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	Abstract. An adaptive class of nonlinear conjugate gradient algorithms is suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, Self-scaling variable metric (SSVM) algorithms. I. Criteria and sufficient conditions for scaling a class of algorithms. Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, Optimal conditioning of self-scaling variable metric algorithms. Math. Program., 10 (1976) 70-90]. The corresponding algorithm, ACGSSV, is equipped with a very well known acceleration scheme of conjugate gradient algorithms. The global convergence of the algorithm is given both for uniformly convex and general nonlinear functions. Using a set of 800 unconstrained optimization test problems, of different structure and complexity, we prove that selection of the scaling parameter in self-scaling memoryless BFGS update leads to algorithms which substantially outperform the CG-DESCENT, SCALCG, and CONMIN conjugate gradient algorithms, being more efficient and more robust. However, the conjugate gradient algorithm ADCG based on clustering the eigenvalues of the iteration matrix defined by the search direction is more efficient and slightly more robust than our ACGSSV algorithm. By solving five applications from the MINPACK-2 test problem collection with 
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 variables, we show that the adaptive Perry conjugate gradient algorithms based on the self-scaling memoryless BFGS update, endowed with the acceleration scheme, is top performer versus CG_DESCENT.
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1. Introduction

For solving large-scale unconstrained optimization problems
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where 
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 is a continuously differentiable function, bounded from below, one of the most  elegant, simple and powerful method is the conjugate gradient method. This method is characterized by low memory requirements and strong local and global convergence properties. Starting from an initial guess 
[image: image4.wmf]0

n

xR

Î

 a nonlinear conjugate gradient method generates a sequence 
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where 
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 is obtained by line search and the directions 
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 are generated as:
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In (1.3) 
[image: image11.wmf]k

b

 is known as the conjugate gradient parameter and 
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 Notice that the standard formulation of conjugate gradient method uses the search direction defined as 
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 However, in our paper we consider the search direction 
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 Since 
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 is any scalar, this simple modification of the standard conjugate gradient method does not change the significance of the parameter 
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 in (1.3). 

Usually, the stepsize 
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 is computed to satisfy some line search conditions [4]. In the convergence analyses and implementation of conjugate gradient algorithms the standard Wolfe conditions [5, 6]
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where 
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 is a descent direction and 
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 often have been considered. Also, the strong Wolfe line search conditions consisting of (1.4) and
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can be used. 

The search direction 
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 assumed to be a descent one plays the main role in these methods. Different conjugate gradient algorithms correspond to different choices for the scalar conjugate gradient parameter
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 [7]. On the other hand the stepsize 
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 guarantees the global convergence in some cases and is important in efficiency.

In an attempt to use quasi-Newton techniques in conjugate gradient algorithms essentially Perry [1] derived the conjugate gradient parameter 
[image: image27.wmf]k

