g  for any 1.k  

For general nonlinear functions under Wolfe line search conditions (1.4) and (1.5) we can prove

the convergence by establishing the sufficient descent property of (1.2) and (3.4).

Theorem 4.4. Suppose that the assumptions (i) and (ii) hold for the objective function f in (1.1).

Consider the iterative method (1.2) and (3.4), where
2

2 / ,T
k k k ky y s  and the stepsize k is

determined by the Wolfe line search conditions (1.4) and (1.5). Then, 1kP  is a nonsingular

 14

matrix and the search direction (3.4) satisfies the sufficient descent condition
2

(1/ 2) .T
k k kg d g 

Proof. Observe that 1 1 1,k k kd P g    where 1kP  is given by (1.14). To establish the theorem, at

first we show that for all 0,k  the eigenvalues of 1kP  are bounded below by a positive constant.

From the second Wolfe condition (1.5) we have that 0,T
k ks y  and consequently, 0ks  and

0.ky  Therefore, there exists a set of mutually orthogonal unit vectors 2
1{ }i n

k iu 
 such that

0,T i T i
k k k ks u y u  1, , 2,i n 

which leads to

1 ,i i
k k kP u u  1, , 2.i n 

Thus, the vectors ,i
ku 1, , 2,i n  are the eigenvectors of 1kP  which correspond to the

eigenvalue 1. Now, let 1
k
n  and k

n be the two remaining eigenvalues of 1.kP  Since the trace of

a square matrix is equal to the sum of its eigenvalues, from (1.14) we have that
2

1 1() (2) (2) .
k k k

k k n nT
k k

s
tr P n n

y s
         

Therefore

 1 ,k k
n n k kb     where

2
/ .T

k k k kb s y s (4.17)

On the other hand, the determinant of square matrix is equal to the product of its eigenvalues.

Using the formula of algebra [32]: det() (1)(1) ()(),T T T T T TI pq uv q p v u p v q u      where

,k k k
T
k k

y s
p

y s


  ,kq s k

T
k k

s
u

y s
  and ,kv y

from (1.14), after some simple algebraic operations, we have that
2 2 2

1 12
det() .

()

k k k k k
k k n nT T

k k k k

s s y
P

y s y s
     

Therefore

 1 ,k k
n n k k kb a     where

2 2 2/ () .T
k k k k ka s y y s (4.18)

Observe that 1.ka  If
2

2 / ,T
k k k ky y s  then 1det() 1,k kP a   i.e. the matrix 1kP  is

nonsingular.

Now, if
2

2 / ,T
k k k ky y s  then

 1 2 0,k k
n n ka     (4.19)

 1 0.k k
n n ka    (4.20)

Therefore, all the eigenvalues of 1kP  are strictly positive. Moreover, since

1 1det() 1,k k
k n n kP a     it follows that the matrix 1kP  is nonsingular. From the above

relations (4.19) and (4.20) the eigenvalues 1
k
n  and k

n satisfy the quadratic equation

2 2 0,k ka a    i.e.

 1 (1),k
n k k ka a a    

 (1).k
n k k ka a a   

Observe that 1.
k k
n n   Besides,

 15

1 1

1
.

2 2

k k k k
n k k k

kn n n

a a a

a


   

   


 (4.21)

Now, from (4.21), for all 0k  we have

2 2

1 1 1 1 1 1 1

1
.

2

T T k
k k k k k n k kg d g P g g g           

Therefore, the search direction (3.4) with
2

2 / T
k k k ky y s  satisfies the sufficient descent

condition
2

1 1 1 ,T
k k kg d c g    where 1/ 2.c  

The Theorem 4.4 is necessary to complete the convergence analysis of the proposed algorithm for

general nonlinear functions, as described in [30]. Observe that the Theorem 3.1 proves only the

descent character of the search direction (3.4) with
2

2 / .T
k k k ky y s  The Theorem 4.4 proves

the sufficient descent character of the search direction (3.4) with
2

2 / .T
k k k ky y s 

5. Numerical results and comparisons
The ACGSSV algorithm was implemented in double precision Fortran using loop unrolling of

depth 5 and compiled with f77 (default compiler settings) and run on a Workstation Intel Pentium

4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained optimization test functions

in generalized or extended form presented in [33]. Some of the problems from this collection are

taken from [34]. For each test function we have considered 10 numerical experiments with the

number of variables increasing as 1000,2000, ,10000.n  The algorithms compared in this

section use the Wolfe line search conditions with cubic interpolation [32], 0.0001,  0.8 

and the same stopping criterion 610 ,kg 


 where .


is the maximum absolute component of a

vector.

