Adaptive Perry conjugate gradient algorithms based on

the self-scaling memoryless BFGS update

Neculai Andrei

Research Institute for Informatics,

Center for Advanced Modeling and Optimization

8-10 Averescu Avenue, Bucharest 1, Romania

E-mail: nandrei@ici.ro
	Abstract. An adaptive class of nonlinear conjugate gradient algorithms is suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction [A. Perry, A modified conjugate gradient algorithm. Operations Research, 26 (1978) 1073-1078], which depends by a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger [S.S. Oren, D. G. Luenberger, Self-scaling variable metric (SSVM) algorithms. I. Criteria and sufficient conditions for scaling a class of algorithms. Management Sci., 20 (1973/74) 845-862] and Oren and Spedicato [S.S. Oren, E. Spedicato, Optimal conditioning of self-scaling variable metric algorithms. Math. Program., 10 (1976) 70-90]. The corresponding algorithm, ACGSSV, is equipped with a very well known acceleration scheme of conjugate gradient algorithms. The global convergence of the algorithm is given both for uniformly convex and general nonlinear functions. Using a set of 800 unconstrained optimization test problems, of different structure and complexity, we prove that selection of the scaling parameter in self-scaling memoryless BFGS update leads to algorithms which substantially outperform the CG-DESCENT, SCALCG, and CONMIN conjugate gradient algorithms, being more efficient and more robust. However, the conjugate gradient algorithm ADCG based on clustering the eigenvalues of the iteration matrix defined by the search direction is more efficient and slightly more robust than our ACGSSV algorithm. By solving five applications from the MINPACK-2 test problem collection with
[image: image1.wmf]6

10

 variables, we show that the adaptive Perry conjugate gradient algorithms based on the self-scaling memoryless BFGS update, endowed with the acceleration scheme, is top performer versus CG_DESCENT.

Key words: Unconstrained optimization; conjugate gradient algorithms; Wolfe conditions; self-scaling memoryless BFGS update; sufficient descent condition; conjugacy condition; Frobenius norm
MSC: 49M07; 49M10; 65K05; 90C06

1. Introduction

For solving large-scale unconstrained optimization problems

[image: image2.wmf]min{():},

n

fxxR

Î

 (1.1)

where
[image: image3.wmf]:

n

fRR

®

 is a continuously differentiable function, bounded from below, one of the most elegant, simple and powerful method is the conjugate gradient method. This method is characterized by low memory requirements and strong local and global convergence properties. Starting from an initial guess
[image: image4.wmf]0

n

xR

Î

 a nonlinear conjugate gradient method generates a sequence
[image: image5.wmf]{}

k

x

 as:

[image: image6.wmf]1

,

kkkk

xxd

a

+

=+

 (1.2)

where
[image: image7.wmf]0

k

a

>

 is obtained by line search and the directions
[image: image8.wmf]k

d

 are generated as:

[image: image9.wmf]11

,

kkkk

dgs

b

++

=-+

[image: image10.wmf]00

.

dg

=-

 (1.3)

In (1.3)
[image: image11.wmf]k

b

 is known as the conjugate gradient parameter and
[image: image12.wmf]().

kk

gfx

=Ñ

 Notice that the standard formulation of conjugate gradient method uses the search direction defined as
[image: image13.wmf]1

.

kkkk

dgd

b

+

=-+

 However, in our paper we consider the search direction
[image: image14.wmf]1

k

d

+

 given as in (1.3), where
[image: image15.wmf]1

.

kkkkk

sxxd

a

+

=-=

 Since
[image: image16.wmf]k

b

 is any scalar, this simple modification of the standard conjugate gradient method does not change the significance of the parameter
[image: image17.wmf]k

b

 in (1.3).

Usually, the stepsize
[image: image18.wmf]k

a

 is computed to satisfy some line search conditions [4]. In the convergence analyses and implementation of conjugate gradient algorithms the standard Wolfe conditions [5, 6]

[image: image19.wmf]()(),

T

kkkkkkk

fxdfxgd

ara

+£+

 (1.4)

[image: image20.wmf]1

,

TT

kkkk

gdgd

s

+

³

 (1.5)

where
[image: image21.wmf]k

d

 is a descent direction and
[image: image22.wmf]01,

rs

<£<

 often have been considered. Also, the strong Wolfe line search conditions consisting of (1.4) and

[image: image23.wmf]1

,

TT

kkkk

gdgd

s

+

£-

 (1.6)

can be used.

The search direction
[image: image24.wmf],

k

d

 assumed to be a descent one plays the main role in these methods. Different conjugate gradient algorithms correspond to different choices for the scalar conjugate gradient parameter
[image: image25.wmf]k

b

 [7]. On the other hand the stepsize
[image: image26.wmf]k

a

 guarantees the global convergence in some cases and is important in efficiency.

In an attempt to use quasi-Newton techniques in conjugate gradient algorithms essentially Perry [1] derived the conjugate gradient parameter
[image: image27.wmf]k

b

 in (1.3) by equating the conjugate gradient search direction
[image: image28.wmf]1

kkk

gs

b

+

-+

 to the quasi-Newton direction
[image: image29.wmf]1

11

,

kk

Bg

-

++

-

 where
[image: image30.wmf]1

k

B

+

 is an approximation of the Hessian, i.e.

[image: image31.wmf]1

111

.

kkkkk

gsBg

b

-

+++

-+=-

 (1.7)

After some simple algebraic manipulation from (1.7) we get the Perry’s choice for
[image: image32.wmf]k

b

 and the corresponding search direction as:

[image: image33.wmf]11

,

TT

kkkk

k

T

kk

ygsg

ys

b

++

-

=

 (1.8)

[image: image34.wmf]1111

.