b

 in (1.3) by equating the conjugate gradient search direction 
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 is an approximation of the Hessian, i.e.
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After some simple algebraic manipulation from (1.7) we get the Perry’s choice for 
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 and the corresponding search direction as: 
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Observe that the formal equality (1.7) is only a technical argument to get a value for the conjugate parameter 
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If in (1.2) an exact line search direction is performed, then (1.8) is identical to the Hestenes and Stiefel [8] conjugate gradient algorithm. Observe that 
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 is not symmetric and does not satisfy the quasi-Newton (secant) condition. However, the corresponding Perry’s direction (1.9) satisfies the Dai and Liao [9] conjugacy condition, 
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 Now, it is worth saying that if the quasi-Newton direction 
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 is contained into the cone generated by 
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 then 
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 cannot alone ensure the equality (1.7). It is clear that the above condition (1.7) guarantees that 
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 are „coincident” and not just collinear [10]. In order to skip over this limitation we introduce an appropriate scaling of the quasi-Newton direction and consider the equality:
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where 
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 is a positive scalar parameter. As above, from (1.10) equality, after simple algebraic operations we get the scaled Perry conjugate gradient parameter and the corresponding search direction as:
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Observe that 
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 in (1.12) is not symmetric and so the known quasi-Newton condition is not satisfied. Therefore, strictly speaking 
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 is not a memoryless quasi-Newton update. Now, by adding in 
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 we force the symmetry, thus obtaining a new search direction as:
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known as the symmetrical scaled Perry conjugate gradient direction, where 
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Observe that 
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 is a symmetric matrix, but it does not satisfy the quasi-Newton condition. 
In an effort to get efficient conjugate gradient algorithms by forcing the quasi-Newton condition to hold, Shanno [11] and Andrei [12] obtained high performances memoryless BFGS updates and scaled memoryless BFGS preconditioned updates, respectively. The Shanno computational scheme, analyzed in [13], has global convergence for convex functions and inexact line search [14], but in general, it may not converge, even when the line search is exact [15]. However, the Shanno algorithm is convergent if the restarts are used, but the speed of convergence can decrease. On the other hand the computational scheme by Andrei [12], further analyzed in [16], ensures the sufficient descent property for uniformly convex functions and global convergence for general functions under the exact line search. Both algorithms of Shanno and Andrei have good numerical performances being able to solve large-scale unconstrained optimization problems of different structure and complexity. It is worth mentioning here another way of developments for a class of new spectral conjugate gradient methods, which is a modification of the spectral Perry's conjugate gradient method such that it possesses sufficient descent property for any (inexact) line search, presented by Yu in [17] and by Yu, Guan and Chen in [18].

In this paper, we consider another way of developments by not forcing the quasi-Newton condition to hold. Instead, we suggest some adaptive choices for the parameter 
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 in (1.14) in such a way to reduce the distance between the search direction matrix 
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 and the self-scaled memoryless BFGS update, one of the best variant of the memoryless quasi-Newton methods. 
The structure of the paper is as follows. In Section 2 we present a short review of the self-scaled memoryless BFGS update by Oren [19], with Oren and Luenberger [2] and Oren and Spedicato [3] formulae for scaling parameter computation. Section 3 presents adaptive symmetrical scaled Perry conjugate gradient algorithms based on minimizing the difference between the matrix 
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 and the self-scaling memoryless BFGS update matrix. In Section 4 the global convergence of the algorithm is proved, both for uniformly convex and general nonlinear functions. Section 5 presents numerical results and comparisons of the suggested algorithms versus CG-DESCENT by Hager and Zhang [20], accelerated SCALCG by Andrei [12], CONMIN by Shanno and Phua [21] and ADCG by Andrei [22]. It is proved that this class of algorithms based on a symmetrization of the scaled Perry conjugate gradient direction and on minimizing the distance between this symmetrical scaled Perry conjugate gradient direction matrix and the self-scaling memoryless BFGS update is more efficient and more robust than the conjugate gradient algorithms considered in these studies. 
2. Scaled memoryless BFGS update
As we know the quasi-Newton methods are one of the best methods for solving unconstrained optimization problems. They do not require explicit second order derivatives and they have very good local and global convergence properties [23]. Having an approximation 
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 of the inverse Hessian, these methods determine a new approximation 
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 which satisfies the so called secant equation which includes the second order information. The best quasi-Newton method with strong theoretical properties and very favorable numerical performances is BFGS update [4]. This update is given by:
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In order to improve the performances of this method, the so called scaled quasi-Newton updates have been developed [4]. The purpose of these methods is to improve the condition number of the successive approximations to the inverse Hessian by replacing 
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 is known as the scaling parameter. Two very well known and effective formulae for 
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 computation are those given by Oren and Luenberger [2]:
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or by Oren and Spedicato [3]:
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The scaled BFGS update with one of the above parameters (2.2) or (2.3) is called self-scaling BFGS update [19]. 
In order to get an efficient method for solving large-scale problems, at every iteration, the matrix 
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 is replaced by the identity matrix thus avoiding saving the matrix 
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able to solve large-scale unconstrained optimization problems of different structures and complexities. In this context, the memoryless versions of the scaling parameters (2.2) and (2.3) can be written, respectively as: 
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where 
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 stands for the Euclidian norm. The self-scaling memoryles BFGS update is given by (2.4), where the scaling parameter 
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 is computed as in (2.5) or (2.6). Using another way of developments as those given by Shanno [11] and Andrei [12] in the following we consider an adaptive choice of the parameter 
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 in (1.14) based on the self-scaling memoryless BFGS update.
3. Adaptive Perry conjugate gradient algorithms
In this Section we deal with an adaptive choice for the parameter 
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 in the Perry symmetrical, scaled memoryless iteration matrix 
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 given by (1.14). Having in view that the self-scaling memoryless BFGS update is one of the best quasi-Newton methods and observing the similarity between the structures of the search direction matrix 
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 (1.14) and the self-scaling memoryless BFGS update (2.4), we suggest computing the parameter 
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where 
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 and 
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 is the Frobenius matrix norm. Since 
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 it follows that the minimization problem (3.1) is equivalent to:
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From (1.14) and (2.4) we have
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where 
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Therefore,
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Since 
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after some simple algebraic manipulations we get:
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Since the coefficient of 
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 is always positive, it follows that the second degree function defining 
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is always convex. Therefore, the unique solution of the minimization problem (3.2) is given by:
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 Observe that if the line search satisfies the Wolfe conditions (1.4) and (1.5), then for any 
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 From the Wolfe conditions and the inequality 
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 from (3.3) we have that 
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Therefore, from (1.13) and (1.14) our algorithm is given by (1.2) where
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and 
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 is computed as in (3.3). Observe that this is a three term search direction..
The parameter 
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 given by (3.3) defines a class of algorithms according to the choices of the scaling parameter 
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On the other hand, selecting 
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 as in (2.5) (Oren-Luenberger) or (2.6) (Oren-Spedicato) respectively we get:
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Observe that 
[image: image111.wmf]1