When the algorithms are compared we can consider at least two points of view: the first

is based on the optimal point generated by the algorithm, and the second one is using the

objective function value in this point. Since all the algorithms used and compared in this paper

generate local solutions, we compare them by using the point of view based on the objective

function value in the point determined by each of the algorithms. Therefore, the comparisons of

algorithms are given in the following context. Let 1ALG

if and 2ALG

if be the optimal value found

by ALG1 and ALG2, for problem 1, ,800,i  respectively. We say that, in the particular

problem ,i the performance of ALG1 was better than the performance of ALG2 if:

 1 2 310ALG ALG

i if f   (5.1)

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient

evaluations, or the CPU time corresponding to ALG2, respectively. Possibly, some other points

of view for comparing the algorithms can be used, but in this paper we consider this one. Of

course, the test problems where the algorithms do not converge to the same function value,

according to criterion (5.1), are discarded from comparisons.

 By using the acceleration scheme, ACGSSV algorithm is different from many other

conjugate gradient algorithms. We know that the line search acceleration technique can improve

the numerical behavior of conjugate gradient algorithms remarkable. It is quite possible that the

efficiency and robustness of the accelerated conjugate gradient algorithms are mainly determined

 16

by the acceleration technique and less by the search direction. However, this is not an impediment

in comparing algorithms, because we do not compare separately search directions techniques or

stepsize procedures. We compare algorithms as a whole including both search directions as well

as stepsize computations. Besides, when an algorithm is designed the idea is to endow it with the

best known procedures, which implement the algebraic operations for search direction and

stepsize computations. In other words, even if from the computational point of view the

acceleration scheme change the context of comparisons, we are interested to see the performances

of the accelerated adaptive Perry conjugate gradient algorithms ACGSSV versus some other

conjugate gradient algorithms with acceleration scheme (SCALCG and ADCG) or without

acceleration scheme (CONMIN and CG-DESCENT).

Since, CG-DESCENT [35] is among the best nonlinear conjugate gradient algorithms

proposed in the literature, but not necessarily the best, in the first set of numerical experiments we

compare our algorithm ACGSSV versus CG-DESCENT (version 1.4, Wolfe line search, default

settings, 6() 10 ,kf x 


 ). Fig. 1 presents the Dolan and Moré’s [36] performance profile of

ACGSSV versus CG-DESCENT for 1kt  subject to CPU time metric. Fig. 2 presents the same

performance profile of ACGSSV versus CG-DESCENT for
2

/ .T

k k k kt s y s Similarly, Fig. 3

presents the performance profile of ACGSSV versus CG-DESCENT for
2

/ .T

k k k kt y s y

In these figures, for every 1,  the performance profile gives the fraction of the test

problems that each considered algorithmic variant has a performance within a factor of  from

the best. The left-hand side of the figures gives the percentage of the test problems for which an

algorithm is the fastest; the right-hand side gives the percentage of the test problems that are

successfully solved by these algorithms. Mainly, the left-hand side is a measure of the efficiency

of an algorithm; the right-hand side is a measure of the robustness of an algorithm. Clearly, the

top curve corresponds to the algorithm that solved the most problems in a time that was within a

factor  of the best time.

Fig. 1. ACGSSV with 1kt  versus CG-DESCENT.

 17

Fig. 2. ACGSSV with
2

/ T

k k k kt s y s versus CG-DESCENT.

Fig. 3. ACGSSV with
2

/T

k k k kt y s y versus CG-DESCENT.