TT

P

kkkk

kkkk

TT

kkkk

syss

dIgQg

ysys

++++

éù

=--+º-

êú

ëû

 (1.9)
Observe that the formal equality (1.7) is only a technical argument to get a value for the conjugate parameter
[image: image35.wmf].

k

b

If in (1.2) an exact line search direction is performed, then (1.8) is identical to the Hestenes and Stiefel [8] conjugate gradient algorithm. Observe that
[image: image36.wmf]1

P

k

Q

+

 is not symmetric and does not satisfy the quasi-Newton (secant) condition. However, the corresponding Perry’s direction (1.9) satisfies the Dai and Liao [9] conjugacy condition,
[image: image37.wmf]11

(),

TT

kkkk

dyugs

++

=-

with
[image: image38.wmf]1.

u

=

 Now, it is worth saying that if the quasi-Newton direction
[image: image39.wmf]1

11

kk

Bg

-

++

-

 is contained into the cone generated by
[image: image40.wmf]1

k

g

+

-

 and
[image: image41.wmf],

k

s

 then
[image: image42.wmf]k

b

 cannot alone ensure the equality (1.7). It is clear that the above condition (1.7) guarantees that
[image: image43.wmf]1

kkk

gs

b

+

-+

 and the quasi-Newton direction
[image: image44.wmf]1

11

kk

Bg

-

++

-

 are „coincident” and not just collinear [10]. In order to skip over this limitation we introduce an appropriate scaling of the quasi-Newton direction and consider the equality:

[image: image45.wmf]1

111

,

kkkkkk

gsBg

bh

-

+++

-+=-

 (1.10)
where
[image: image46.wmf]k

h

 is a positive scalar parameter. As above, from (1.10) equality, after simple algebraic operations we get the scaled Perry conjugate gradient parameter and the corresponding search direction as:

[image: image47.wmf]11

,

TT

kkkkk

k

T

kk

ygsg

ys

h

b

++

-

=

 (1.11)

[image: image48.wmf]1111

.

TT

kkkk

kkkkk

TT

kkkk

syss

dIgPg

ysys

h

++++

éù

=--+º-

êú

ëû

 (1.12)

Observe that
[image: image49.wmf]1

k

P

+

 in (1.12) is not symmetric and so the known quasi-Newton condition is not satisfied. Therefore, strictly speaking
[image: image50.wmf]1

k

P

+

 is not a memoryless quasi-Newton update. Now, by adding in
[image: image51.wmf]1

k

P

+

 from (1.12) the term
[image: image52.wmf]1

(/)

TT

kkkkk

ysysg

+

-

 we force the symmetry, thus obtaining a new search direction as:

[image: image53.wmf]111

,

kkk

dPg

+++

=-

 (1.13)

known as the symmetrical scaled Perry conjugate gradient direction, where

[image: image54.wmf]1

.

TTT

kkkkkk

kk

TT

kkkk

syysss

PI

ysys

h

+

+

=-+

 (1.14)
Observe that
[image: image55.wmf]1

k

P

+

 is a symmetric matrix, but it does not satisfy the quasi-Newton condition.
In an effort to get efficient conjugate gradient algorithms by forcing the quasi-Newton condition to hold, Shanno [11] and Andrei [12] obtained high performances memoryless BFGS updates and scaled memoryless BFGS preconditioned updates, respectively. The Shanno computational scheme, analyzed in [13], has global convergence for convex functions and inexact line search [14], but in general, it may not converge, even when the line search is exact [15]. However, the Shanno algorithm is convergent if the restarts are used, but the speed of convergence can decrease. On the other hand the computational scheme by Andrei [12], further analyzed in [16], ensures the sufficient descent property for uniformly convex functions and global convergence for general functions under the exact line search. Both algorithms of Shanno and Andrei have good numerical performances being able to solve large-scale unconstrained optimization problems of different structure and complexity. It is worth mentioning here another way of developments for a class of new spectral conjugate gradient methods, which is a modification of the spectral Perry's conjugate gradient method such that it possesses sufficient descent property for any (inexact) line search, presented by Yu in [17] and by Yu, Guan and Chen in [18].

In this paper, we consider another way of developments by not forcing the quasi-Newton condition to hold. Instead, we suggest some adaptive choices for the parameter
[image: image56.wmf]k

h

 in (1.14) in such a way to reduce the distance between the search direction matrix
[image: image57.wmf]1

k

P

+

 and the self-scaled memoryless BFGS update, one of the best variant of the memoryless quasi-Newton methods.
The structure of the paper is as follows. In Section 2 we present a short review of the self-scaled memoryless BFGS update by Oren [19], with Oren and Luenberger [2] and Oren and Spedicato [3] formulae for scaling parameter computation. Section 3 presents adaptive symmetrical scaled Perry conjugate gradient algorithms based on minimizing the difference between the matrix
[image: image58.wmf]1

k

P

+

 and the self-scaling memoryless BFGS update matrix. In Section 4 the global convergence of the algorithm is proved, both for uniformly convex and general nonlinear functions. Section 5 presents numerical results and comparisons of the suggested algorithms versus CG-DESCENT by Hager and Zhang [20], accelerated SCALCG by Andrei [12], CONMIN by Shanno and Phua [21] and ADCG by Andrei [22]. It is proved that this class of algorithms based on a symmetrization of the scaled Perry conjugate gradient direction and on minimizing the distance between this symmetrical scaled Perry conjugate gradient direction matrix and the self-scaling memoryless BFGS update is more efficient and more robust than the conjugate gradient algorithms considered in these studies.
2. Scaled memoryless BFGS update
As we know the quasi-Newton methods are one of the best methods for solving unconstrained optimization problems. They do not require explicit second order derivatives and they have very good local and global convergence properties [23]. Having an approximation
[image: image59.wmf]21

()

kk

Hfx

-

»Ñ

 of the inverse Hessian, these methods determine a new approximation
[image: image60.wmf]21

11

()

kk

Hfx

-

++

»Ñ

 which satisfies the so called secant equation which includes the second order information. The best quasi-Newton method with strong theoretical properties and very favorable numerical performances is BFGS update [4]. This update is given by:

[image: image61.wmf]1

1.