1.

k

h

³

 Since, as we said, 
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 Notice that for 
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 i.e. for this value of the scaling parameter the symmetrical scaled Perry search direction matrix 
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 is exactly the self-scaling memoryless BFGS update. Besides, for 
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 the search direction (3.4) satisfies the Dai and Liao [9] conjugacy condition, i.e. 
[image: image119.wmf]11

().

TT

kkkk

ydsg

++

=-

 An interesting result is given by the following proposition, showing an optimal property of 
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Proposition 3.1. If 
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Proof. For 
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Therefore, having in view the definition of the induced matrix norm [24] we have:
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Hence, we can see that 
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As we have already seen the value of 
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 given by (3.3) ensures that the scaled Perry symmetric iteration matrix 
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 is as close as possible to the self-scaling memoryless BFGS update 
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 The search directions of the self-scaling memoryless BFGS algorithm satisfies the descent condition 
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 [4]. Unlike the quasi-Newton methods, in conjugate gradient algorithms the descent condition has a crucial role. Therefore, in the following theorem a value of 
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 matrix it ensures the descent condition of the search direction (3.4).
Theorem 3.1. If 
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 then the search direction (3.4) satisfies the descent condition, i.e. 
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Proof. From (3.4) we have:
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Now, using the classical inequality 
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we get: 
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Therefore, if 
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Therefore, using the Theorem 3.1 the following simple adaptive strategy for computing the search direction in our algorithm can be presented. Using (3.3) compute:
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where 
[image: image152.wmf]1

k

t

=

 or it is given by (2.5) or (2.6). 
The value of 
[image: image153.wmf]k

h

 is computed in an adaptive manner as follows:
                                            
[image: image154.wmf]2

2

,if2/,

2/,otherwise.

T

kkkkk

k

T

kkk

yys

yys

hh

h

ì

>

ï

=

í

ï

î

                                 (3.12)