 18

When comparing ACGSSV versus CD-DESCENT for 1,kt  from Fig. 1, we see that

subject to the number of iterations ACGSSV was better in 627 problems (i.e. it achieved the

minimum number of iterations for solving 627 problems), CG-DESCENT was better in 88

problems and they achieved the same number of iterations in 56 problems, etc. Out of 800

problems considered in these numerical experiments, only for 771 problems does the criterion

(5.1) hold. From Figs. 2 and 3 we see the same behavior of ACGSSV versus CG-DESCENT. In

fact, the differences among these three variants of the algorithm ACGSSV determined by 1 ,k
OL

k or OS

k are very small. However, intensive numerical experiments show that the variant of

ACGSSV with 1

k is slightly more efficient and the variant of the algorithm with OL

k is slightly

more robust. We see that this computational scheme based on the minimizing the distance

between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-

scaling memoryless BFGS update lead us to algorithms which substantially outperform the CG-

DESCENT, being way more efficient and more robust.

Since all these three variants of ACGSSV algorithm (with 1 ,k OL

k or OS

k) have similar

performances, in the second set of numerical experiments we compare ACGSSV with
2

/ T

k k k kt s y s versus SCALCG (spectral, accelerated) [12] and versus CONMIN [21],

respectively. In Figures 4 and 5 we present the Dolan and Moré performance profiles of

ACGSSV versus the BFGS memoryless preconditioned conjugate gradient algorithms SCALCG

and CONMIN.

Fig. 4. ACGSSV with
2

/ T

k k k kt s y s versus SCALCG.

 19

Fig. 5. ACGSSV with
2

/ T

k k k kt s y s versus CONMIN.

The search direction in CONMIN by Shanno [11] is exactly the Beale-Powell restart memoryless

BFGS quasi-Newton method, where the approximation to the inverse Hessian is reinitialized as

the identity matrix at every step. On the other hand, the search direction in SCALCG by Andrei

[12] is a scaled memoryless BFGS preconditioned conjugate gradient algorithm, which mainly is

a double, positive definite quasi-Newton update scheme using the restart philosophy of Beale-

Powell. Both SCALCG and CONMIN are very close to the memoryless quasi-Newton methods.

In Figures 4 and 5 we have the numerical evidence that the symmetrical scaled Perry conjugate

gradient algorithm ACGSSV based on the self-scaling memoryless BFGS update is far away

more efficient and more robust.

In the third set of numerical experiments we compare ACGSSV versus the adaptive conjugate

gradient algorithm ADCG [22]. The search direction in ADCG is computed as

 1 1 1
1 1 ,

T T T
ADCG k k k k k k
k k k k kT T T

k k k k k k

y g s g s g
d g t s y

y s y s y s

  
 

 
     

 
 (5.2)

where the parameter kt is computed in an adaptive manner as:

2 2

2
2 1 , if ,

()

0, otherwise,

k k k

T
k k k k

y y s

t s y s
 


 

 



 (5.3)

by clustering the eigenvalues of the matrix defining it, and 1  is a positive constant. The

stepsize is computed using the classical Wolfe line search conditions, and is modified by an

acceleration technique exactly as in ACGSSV algorithm. Figure 6 presents the performance

profile of ACGSSV with
2

/ T

k k k kt s y s versus ADCG with 3. 

 20

Fig.6. ACGSSV with
2

/ T

k k k kt s y s versus ADCG with 3. 

Observe that the search direction of the ACGSSV conjugate gradient algorithm given by (3.4) is

very similar to the search direction corresponding to ADCG. The sign of the third term in (5.2) is

modified in order to ensure the descent property of 1 .ADCG
kd  However, the parameter k in (3.4) is

computed by minimizing the difference between the symmetric matrix 1kP  of Perry (1.14) and

the self-scaling memoryless BFGS update matrix (2.4). On the other hand, ADCG belongs to

another class of conjugate gradient algorithms. The parameter kt in (5.2) is computed by

clustering the eigenvalues of the matrix defining the search direction (5.2). From Figure 6 we

have computational evidence that ADCG conjugate gradient algorithm based on clustering the

eigenvalues of the iteration matrix defined by the search direction is clearly more efficient than

ACGSSV which is based on the self-scaling memoryless BFGS update. However, ACGSSV is

slightly more robust than ADCG. The difference between ACGSSV and ADCG is substantial.