TTTT

kkkkkkkkkkk

kk

TTT

kkkkkk

syHHysyHyss

HH

ysysys

+

æö

+

=-++

ç÷

èø

 (2.1)
In order to improve the performances of this method, the so called scaled quasi-Newton updates have been developed [4]. The purpose of these methods is to improve the condition number of the successive approximations to the inverse Hessian by replacing
[image: image62.wmf]k

H

 in (2.1) with
[image: image63.wmf],

kk

tH

 where
[image: image64.wmf]0

k

t

>

 is known as the scaling parameter. Two very well known and effective formulae for
[image: image65.wmf]k

t

 computation are those given by Oren and Luenberger [2]:

[image: image66.wmf]1

T

kkk

k

T

kk

sHs

t

ys

-

=

, (2.2)
or by Oren and Spedicato [3]:

[image: image67.wmf].

T

kk

k

T

kkk

ys

t

yHy

=

 (2.3)

The scaled BFGS update with one of the above parameters (2.2) or (2.3) is called self-scaling BFGS update [19].
In order to get an efficient method for solving large-scale problems, at every iteration, the matrix
[image: image68.wmf]k

H

 is replaced by the identity matrix thus avoiding saving the matrix
[image: image69.wmf].

k

H

 Therefore the self-scaling memoryless BFGS update is obtained as:

[image: image70.wmf]2

1

1,

k

TTT

k

t

kkkkkk

kkkk

TTT

kkkkkk

y

syysss

HtItt

ysysys

+

æö

+

=-++

ç÷

ç÷

èø

 (2.4)

able to solve large-scale unconstrained optimization problems of different structures and complexities. In this context, the memoryless versions of the scaling parameters (2.2) and (2.3) can be written, respectively as:

[image: image71.wmf]2

,

k

k

T

kk

s

t

ys

=

 (2.5)

[image: image72.wmf]2

,

T

kk

k

k

ys

t

y

=

 (2.6)

where
[image: image73.wmf].

 stands for the Euclidian norm. The self-scaling memoryles BFGS update is given by (2.4), where the scaling parameter
[image: image74.wmf]k

t

 is computed as in (2.5) or (2.6). Using another way of developments as those given by Shanno [11] and Andrei [12] in the following we consider an adaptive choice of the parameter
[image: image75.wmf]k

h

 in (1.14) based on the self-scaling memoryless BFGS update.
3. Adaptive Perry conjugate gradient algorithms
In this Section we deal with an adaptive choice for the parameter
[image: image76.wmf]k

h

 in the Perry symmetrical, scaled memoryless iteration matrix
[image: image77.wmf]1

k

P

+

 given by (1.14). Having in view that the self-scaling memoryless BFGS update is one of the best quasi-Newton methods and observing the similarity between the structures of the search direction matrix
[image: image78.wmf]1

k

P

+

 (1.14) and the self-scaling memoryless BFGS update (2.4), we suggest computing the parameter
[image: image79.wmf]k

h

 as solution of the following minimization problem:

[image: image80.wmf]2

1

0

min,

k

k

F

D

h

+

>

 (3.1)

where
[image: image81.wmf]111

k

t

kkk

DPH

+++

=-

 and
[image: image82.wmf].

F

 is the Frobenius matrix norm. Since
[image: image83.wmf]2

111

(),

T

kkk

F

DtrDD

+++

=

 it follows that the minimization problem (3.1) is equivalent to:

[image: image84.wmf](

)

11

0

min().

k

T

kk

trDD

h

++

>

 (3.2)

From (1.14) and (2.4) we have

[image: image85.wmf]1

,

T

kk

kkk

T

kk

ss

DA

ys

h

+

=+

where

[image: image86.wmf]2

1.

TTTTT

k

kkkkkkkkkk

kkkk

TTTTT

kkkkkkkkkk

y

syyssyysss

AItItt

ysysysysys

æö

+

ç÷

=---+-+

ç÷

èø

Therefore,

[image: image87.wmf]11

TT

TT

kkkk

kkkkkk

TT

kkkk

ssss

DDAA

ysys

hh

++

æöæö

=++

ç÷ç÷

èøèø

[image: image88.wmf]2

2

.

()

TTTT

TT

kkkkkkkk

kkkkkkk

TTT

kkkkkk

ssssssss

AAAA

ysysys

hhh

=+++

Since
[image: image89.wmf]T

kk

AA

 is independent by
[image: image90.wmf],

k

h

after some simple algebraic manipulations we get:

[image: image91.wmf](

)

424242

2

11

223

2222.

()()()

kkkkkk

T

kkkkkkkkk

TTTTT

kkkkkkkkkk

sssyss

trDDtt

ysysysysys

hhhhh

++

=+---

Since the coefficient of
[image: image92.wmf]2

k

h

 is always positive, it follows that the second degree function defining
[image: image93.wmf](

)

11

T

kk

trDD

++

is always convex. Therefore, the unique solution of the minimization problem (3.2) is given by:

[image: image94.wmf]2

22

1.

TT

k

kkkk

kk

T

kk

kk

y

ysys

t

ys

ss

h

éù

=+-+

êú

êú

ëû

 (3.3)

 Observe that if the line search satisfies the Wolfe conditions (1.4) and (1.5), then for any
[image: image95.wmf]0,

k

>

 EMBED Equation.DSMT4 [image: image96.wmf]0.

T

kk

ys

>

 From the Wolfe conditions and the inequality
[image: image97.wmf]22

//,

TT

kkkkkk

yssyys

£

 it follows that
[image: image98.wmf]22

2

/()1.

T

kkkk

syys

>

 Since
[image: image99.wmf]0

k

t

>

 for any
[image: image100.wmf]0,

k

>

 from (3.3) we have that
[image: image101.wmf]1.

k

h

>

Therefore, from (1.13) and (1.14) our algorithm is given by (1.2) where

[image: image102.wmf]111

11

,

TTT

kkkkkk

kkkkk

TTT

kkkkkk

ygsgsg

dgsy

ysysys

h

+++

++

éù

=-+-+

êú

ëû

 (3.4)

and
[image: image103.wmf]k

h

 is computed as in (3.3). Observe that this is a three term search direction..
The parameter
[image: image104.wmf]k

h

 given by (3.3) defines a class of algorithms according to the choices of the scaling parameter
[image: image105.wmf]k

t

 in (3.3). Selecting
[image: image106.wmf]1

k

t

=

 we get:

[image: image107.wmf]2

1

1.

k

k

T

kk

y

ys

h

=+

 (3.5)

On the other hand, selecting
[image: image108.wmf]k

t

 as in (2.5) (Oren-Luenberger) or (2.6) (Oren-Spedicato) respectively we get:

[image: image109.wmf]22

2

2

,

()

T

kk

OL

kk

k

T

kk

k

sy

ys

ys

s

h

=+

 (3.6)

[image: image110.wmf]2

222

()

2.