Conjugate gradient algorithms are characterized by the fact that the stepsize may differ from 1 in a very unpredictable manner [25]. They can be larger or smaller than 1 depending on how the problem is scaled. In the following we present a short description of an acceleration scheme of conjugate gradient algorithms we have presented in [26]. The acceleration scheme modifies the stepsize 
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and the above developments we can present the following class of conjugate gradient algorithms based on the self-scaling memoryless BFGS update.
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Observe that the algorithm ACGSSV includes three variants according to the value of the scaling parameter 
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 Some more sophisticated reasons for restarting the conjugate gradient algorithms have been proposed in the literature [28]. However, in this paper we are interested in the performance of a conjugate gradient algorithm that uses this restart criterion of Powell associated to a direction determined on the basis of the self-scaling memoryless BFGS update. Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion are sufficient to prove the global convergence of the algorithm. The first trial of the stepsize crucially affects the practical behavior of the algorithm. At every iteration 
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 In ACGSSV algorithm we introduced a linear convergent acceleration scheme [26]. The acceleration scheme improves the performances of the algorithm, i.e. the numerical comparisons may drastically be changed by introducing acceleration. However, we are interested to get a good algorithm and to see the performances of it equipped with the above presented acceleration scheme.  

4. Global convergence analysis

The global convergence analysis of the above algorithms is based on bounding the norm of the search direction (see [29] or [30]). In this section we prove the global convergence of the above algorithms under the following basic assumptions:
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The following proposition shows that the Wolfe line search always gives a lower bound for the stepsize 
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Proposition 4.1. Suppose that 
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Proof. Subtracting 
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The following proposition, often called the Zoutendijk condition, is used to prove the global convergence of the nonlinear conjugate gradient algorithms. Originally, it was obtained by Wolfe [5, 6] and Zoutendijk [31] under the Wolfe line search (1.4) and (1.5). In the following, we shall prove that the Zoutendijk condition holds under the Wolfe line search. 

Proposition 4.2. Suppose that 
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Proof. Using (4.1), from (1.4) we get
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Now, combining this inequality with assumption (i) we obtain (4.2), known as Zoutendijk condition.                                                                                                                                          ■  
For uniformly convex functions we can prove that the norm of the direction 
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Proof. From Lipschitz continuity we have 
[image: image255.wmf].

kk

yLs

£

 On the other hand, from uniform convexity it follows that 
[image: image256.wmf]2

.

T

kkk

yss

m

³

 Now, from (3.5), (3.6), (3.7), Lipschitz continuity, uniform convexity and the Cauchy-Schwarz inequality we have:
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Therefore, 
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 in (3.4) is bounded above. From (3.4) using Lipschitz continuity, uniform convexity and the Cauchy-Schwarz inequality we have: 
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Theorem 4.2. Suppose that the assumptions (i) and (ii) hold. Consider the three term conjugate gradient algorithm (1.2), where for all 
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then the algorithm converges in the sense that
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Proof. We proceed by contradiction. Suppose that (4.6) does not hold, i.e. there exists a constant 
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From (4.7), using Lipschitz continuity and uniform convexity, we have
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From (4.7) we also have
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Therefore, using again Lipschitz continuity and uniform convexity, we have
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Now, let us define
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Hence, from (4.10) we obtain
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Now, using the strong Wolfe line search (1.6), we get
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Using (4.9) in (4.12) we get


[image: image288.wmf]2

111

1

11

(1/)

1.

kkk

kk

kk

gdLg

L

tt

dd

m

s

m

+++

+

++

++

æö

-£+

ç÷

èø


After some simple algebraic manipulations we get
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From Zoutendijk condition (4.2) it follows that
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From Theorem 4.1 we know that 
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Therefore, there exists an integer 
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Now, from (4.14), we have
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Since 
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The following theorem ensures the sufficient descent property of the iterative method (1.2) and (3.4) for the general nonlinear functions under the exact line search. This result is necessary to complete the convergence analysis of the algorithm given by (1.2) where the search direction is computed as in (3.4).
Theorem 4.3. Suppose that the assumptions (i) and (ii) hold for the objective function 
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Theorem 4.4. Suppose that the assumptions (i) and (ii) hold for the objective function 
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 in (1.1). Consider the iterative method (1.2) and (3.4), where 
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 Since the trace of a square matrix is equal to the sum of its eigenvalues, from (1.14) we have that
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On the other hand, the determinant of square matrix is equal to the product of its eigenvalues. Using the formula of algebra [32]: 
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from (1.14), after some simple algebraic operations, we have that 
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Observe that 
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Therefore, all the eigenvalues of 
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Now, from (4.21), for all 
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Therefore, the search direction (3.4) with 
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The Theorem 4.4 is necessary to complete the convergence analysis of the proposed algorithm for general nonlinear functions, as described in [30]. Observe that the Theorem 3.1 proves only the descent character of the search direction (3.4) with 
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 The Theorem 4.4 proves the sufficient descent character of the search direction (3.4) with 
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5. Numerical results and comparisons