ACGSSV tries to improve the condition number of the successive approximations to the inverse

Hessian 1kH  by scaling this matrix as ,k kt H where 0kt  is the scaling parameter given by

Oren and Luenberger [2], or Oren and Spedicato [3]. On the other hand, ADCG tries to improve

the condition number of 1kH  by clustering its eigenvalues. Clustering the eigenvalues of the

iteration matrix determined by the search direction is one of the most important ingredients in

designing efficient conjugate gradient algorithms [22, 37].

In the last set of numerical experiments we present comparisons between ACGSSV with
2

/ T

k k k kt s y s versus CG-DESCENT conjugate gradient algorithms for solving some

applications from the MINPACK-2 test problem collection [38]. In Table 1 we present these

applications, as well as the values of their parameters.

 21

Table 1

Applications from the MINPACK-2 collection.

A1 Elastic–plastic torsion [39, pp. 41–55], 5c 

A2 Pressure distribution in a journal bearing [40], 10,b  0.1 

A3 Optimal design with composite materials [41], 0.008 

A4 Steady-state combustion [42, pp. 292–299], [43], 5 

A5 Minimal surfaces with Enneper conditions [44, pp. 80–85]

The infinite-dimensional version of these problems is transformed into a finite element

approximation by triangulation. Thus a finite-dimensional minimization problem is obtained

whose variables are the values of the piecewise linear function at the vertices of the triangulation.

The discretization steps are 1,000nx  and 1,000,ny  thus obtaining minimization problems

with 1,000,000 variables. A comparison between ACGSSV (Powell restart criterion,
6() 10 ,kf x 


  0.0001,  0.8  ,

2
/ T

k k k kt s y s) and CG-DESCENT (version 1.4, Wolfe

line search, default settings, 6() 10 ,kf x 


 ) for solving these applications is given in Table 2.

Table 2

Performance of ACGSSV versus CG-DESCENT.

1,000,000 variables.
2

/ .T

k k k kt s y s CPU seconds.

 ACGSSV CG-DESCENT

 #iter #fg cpu #iter #fg Cpu

A1 1113 2257 354.95 1145 2291 474.64

A2 2845 5718 1159.18 3370 6741 1835.51

A3 5906 12087 3609.19 4814 9630 3949.71

A4 1413 2864 2023.27 1802 3605 3786.25

A5 1608 3361 755.75 1225 2451 753.75

TOTAL 12885 26287 7902.34 12356 24718 10799.86

From Table 2, we see that, subject to the CPU time metric, the ACGSSV algorithm is top

performer and the difference is significant, about 2897.52 seconds for solving all these five

applications. It is worth saying that intensive numerical experiments for solving the applications

from MINPACK-2 collection with different values of the parameter kt (i.e. 1kt  or
2

/T

k k k kt y s y) mainly yield similar results concerning the numerical performances of

ACGSSV algorithm. In all cases, for all these numerical experiments, ACGSSV was top

performer versus CG-DESCENT.

The ACGSSV and CG-DESCENT algorithms (and codes) are different in many respects.

Both of them use the Wolfe line search (implemented in different manners). However, these

algorithms differ in their choice of the search direction and in the acceleration scheme used by

ACGSSV. The search direction 1kd  given by (3.4) where the parameter k is computed as in

(3.12) is more elaborate: it is descent and it is as close as possible by the search direction

corresponding to the self-scaling memoryless BFGS update. On the other hand, the search

direction in CG-DESCENT is a simple ad-hoc modification of the Hestenes and Stiefel algorithm.

 22

6. Conclusions

In the panoply of the conjugate gradient algorithms we placed a new one based on

symmetrization of the scaled Perry conjugate gradient direction which depends by a positive

parameter. The value of this parameter is obtained by minimizing the distance between the

symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling

memoryless BFGS update. The scaling parameter in self-scaling memoryless BFGS update by

Oren [19] is selected as those given by Oren and Luenberger [2] or Oren and Spedicato [3]. On

the other hand, the parameter in scaled symmetrical Perry search direction matrix is computed in

an adaptive manner in such a way to minimize the distance between this direction matrix and the

self-scaling memoryless BFGS matrix, and to satisfy the descent condition. To improve the

performances of the algorithm an acceleration scheme is included. The global convergence of the

corresponding ACGSSV algorithm is proved both for uniformly convex functions and for general

nonlinear functions. The numerical experience with ACGSSV, using 800 unconstrained

optimization test problems and 5 large-scale applications from MINPACK-2 collection, prove

that this adaptive computational scheme is more efficient and more robust than the well known