TT

OS

kkkk

k

kkk

ysys

sys

h

=-+

 (3.7)
Observe that
[image: image111.wmf]1

1.

k

h

³

 Since, as we said,
[image: image112.wmf]22

2

/()1,

T

kkkk

syys

>

 it follows that
[image: image113.wmf]1

OL

k

h

>

 and
[image: image114.wmf]1.

OS

k

h

>

 Notice that for
[image: image115.wmf]1,

k

t

=

 from (1.14) and (2.4),
[image: image116.wmf]1

11

,

kk

PH

++

=

 i.e. for this value of the scaling parameter the symmetrical scaled Perry search direction matrix
[image: image117.wmf]1

k

P

+

 is exactly the self-scaling memoryless BFGS update. Besides, for
[image: image118.wmf]1

kk

hh

=

 the search direction (3.4) satisfies the Dai and Liao [9] conjugacy condition, i.e.
[image: image119.wmf]11

().

TT

kkkk

ydsg

++

=-

 An interesting result is given by the following proposition, showing an optimal property of
[image: image120.wmf]1

.

k

h

Proposition 3.1. If
[image: image121.wmf]1,

k

t

=

 then
[image: image122.wmf]2

1

k

k

T

kk

y

ys

h

=+

 is the unique minimizer of
[image: image123.wmf]1

.

k

D

+

Proof. For
[image: image124.wmf]1,

k

t

=

[image: image125.wmf]2

1

1.

T

k

kk

kk

TT

kkkk

y

ss

D

ysys

h

+

æö

=--

ç÷

ç÷

èø

Therefore, having in view the definition of the induced matrix norm [24] we have:

[image: image126.wmf]2

11

1

max1max,

k

T

kkkkk

T

T

xx

kk

kk

y

DDxssx

ys

ys

h

++

ÎWÎW

æö

==--

ç÷

ç÷

èø

where
[image: image127.wmf]{:1}.

n

xx

W=Î=

¡

 But,
[image: image128.wmf]argmax.

T

k

k

x

k

s

sx

s

ÎW

=±

 Therefore,

[image: image129.wmf]2

1

1.

kk

kkk

T

T

kk

kk

ys

Ds

ys

ys

h

+

æö

=--

ç÷

ç÷

èø

Hence, we can see that
[image: image130.wmf]1

1

argmin.

kk

D

h

+

=

 (
As we have already seen the value of
[image: image131.wmf]k

h

 given by (3.3) ensures that the scaled Perry symmetric iteration matrix
[image: image132.wmf]1

k

P

+

 is as close as possible to the self-scaling memoryless BFGS update
[image: image133.wmf]1

.

k

t

k

H

+

 The search directions of the self-scaling memoryless BFGS algorithm satisfies the descent condition
[image: image134.wmf]0,

T

kk

gd

<

[image: image135.wmf]0,

k

"³

 [4]. Unlike the quasi-Newton methods, in conjugate gradient algorithms the descent condition has a crucial role. Therefore, in the following theorem a value of
[image: image136.wmf]k

h

 is determined in such a way that additionally to minimize the Frobenius norm of the
[image: image137.wmf]1

k

D

+

 matrix it ensures the descent condition of the search direction (3.4).
Theorem 3.1. If
[image: image138.wmf]2

2,

k

k

T

kk

y

ys

h

³

 then the search direction (3.4) satisfies the descent condition, i.e.
[image: image139.wmf]11

0,

T

kk

gd

++

<

[image: image140.wmf]0.

k

"³

Proof. From (3.4) we have:

[image: image141.wmf]2

2

111

111

()()()

2.

TTT

T

kkkkkk

kkkk

TT

kkkk

ygsgsg

gdg

ysys

h

+++

+++

=-+-

 (3.8)

Now, using the classical inequality
[image: image142.wmf]22

1

,

2

T

uvuv

éù

£+

ëû

 where
[image: image143.wmf],

n

uvR

Î

 are arbitrary vectors and considering:

[image: image144.wmf]1

1

(),

2

T

kkk

uysg

+

=

[image: image145.wmf]1

2(),

T

kkk

vsgy

+

=

 (3.9)
we get:

[image: image146.wmf]111111

22

()()()()()[1/2()][2()]

()()

TTTTTTTT

kkkkkkkkkkkkkkkk

TTT

kkkkkk

ygsgygyssgysgsgy

ysysys

++++++

==

[image: image147.wmf]22

22

2

11

22

1

1

22

11

()2()

1()

22

.

()4()

TT

T

kkkkkk

kk

kk

TT

kkkk

ysgsgy

sg

gy

ysys

++

+

+

éù

+

êú

ëû

£=+

Hence,

[image: image148.wmf]2

2

2

1

111

1()

2.

2

T

k

T

kk

kkkk

TT

kkkk

y

sg

gdg

ysys

h

+

+++

éù

£---

êú

êú

ëû

 (3.10)

Therefore, if
[image: image149.wmf]2

2/,

T

kkkk

yys

h

³

 then
[image: image150.wmf]11

0,

T

kk

gd

++

<

 i.e. the search direction satisfies the descent condition. (
Therefore, using the Theorem 3.1 the following simple adaptive strategy for computing the search direction in our algorithm can be presented. Using (3.3) compute:

[image: image151.wmf]2

22

1,

TT

k

kkkk

kk

T

kk

kk

y

ysys

t

ys

ss

h

éù

=+-+

êú

êú

ëû

 (3.11)
where
[image: image152.wmf]1

k

t

=

 or it is given by (2.5) or (2.6).
The value of
[image: image153.wmf]k

h

 is computed in an adaptive manner as follows:

[image: image154.wmf]2

2

,if2/,

2/,otherwise.