The ACGSSV algorithm was implemented in double precision Fortran using loop unrolling of depth 5 and compiled with f77 (default compiler settings) and run on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained optimization test functions in generalized or extended form presented in [33]. Some of the problems from this collection are taken from [34]. For each test function we have considered 10 numerical experiments with the number of variables increasing as 
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 The algorithms compared in this section use the Wolfe line search conditions with cubic interpolation [32], 
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When the algorithms are compared we can consider at least two points of view: the first is based on the optimal point generated by the algorithm, and the second one is using the objective function value in this point. Since all the algorithms used and compared in this paper generate local solutions, we compare them by using the point of view based on the objective function value in the point determined by each of the algorithms. Therefore, the comparisons of algorithms are given in the following context. Let 
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 respectively. We say that, in the particular problem 
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and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the CPU time of ALG1 was less than the number of iterations, or the number of function-gradient evaluations, or the CPU time corresponding to ALG2, respectively. Possibly, some other points of view for comparing the algorithms can be used, but in this paper we consider this one. Of course, the test problems where the algorithms do not converge to the same function value, according to criterion (5.1), are discarded from comparisons. 
Since, CG-DESCENT [35] is among the best nonlinear conjugate gradient algorithms proposed in the literature, but not necessarily the best, in the first set of numerical experiments we compare our algorithm ACGSSV versus CG-DESCENT. Fig. 1 presents the Dolan and Moré’s [36] performance profile of ACGSSV versus CG-DESCENT for 
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 subject to CPU time metric. Fig. 2 presents the same performance profile of ACGSSV versus CG-DESCENT for 
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 Similarly, Fig. 3 presents the performance profile of ACGSSV versus CG-DESCENT for 
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In these figures, for every 
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 the performance profile gives the fraction of the test problems that each considered algorithmic variant has a performance within a factor of 
[image: image385.wmf]t

 from the best. The left-hand side of the figures gives the percentage of the test problems for which an algorithm is the fastest; the right-hand side gives the percentage of the test problems that are successfully solved by these algorithms. Mainly, the left-hand side is a measure of the efficiency of an algorithm; the right-hand side is a measure of the robustness of an algorithm. Clearly, the top curve corresponds to the algorithm that solved the most problems in a time that was within a factor 
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Fig. 1. ACGSSV with 
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 versus CG-DESCENT.
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Fig. 2. ACGSSV with 
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 versus CG-DESCENT.
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Fig. 3. ACGSSV with 
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 versus CG-DESCENT.
When comparing ACGSSV versus CD-DESCENT for 
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 from Fig. 1, we see that subject to the number of iterations ACGSSV was better in 627 problems (i.e. it achieved the minimum number of iterations for solving 627 problems), CG-DESCENT was better in 88 problems and they achieved the same number of iterations in 56 problems, etc. Out of 800 problems considered in these numerical experiments, only for 771 problems does the criterion (5.1) hold. From Figs. 2 and 3 we see the same behavior of ACGSSV versus CG-DESCENT. In fact, the differences among these three variants of the algorithm ACGSSV determined by 
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 are very small. However, intensive numerical experiments show that the variant of ACGSSV with 
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 is slightly more efficient and the variant of the algorithm with 
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 is slightly more robust. In comparison with CG-DESCENT, on average, ACGSSV appears to generate the best search direction. We see that this computational scheme based on the minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update lead us to algorithms which substantially outperform the CG-DESCENT, being way more efficient and more robust.
Since all these three variants of ACGSSV algorithm (with 
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) have similar performances, in the second set of numerical experiments we compare ACGSSV with 
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 versus SCALCG (spectral, accelerated) [12] and versus CONMIN [21], respectively. In Figsures 4 and 5 we have the computational evidence that ACGSSV is more efficient and more robust than the BFGS memoryless preconditioned conjugate gradient algorithms SCALCG and CONMIN. 
[image: image403.png]1
055
09 ACGSSV
085 \ B
08 i g
{ SCALCG (spectral}
075 H ]
orb i ACGSSV  SCALCG = i
i #iter 123 530 73
oest  f #g 256 159 11 ,
H cpu 333 120 273
o6f § ,
0551 § ]
CPU time metric, 726 problems
4 B s 1 1z 14