CG-DESCENT [35], SCALCG [12] and CONMIN [21] conjugate gradient algorithms. On the

other hand, comparisons of ACGSSV versus the adaptive conjugate gradient algorithm ADCG

[22], based on clustering the eigenvalues of the corresponding iteration matrix, show that ADCG

is more efficient and slightly more robust. Both these algorithms, ACGSSV and ADCG, are

adaptive algorithms in a similar way. However, in ADCG algorithm the parameter is selected to

cluster the eigenvalues of the iteration matrix. On the other hand in ACGSSV the parameter is

computed to get the search direction as close as possible to the self-scaled memoryless BFGS

approximation to the iteration matrix. Both these approaches based on closeness to the self-scaled

BFGS approximation to the iteration matrix, and clustering the eigenvalues of the iteration matrix

determined by the search direction are important ingredients in designing efficient conjugate

gradient algorithms. In the same way of development another conjugate gradient algorithm can be

obtained by using a hybridization of the scaling parameter given by Oren and Spedicato [3] and

that suggested by Babaie-Kafaki [45].

References

[1] A. Perry, A modified conjugate gradient algorithm. Operations Research 26 (1978) 1073-

1078.

[2] S.S. Oren, D. G. Luenberger, Self-scaling variable metric (SSVM) algorithms. I. Criteria and

sufficient conditions for scaling a class of algorithms. Management Science 20 (1973/74) 845-

862.

[3] S.S. Oren, E. Spedicato, Optimal conditioning of self-scaling variable metric algorithms.

Mathematical Programming 10 (1976) 70-90.

[4] N. Andrei, Criticism of the Unconstrained Optimization Algorithms Reasoning. Editura

Academiei Române, Bucureşti, 2009.

[5] P. Wolfe, Convergence conditions for ascent methods. SIAM Review 11 (1969) 226-235.

[6] P. Wolfe, Convergence conditions for ascent methods. II: Some corrections. SIAM Review 13

(1971) 185-188.

[7] W.W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods. Pacific Journal of

Optimization 2 (2006) 35-58.

[8] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems, J.

Research Nat. Bur. Standards 49 (1952) 409-436.

[9] Y.H. Dai, L.Z. Liao, New conjugate conditions and related nonlinear conjugate gradient

methods. Appl. Math. Optim. 43 (2001) 87-101.

[10] H.D. Sherali, O. Ulular, Conjugate gradient methods using quasi-Newton updates with

inexact line search. Journal of Mathematical Analysis and Applications 150 (1990) 359-377.

 23

[11] D.F. Shanno, Conjugate gradient methods with inexact searches. Math. Oper. Res. 3 (1978)

244-256.

[12] N. Andrei, Scaled conjugate gradient algorithms for unconstrained optimization.

Computational Optimization and Applications 38 (2007) 401-416.

[13] D.F. Shanno, Globally convergent conjugate gradient algorithms. Mathematical

Programming 33 (1985) 61-67.

[14] D.F. Shanno, On the convergence of a new conjugate gradient algorithm. SIAM J. Numer.

Anal. 15 (1978) 1247-1257.

[15] M.J.D. Powell, Nonconvex minimization calculations and the conjugate gradient method. In:

Lecture Notes in Mathematics vol. 1066, Springer-Verlag, Berlin (1984) 122-141.

[16] S. Babaie-Kafaki, A note on the global convergence theorem of the scaled conjugate gradient

algorithms proposed by Andrei. Comput. Optim. Appl. 52 (2012) 409-414.

[17] Yu, G.H., Nonlinear self-scaling conjugate gradient methods for large-scale optimization

problems. Ph.D. Thesis, Sun Yat-Sen University, 2007.

[18] Yu, G.H., Guan, L., Chen, W., Spectral conjugate gradient methods with sufficient descent

property for large-scale unconstrained optimization. Optimization Methods and Software 23

(2) (2008) 275-293.

[19] S.S. Oren, Self-scaling variable metric (SSVM) algorithms. II. Implementation and

experiments. Management Science 20 (1974) 863-874.