T

kkkkk

k

T

kkk

yys

yys

hh

h

ì

>

ï

=

í

ï

î

 (3.12)

Conjugate gradient algorithms are characterized by the fact that the stepsize may differ from 1 in a very unpredictable manner [25]. They can be larger or smaller than 1 depending on how the problem is scaled. In the following we present a short description of an acceleration scheme of conjugate gradient algorithms we have presented in [26]. The acceleration scheme modifies the stepsize
[image: image155.wmf]k

a

 in a multiplicative manner to improve the reduction of the function values along the iterations. In accelerated algorithm instead of (1.2) the new estimation of the minimum point is computed as

[image: image156.wmf]1

kkkkk

xxd

xa

+

=+

, (3.13)

where

[image: image157.wmf]k

k

k

a

b

x

=-

, (3.14)

[image: image158.wmf],

T

kkkk

agd

a

=

[image: image159.wmf](),

T

kkkzk

bggd

a

=--

EMBED Equation.DSMT4[image: image160.wmf]()

z

gfz

=Ñ

 and
[image: image161.wmf]kkk

zxd

a

=+

. Therefore, if
[image: image162.wmf]0,

k

b

¹

 then the new estimation of the solution is computed as
[image: image163.wmf]1

kkkkk

xxd

xa

+

=+

, otherwise
[image: image164.wmf]1

kkkk

xxd

a

+

=+

.

With these, using the definitions of
[image: image165.wmf]g

k

,

EMBED Equation.DSMT4[image: image166.wmf],

k

s

[image: image167.wmf]y

k

and the above developments we can present the following class of conjugate gradient algorithms based on the self-scaling memoryless BFGS update.
Algorithm ACGSSV
	Step 1.
	Select the initial starting point
[image: image168.wmf]0

x

 and compute:
[image: image169.wmf]00

()

ffx

=

 and
[image: image170.wmf]00

().

gfx

=Ñ

 Set
[image: image171.wmf]00

dg

=-

 and
[image: image172.wmf]0.

k

=

 Select a value for the parameter
[image: image173.wmf]e

.

	Step 2.
	Test a criterion for stopping the iterations. For example, if
[image: image174.wmf]k

g

e

¥

£

, then stop; otherwise continue with step 3.

	Step 3.
	Using the Wolfe line search conditions (1.4) and (1.5) determine the stepsize
[image: image175.wmf].

k

a

	Step 4.
	Compute:
[image: image176.wmf]kkk

zxd

a

=+

,
[image: image177.wmf]()

z

gfz

=Ñ

 and
[image: image178.wmf].

kkz

ygg

=-

	Step 5.
	Compute:
[image: image179.wmf]T

kkkk

agd

a

=

, and
[image: image180.wmf]T

kkkk

byd

a

=-

.

	Step 6.
	If
[image: image181.wmf]0,

k

b

¹

 then compute
[image: image182.wmf]/

kkk

ab

x

=-

 and update the variables as
[image: image183.wmf]1

kkkkk

xxd

xa

+

=+

, otherwise update the variables as
[image: image184.wmf]1

kkkk

xxd

a

+

=+

. Compute
[image: image185.wmf]1

k

f

+

 and
[image: image186.wmf]1

.

k

g

+

 Compute
[image: image187.wmf]1

kkk

ygg

+

=-

 and
[image: image188.wmf]1

.

kkk

sxx

+

=-

	Step 7.
	Select a variant of the algorithm, i.e. compute the value of the parameter
[image: image189.wmf]k

t

 as:
[image: image190.wmf]1

k

t

=

 or
[image: image191.wmf]2

/

T

kkkk

tsys

=

 or
[image: image192.wmf]2

/.

T

kkkk

tysy

=

	Step 8.
	Compute
[image: image193.wmf]k

h

 as in (3.12), where
[image: image194.wmf]k

h

 is computed as in (3.11).

	Step 9.
	Compute the search direction
[image: image195.wmf]1

k

d

+

 as in (3.4).

	Step 10.
	Restart criterion. If the restart criterion of Powell
[image: image196.wmf]2

11

0.2

T

kkk

ggg

++

>

 is satisfied, then set
[image: image197.wmf]11

kk

dg

++

=-

.

	Step 11.
	Compute the initial guess
[image: image198.wmf]a

a

k

k

k

k

d

d

=

-

-

1

1

/

,

 set
[image: image199.wmf]k

k

=

+

1

 and continue with step 2. (

Observe that the algorithm ACGSSV includes three variants according to the value of the scaling parameter
[image: image200.wmf],

k

h

 computed as in (3.5), (3.6) or (3.7). When the Powell restart condition [27] is satisfied, then we restart the algorithm with the negative gradient
[image: image201.wmf]1

.

k

g

+

-

 Some more sophisticated reasons for restarting the conjugate gradient algorithms have been proposed in the literature [28]. However, in this paper we are interested in the performance of a conjugate gradient algorithm that uses this restart criterion of Powell associated to a direction determined on the basis of the self-scaling memoryless BFGS update. Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion are sufficient to prove the global convergence of the algorithm. The first trial of the stepsize crucially affects the practical behavior of the algorithm. At every iteration
[image: image202.wmf]1

k

³

 the starting guess for the stepsize
[image: image203.wmf]k

a

 in the line search procedure is computed as
[image: image204.wmf]11

/.

kkk

dd

a

--

 In ACGSSV algorithm we introduced a linear convergent acceleration scheme [26]. The acceleration scheme improves the performances of the algorithm, i.e. the numerical comparisons may drastically be changed by introducing acceleration. However, we are interested to get a good algorithm and to see the performances of it equipped with the above presented acceleration scheme.

4. Global convergence analysis

The global convergence analysis of the above algorithms is based on bounding the norm of the search direction (see [29] or [30]). In this section we prove the global convergence of the above algorithms under the following basic assumptions:

(i) The level set
[image: image205.wmf]{

}

0

:()()

n

SxRfxfx

=Î£

 is bounded.
(ii) In a neighborhood
[image: image206.wmf]N

 of
[image: image207.wmf]S

 the function
[image: image208.wmf]f

 is continuously differentiable and its gradient is Lipschitz continuous, i.e. there exists a constant
[image: image209.wmf]0

L

>

 such that
[image: image210.wmf]()(),

fxfyLxy

Ñ-Ñ£-

 for all
[image: image211.wmf],.

xyN

Î

Since
[image: image212.wmf]{()}

k

fx

 is a decreasing sequence, it is clear that the sequence
[image: image213.wmf]{}

k

x

 generated by the proposed algorithm ACGSSV is contained in
[image: image214.wmf].