05
0

2




Fig. 4. ACGSSV with 
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[image: image405.png]095

09 1
085 1
08 1

ACGSSV CONMIN -

ors Hiter 346 304 78
#ig 182 514 32

cpu 278 164 286
07 1
065 1

CPU time metric, 728 problems
0 4 6 8 10 12 14





Fig. 5. ACGSSV with 
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 versus CONMIN.
The search direction in CONMIN by Shanno [11] is exactly the Beale-Powell restart memoryless BFGS quasi-Newton method, where the approximation to the inverse Hessian is reinitialized as the identity matrix at every step. On the other hand, the search direction in SCALCG by Andrei [12] is a scaled memoryless BFGS preconditioned conjugate gradient algorithm, which mainly is a double, positive definite quasi-Newton update scheme using the restart philosophy of Beale-Powell. Both SCALCG and CONMIN are very close to the memoryless quasi-Newton methods. In Figures 4 and 5 we have the numerical evidence that the symmetrical scaled Perry conjugate gradient algorithm ACGSSV based on the self-scaling memoryless BFGS update is far away more efficient and more robust. 
In the third set of numerical experiments we compare ACGSSV versus the adaptive conjugate gradient algorithm ADCG [22]. The search direction in ADCG is computed as
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where the parameter 
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by clustering the eigenvalues of the matrix defining it, and 
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 is a positive constant. The stepsize is computed using the classical Wolfe line search conditions, and is modified by an acceleration technique exactly as in ACGSSV algorithm. Figure 6 presents the performance profile of ACGSSV with 
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Fig.6. ACGSSV with 
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Observe that the search direction of the ACGSSV conjugate gradient algorithm given by (3.4) is very similar to the search direction corresponding to ADCG. The sign of the third term in (5.2) is modified in order to ensure the descent property of 
[image: image416.wmf]1

.

ADCG

k

d

+

 However, the parameter 
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 in (3.4) is computed by minimizing the difference between the symmetric matrix 
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 of Perry (1.14) and the self-scaling memoryless BFGS update matrix (2.4). On the other hand, ADCG belongs to another class of conjugate gradient algorithms. The parameter 
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 in (5.2) is computed by clustering the eigenvalues of the matrix defining the search direction (5.2). From Figure 6 we have computational evidence that ADCG conjugate gradient algorithm based on clustering the eigenvalues of the iteration matrix defined by the search direction is clearly more efficient than ACGSSV which is based on the self-scaling memoryless BFGS update. However, ACGSSV is slightly more robust than ADCG. The difference between ACGSSV and ADCG is substantial. ACGSSV tries to improve the condition number of the successive approximations to the inverse Hessian 
[image: image420.wmf]1

k

H

+

 by scaling this matrix as 
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 is the scaling parameter given by Oren and Luenberger [2], or Oren and Spedicato [3]. On the other hand, ADCG tries to improve the condition number of 
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by clustering its eigenvalues. Clustering the eigenvalues of the iteration matrix determined by the search direction is one of the most important ingredients in designing efficient conjugate gradient algorithms [22, 37].
In the last set of numerical experiments we present comparisons between ACGSSV with 
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 versus CG-DESCENT conjugate gradient algorithms for solving some applications from the MINPACK-2 test problem collection [38]. In Table 1 we present these applications, as well as the values of their parameters. 
Table 1 
Applications from the MINPACK-2 collection.
	A1
	Elastic–plastic torsion [39, pp. 41–55], 
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	A2
	Pressure distribution in a journal bearing [40], 
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	A3
	Optimal design with composite materials [41], 
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	A4
	Steady-state combustion [42, pp. 292–299], [43], 
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	A5
	Minimal surfaces with Enneper conditions [44, pp. 80–85]


The infinite-dimensional version of these problems is transformed into a finite element approximation by triangulation. Thus a finite-dimensional minimization problem is obtained whose variables are the values of the piecewise linear function at the vertices of the triangulation. The discretization steps are 
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 thus obtaining minimization problems with 1,000,000 variables. A comparison between ACGSSV (Powell restart criterion, 
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) and CG-DESCENT (version 1.4, Wolfe line search, default settings, 
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) for solving these applications is given in Table 2. 