[20] W.W. Hager, H. Zhang, A new conjugate gradient method with guaranteed descent and an

efficient line search. SIAM Journal on Optimization 16 (2005) 170-192.

[21] D.F. Shanno, K.H. Phua, Algorithm 500, minimization of unconstrained multivariate

functions. ACM Trans. Math. Soft. 2 (1976) 87-94

[22] N. Andrei, An adaptive conjugate gradient algorithm for large-scale unconstrained

optimization. Journal of Computational and Applied Mathematics 292 (2016) 83-91.

[23] J. Nocedal, S.J. Wright, Numerical optimization. (2
nd

 ed.). Springer Series in Optimizations

Research. Springer Science+Business Media, New York, 2006.

[24] C.D. Meyer, Matrix analysis and applied linear algebra. SIAM, Philadelphia, 2000.

[25] J. Nocedal, Conjugate gradient methods and nonlinear optimization. In Linear and nonlinear

Conjugate Gradient related methods, L. Adams and J.L. Nazareth (Eds.) SIAM 1996 9-23.

[26] N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization.

Applied Mathematics and Computation 213(2009) 361-369.

[27] M.J.D. Powell, Restart procedures of the conjugate gradient method. Mathematical

Programming 2 (1977) 241-254.

[28] Y.H. Dai, L.Z. Liao, D. Li, On restart procedures for the conjugate gradient method.

Numerical Algorithms 35 (2004) 249-260.

[29] J.C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods for

optimization. SIAM Journal on Optimization 2 (1992) 21-42.

[30] Y. Dai, J. Han, G. Liu, D. Sun, H. Yin, Y-X, Yuan. Convergence properties of nonlinear

conjugate gradient methods. SIAM Journal on Optimization 10 (1999) 345-358.

[31] Zoutendijk, G., Nonlinear programming, computational methods. In J. Abadie (Ed.), Integer

and Nonlinear Programming, North-Holland, (1970), 37-86.

[32] W. Sun, Y.X. Yuan, Optimization Theory and Methods. Nonlinear Programming. Springer

Science + Business Media, New York, 2006.

[33] N. Andrei, An unconstrained optimization test functions collection. Advanced Modeling and

Optimization 10 (2008) 147-161.

[34] N.I.M. Gould, D. Orban, P.L. Toint, CUTEr: A constrained and unconstrained testing

environment, revised. ACM Transactions on Mathematical Software 29 (2003) 373-394.

[35] W.W. Hager, H. Zhang, Algorithm 851: CG-DESCENT, a conjugate gradient method with

guaranteed descent. ACM Trans. Math. Softw. 32 (2006) 113-137.

http://www.sciencedirect.com/science/article/pii/S0377042715003520
http://www.sciencedirect.com/science/article/pii/S0377042715003520

 24

[36] E. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles.

Mathematical Programming 91 (2002) 201-213.

[37] N. Andrei, Eigenvalues versus singular values study in conjugate gradient algorithms for

large-scale unconstrained optimization. Optimization Methods and Software, 2016 [DOI:

10.1080/10556788.2016.1225211].

[38] B.M. Averick, R.G. Carter, J.J. Moré, G.L. Xue, The MINPACK-2 test problem collection,

Mathematics and Computer Science Division, Argonne National Laboratory, Preprint MCS-

P153-0692, June 1992.

[39] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag,

Berlin, 1984.

[40] G. Cimatti, On a problem of the theory of lubrication governed by a variational inequality,

Applied Mathematics and Optimization 3 (1977) 227–242.

[41] J. Goodman, R. Kohn, L. Reyna, Numerical study of a relaxed variational problem from

optimal design, Computer Methods in Applied Mechanics and Engineering 57 (1986) 107–

127.

[42] R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts,

Oxford, 1975.

[43] J. Bebernes, D. Eberly, Mathematical Problems from Combustion Theory. In: Applied

Mathematical Sciences, 83, Springer-Verlag, 1989.

[44] J.C.C. Nitsche, Lectures on Minimal Surfaces, Vol. 1, Cambridge University Press, 1989.

[45] S. Babaie-Kafaki, A modified scaling parameter for the memoryless BFGS updating

formula. Numerical Algorithms 72 (2016) 425-433.