S

 Under these assumptions on
[image: image215.wmf]f

 there exists a constant
[image: image216.wmf]0

G³

 such that
[image: image217.wmf]()

fx

Ñ£G

 for all
[image: image218.wmf].

xS

Î

 Notice that the assumption that the function
[image: image219.wmf]f

 is bounded below is weaker than the usual assumption that the level set is bounded.

The following proposition shows that the Wolfe line search always gives a lower bound for the stepsize
[image: image220.wmf].

k

a

Proposition 4.1. Suppose that
[image: image221.wmf]k

d

 is a descent direction and the gradient
[image: image222.wmf]f

Ñ

satisfies the Lipschitz condition

[image: image223.wmf]()()

kk

fxfxLxx

Ñ-Ñ£-

for all
[image: image224.wmf]x

 on the line segment connecting
[image: image225.wmf]k

x

 and
[image: image226.wmf]1

,

k

x

+

 where
[image: image227.wmf]L

 is a positive constant. If the line search satisfies the Wolfe conditions (1.4) and (1.5), then

[image: image228.wmf]2

(1)

.

T

kk

k

k

gd

Ld

s

a

-

³

 (4.1)
Proof. Subtracting
[image: image229.wmf]T

kk

gd

 from both sides of (1.5) and using the Lipschitz continuity we get

[image: image230.wmf]2

1

(1)().

TTT

kkkkkkkkkkk

gdggdydydLd

sa

+

-£-=££

Since
[image: image231.wmf]k

d

 is a descent direction and
[image: image232.wmf]1,

s

<

 we get the conclusion of the proposition ■

The following proposition, often called the Zoutendijk condition, is used to prove the global convergence of the nonlinear conjugate gradient algorithms. Originally, it was obtained by Wolfe [5, 6] and Zoutendijk [31] under the Wolfe line search (1.4) and (1.5). In the following, we shall prove that the Zoutendijk condition holds under the Wolfe line search.

Proposition 4.2. Suppose that
[image: image233.wmf]k

d

 is a descent direction and the gradient
[image: image234.wmf]f

Ñ

satisfies the Lipschitz condition
[image: image235.wmf]()(),

kk

fxfxLxx

Ñ-Ñ£-

 where
[image: image236.wmf]L

 is a positive constant. If the line search satisfies the Wolfe conditions (1.4) and (1.5), then

[image: image237.wmf]2

2

0

()

.

T

kk

k

k

gd

d

³

<+¥

å

 (4.2)
Proof. Using (4.1), from (1.4) we get

[image: image238.wmf]2

2

(1)()

()().

T

kk

kkkk

k

gd

fxfxd

Ld

rs

a

-

-+³

Now, combining this inequality with assumption (i) we obtain (4.2), known as Zoutendijk condition. ■
For uniformly convex functions we can prove that the norm of the direction
[image: image239.wmf]1

k

d

+

 computed as in (3.4) where
[image: image240.wmf]k

h

 is computed as in (3.5) or (3.6) or (3.7) is bounded above.

Theorem 4.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm ACGSSV where the search direction
[image: image241.wmf]k

d

 is given by (3.4) and
[image: image242.wmf]k

h

 is computed as in (3.5) or (3.6) or (3.7). Suppose that
[image: image243.wmf]k

a

 is computed by the Wolfe line search (1.4) and (1.5). Suppose that
[image: image244.wmf]f

 is a uniformly convex function on
[image: image245.wmf],

S

 i.e. there exists a constant
[image: image246.wmf]0

m

>

 such that

[image: image247.wmf]2

(()())()

T

fxfyxyxy

m

Ñ-Ñ-³-

 (4.3)

for all
[image: image248.wmf],.

xyN

Î

 If the search direction
[image: image249.wmf]k

d

 satisfies the descent condition
[image: image250.wmf]0,

T

kk

gd

<

[image: image251.wmf]0,

k

"³

then there exists a positive constant
[image: image252.wmf]M

 such that for any
[image: image253.wmf]0,

k

³

[image: image254.wmf].

k

dM

£

 (4.4)
Proof. From Lipschitz continuity we have
[image: image255.wmf].

kk

yLs

£

 On the other hand, from uniform convexity it follows that
[image: image256.wmf]2

.

T

kkk

yss

m

³

 Now, from (3.5), (3.6), (3.7), Lipschitz continuity, uniform convexity and the Cauchy-Schwarz inequality we have:

[image: image257.wmf]22

2

2

1

2

111,

kk

k

T

kk

k

yLs

L

ys

s

h

m

m

=+£+=+

[image: image258.wmf]22222

2

2

242

22

2

,

()

T

kkkkk

OL

kk

k

T

kk

kkk

sysLsLs

ysL

L

ys

sss

h

m

m

=+£+=+

[image: image259.wmf]222

2

222222

()

223.

TT

kkk

OS

kkkk

k

kkkkkk

ysLs

ysys

L

syssys

h

=-+£++=+

Therefore,
[image: image260.wmf]k

h

 in (3.4) is bounded above. From (3.4) using Lipschitz continuity, uniform convexity and the Cauchy-Schwarz inequality we have:
[image: image261.wmf]1

2.

kk

L

d

h

mm

+

GG

£G++

 Since
[image: image262.wmf]k

h

 in (3.4) is bounded above it follows that
[image: image263.wmf]1

k

d

+

 is bounded above, i.e.
[image: image264.wmf]1

,

k

dM

+

£

 where
[image: image265.wmf]2.

k

L

M

h

mm

GG

ºG++

 Therefore, (4.4) is true. ■
Theorem 4.2. Suppose that the assumptions (i) and (ii) hold. Consider the three term conjugate gradient algorithm (1.2), where for all
[image: image266.wmf]0,

k

³

 the search direction
[image: image267.wmf]k

d

 given by (3.4) is a descent direction and the stepsize
[image: image268.wmf]k

a

 is determined by the strong Wolfe line search conditions. If

[image: image269.wmf]2

0

1

,

k

k

d

³

=¥

å

 (4.5)

then the algorithm converges in the sense that

[image: image270.wmf]liminf0.

k

k

g

®¥

=

 (4.6)

Proof. We proceed by contradiction. Suppose that (4.6) does not hold, i.e. there exists a constant
[image: image271.wmf]0,

g

>

 such that
[image: image272.wmf]k

g

g

³

 for all
[image: image273.wmf]0.

k

³

 From (3.4) we can write:

[image: image274.wmf]11

,

kkkkkk

dgsy

bd

++

=-++

 (4.7)

where

[image: image275.wmf]11

,

TT

kkkk

kk

TT

kkkk

ygsg

ysys

bh

++

=-

[image: image276.wmf]1

.