Table 2 
Performance of ACGSSV versus CG-DESCENT. 
1,000,000 variables. 
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 CPU seconds. 

	
	ACGSSV
	CG-DESCENT

	
	#iter
	#fg
	cpu
	#iter
	#fg
	cpu

	A1
	1113
	2257
	354.95
	1145
	2291
	474.64

	A2
	2845
	5718
	1159.18
	3370
	6741
	1835.51

	A3
	5906
	12087
	3609.19
	4814
	9630
	3949.71

	A4
	1413
	2864
	2023.27
	1802
	3605
	3786.25

	A5
	1608
	3361
	755.75
	1225
	2451
	753.75

	TOTAL
	12885
	26287
	7902.34
	12356
	24718
	10799.86


From Table 2, we see that, subject to the CPU time metric, the ACGSSV algorithm is top performer and the difference is significant, about 2897.52 seconds for solving all these five applications. It is worth saying that intensive numerical experiments for solving the applications from MINPACK-2 collection with different values of the parameter 
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) mainly yield similar results concerning the numerical performances of ACGSSV algorithm. In all cases, for all these numerical experiments, ACGSSV was top performer versus CG-DESCENT.

The ACGSSV and CG-DESCENT algorithms (and codes) are different in many respects. Since both of them use the Wolfe line search (however, implemented in different manners), these algorithms mainly differ in their choice of the search direction. The search direction 
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 given by (3.4) where the parameter 
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 is computed as in (3.12) is more elaborate: it is descent and it is as close as possible by the search direction corresponding to the self-scaling memoryless BFGS update. On the other hand, the search direction in CG-DESCENT is a simple ad-hoc modification of the Hestenes and Stiefel algorithm.
6. Conclusions
In the panoply of the conjugate gradient algorithms we placed a new one based on symmetrization of the scaled Perry conjugate gradient direction which depends by a positive parameter. The value of this parameter is obtained by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update. The scaling parameter in self-scaling memoryless BFGS update by Oren [19] is selected as those given by Oren and Luenberger [2] or Oren and Spedicato [3]. On the other hand, the parameter in scaled symmetrical Perry search direction matrix is computed in an adaptive manner in such a way to minimize the distance between this direction matrix and the self-scaling memoryless BFGS matrix, and to satisfy the descent condition. To improve the performances of the algorithm an acceleration scheme is included. The global convergence of the corresponding ACGSSV algorithm is proved both for uniformly convex functions and for general nonlinear functions. The numerical experience with ACGSSV, using 800 unconstrained optimization test problems and 5 large-scale applications from MINPACK-2 collection, prove that this adaptive computational scheme is more efficient and more robust than the well known CG-DESCENT [35], SCALCG [12] and CONMIN [21] conjugate gradient algorithms. On the other hand, comparisons of ACGSSV versus the adaptive conjugate gradient algorithm ADCG [22], based on clustering the eigenvalues of the corresponding iteration matrix, show that ADCG is more efficient and slightly more robust. Both these algorithms, ACGSSV and ADCG, are adaptive algorithms in a similar way. However, in ADCG algorithm the parameter is selected to cluster the eigenvalues of the iteration matrix. On the other hand in ACGSSV the parameter is computed to get the search direction as close as possible to the self-scaled memoryless BFGS approximation to the iteration matrix. Both these approaches based on closeness to the self-scaled BFGS approximation to the iteration matrix, and clustering the eigenvalues of the iteration matrix determined by the search direction are important ingredients in designing efficient conjugate gradient algorithms. In the same way of development another conjugate gradient algorithm can be obtained by using a hybridization of the scaling parameter given by Oren and Spedicato [3] and that suggested by Babaie-Kafaki [45].
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