T

kk

k

T

kk

sg

ys

d

+

=

 (4.8)
From (4.7), using Lipschitz continuity and uniform convexity, we have

[image: image277.wmf]111

kkkkkkkkkkk

dgsysgy

bdbd

+++

=-++³--+

[image: image278.wmf]1

11

T

kk

kkkkkkkkk

T

kk

sg

sgysgy

ys

bdb

+

++

³--³--

[image: image279.wmf]111

1.

kkkkkkk

LL

sggsg

bb

mm

+++

æö

³--=-+

ç÷

èø

Therefore

[image: image280.wmf]11

1.

kkkk

L

sdg

b

m

++

æö

£++

ç÷

èø

 (4.9)

From (4.7) we also have

[image: image281.wmf]2

11111

.

TTT

kkkkkkkkk

gdgsgyg

bd

+++++

=-++

Therefore, using again Lipschitz continuity and uniform convexity, we have

[image: image282.wmf]2

111111111

TTTTTT

kkkkkkkkkkkkkkkkk

gsgyggdgdsgyg

bdbd

+++++++++

=+-£++

[image: image283.wmf]2

1

11111111

.

T

TTTTT

kk

kkkkkkkkkkkkk

T

kk

sgL

gdsgyggdsgg

ys

bb

m

+

++++++++

=++£++

Therefore

[image: image284.wmf]2

1111

1.

TT

kkkkkk

L

ggdsg

b

m

++++

æö

-£+

ç÷

èø

 (4.10)
Now, let us define

[image: image285.wmf].

T

kk

k

k

gd

t

d

=

 (4.11)

Hence, from (4.10) we obtain

[image: image286.wmf]2

1

1

1

11

1.

T

kk

kk

kkk

kkk

dg

gd

L

t

ddd

ba

m

+

+

+

++

æö

-£+

ç÷

èø

Now, using the strong Wolfe line search (1.6), we get

[image: image287.wmf]2

1

1

11

1.

kkk

kk

kk

gs

L

tt

dd

b

s

m

+

+

++

æö

-£+

ç÷

èø

 (4.12)
Using (4.9) in (4.12) we get

[image: image288.wmf]2

111

1

11

(1/)

1.

kkk

kk

kk

gdLg

L

tt

dd

m

s

m

+++

+

++

++

æö

-£+

ç÷

èø

After some simple algebraic manipulations we get

[image: image289.wmf]2

1

1

11

1

11.

k

kkk

kk

g

LL

ttt

gd

ss

mm

+

+

++

éù

æöæö

--+£+

êú

ç÷ç÷

èøèø

ëû

 (4.13)

From Zoutendijk condition (4.2) it follows that

[image: image290.wmf]2

0

.

k

k

t

³

<+¥

å

Therefore,

[image: image291.wmf]lim0.

k

k

t

®¥

=

 (4.14)

From Theorem 4.1 we know that
[image: image292.wmf]k

d

 is bounded. Moreover, since
[image: image293.wmf]k

g

g

³

 for all
[image: image294.wmf]0,

k

³

 from (4.13) it follows that

[image: image295.wmf]1

1

lim110.

k

k

k

LL

t

g

s

mm

®¥

+

éù

æö

--+=

êú

ç÷

èø

ëû

Therefore, there exists an integer
[image: image296.wmf]0

k

 such that

[image: image297.wmf]1

1

11,

2

kk

LL

tg

s

mm

+

æöæö

+£-

ç÷ç÷

èøèø

 (4.15)

for all
[image: image298.wmf]0

.

kk

³

 Hence, from (4.13) we get

[image: image299.wmf]2

1

1

1

2

().

k

kk

k

g

tt

dL

m

s

m

+

+

+

£+

-

Now, from (4.14), we have

[image: image300.wmf]2

1

1

1

00

2

().

k

kk

k

kk

g

tt

dL

m

s

m

+

+

+

³³

£+£+¥

-

åå

 (4.16)

Since
[image: image301.wmf]1

,

k

g

g

+

³

 it follows that (4.16) contradicts (4.5), i.e.
[image: image302.wmf]liminf0.

k

k

g

®¥

=

 ■
The following theorem ensures the sufficient descent property of the iterative method (1.2) and (3.4) for the general nonlinear functions under the exact line search. This result is necessary to complete the convergence analysis of the algorithm given by (1.2) where the search direction is computed as in (3.4).
Theorem 4.3. Suppose that the assumptions (i) and (ii) hold for the objective function
[image: image303.wmf]f

in (1.1). If in the iterative method (1.2) and (3.4) the exact line search is used, then the search directions satisfy the sufficient descent condition
[image: image304.wmf]2

,

T

kkk

gdg

<-

[image: image305.wmf]0.

k

"³

Proof. For
[image: image306.wmf]0,

k

=

[image: image307.wmf]00

dg

=-

 and so
[image: image308.wmf]2

000

.

T

gdg

=-

 If the exact line search is applied, then
[image: image309.wmf]1

0,

T

kk

sg

+

=

[image: image310.wmf]0.

k

"³

 Therefore, from (3.8) we have that
[image: image311.wmf]2

,

T

kkk

gdg

<-

 for any
[image: image312.wmf]1.

k

³

 (
Theorem 4.4. Suppose that the assumptions (i) and (ii) hold for the objective function
[image: image313.wmf]f

 in (1.1). Consider the iterative method (1.2) and (3.4), where
[image: image314.wmf]2

2/,

T

kkkk

yys

h

=

 and the stepsize
[image: image315.wmf]k

a

 is determined by the Wolfe line search conditions (1.4) and (1.5). Then,
[image: image316.wmf]1

k

P

+

 is a nonsingular matrix and the search direction (3.4) satisfies the sufficient descent condition
[image: image317.wmf]2

(1/2).

T

kkk

gdg

£-

Proof. Observe that
[image: image318.wmf]111

,

kkk

dPg

+++

=-

 where
[image: image319.wmf]1

k

P

+

 is given by (1.14). To establish the theorem, at first we show that for all
[image: image320.wmf]0,

k

³

 the eigenvalues of
[image: image321.wmf]1

k

P

+

 are bounded below by a positive constant. From the second Wolfe condition (1.5) we have that
[image: image322.wmf]0,

T

kk

sy

>

 and consequently,
[image: image323.wmf]0

k

s

¹

 and
[image: image324.wmf]0.

k

y

¹

 Therefore, there exists a set of mutually orthogonal unit vectors
[image: image325.wmf]2

1

{}

in

ki

u

-

=

 such that

[image: image326.wmf]0,

TiTi

kkkk

suyu

==

[image: image327.wmf]1,,2,

in

=-

K

which leads to

[image: image328.wmf]1

,

ii

kkk

Puu

+

=

[image: image329.wmf]1,,2.

in

=-

K

Thus, the vectors
[image: image330.wmf],

i

k

u

[image: image331.wmf]1,,2,

in

=-

K

 are the eigenvectors of
[image: image332.wmf]1

k

P

+

 which correspond to the eigenvalue 1. Now, let
[image: image333.wmf]1

k

n

l

-

 and
[image: image334.wmf]k

n

l

 be the two remaining eigenvalues of
[image: image335.wmf]1

.

k

P

+

 Since the trace of a square matrix is equal to the sum of its eigenvalues, from (1.14) we have that

[image: image336.wmf]2

11

()(2)(2).

k

kk

kknn

T

kk

s

trPnn

ys

hll

+-

=-+º-++

Therefore

[image: image337.wmf]1

,

kk

nnkk

b

llh

-

+=

 where
[image: image338.wmf]2

/.

T

kkkk

bsys

=

 (4.17)
On the other hand, the determinant of square matrix is equal to the product of its eigenvalues. Using the formula of algebra [32]:
[image: image339.wmf]det()(1)(1)()(),

TTTTTT

Ipquvqpvupvqu

++=++-

 where

[image: image340.wmf],

kkk

T

kk

ys

p

ys

h

-

=-

[image: image341.wmf],

k

qs

=

[image: image342.wmf]k

T

kk

s

u

ys

=-

 and
[image: image343.wmf],

k

vy

=

from (1.14), after some simple algebraic operations, we have that

[image: image344.wmf]222

11

2

det().

()

kkk

kk

kknn

TT

kkkk

ssy

P

ysys

hll

+-

=-º

Therefore

[image: image345.wmf]1

,

kk

nnkkk

ba

llh

-

=-

 where
[image: image346.wmf]22

2

/().

T

kkkkk

asyys

=

 (4.18)
Observe that
[image: image347.wmf]1.

k

a

>

 If
[image: image348.wmf]2

2/,

T

kkkk

yys

h

³

 then
[image: image349.wmf]1

det()1,

kk

Pa

+

³>

 i.e. the matrix
[image: image350.wmf]1

k

P

+

 is nonsingular. Now, if
[image: image351.wmf]2

2/,

T

kkkk

yys

h

=

 then

[image: image352.wmf]1

20,

kk

nnk

a

ll

-

+=>

 (4.19)

[image: image353.wmf]1

0.

kk

nnk

a

ll

-

=>

 (4.20)
Therefore, all the eigenvalues of
[image: image354.wmf]1

k

P

+

 are strictly positive. Moreover, since
[image: image355.wmf]11

det()1,

kk

knnk

Pa

ll

+-

==>

 it follows that the matrix
[image: image356.wmf]1

k

P

+

 is nonsingular. From the above relations (4.19) and (4.20) the eigenvalues
[image: image357.wmf]1

k

n

l

-

 and
[image: image358.wmf]k

n

l

 satisfy the quadratic equation
[image: image359.wmf]2

20,

kk

aa

ll

-+=

 i.e.

[image: image360.wmf]1

(1),

k

nkkk

aaa

l

-

=--

[image: image361.wmf](1).

k

nkkk

aaa

l

=+-

Observe that
[image: image362.wmf]1

.

kk

nn

ll

-

>

 Besides,

[image: image363.wmf]11

1

.

22

k

kkk

n

kkk

k

nnn

aaa

a

l

lll

--

=³==

+

 (4.21)

Now, from (4.21), for all
[image: image364.wmf]0

k

³

 we have

[image: image365.wmf]22

1111111

1

.

2

TTk

kkkkknkk

gdgPggg

l

+++++++

=-£-£-

Therefore, the search direction (3.4) with
[image: image366.wmf]2

2/

T

kkkk

yys

h

=

 satisfies the sufficient descent condition
[image: image367.wmf]2

111

,

T

kkk

gdcg

+++

£-

 where
[image: image368.wmf]1/2.

c

=

 (
The Theorem 4.4 is necessary to complete the convergence analysis of the proposed algorithm for general nonlinear functions, as described in [30]. Observe that the Theorem 3.1 proves only the descent character of the search direction (3.4) with
[image: image369.wmf]2

2/.

T

kkkk

yys

h

³

 The Theorem 4.4 proves the sufficient descent character of the search direction (3.4) with
[image: image370.wmf]2

2/.

T

kkkk

yys

h

=

5. Numerical results and comparisons

The ACGSSV algorithm was implemented in double precision Fortran using loop unrolling of depth 5 and compiled with f77 (default compiler settings) and run on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained optimization test functions in generalized or extended form presented in [33]. Some of the problems from this collection are taken from [34]. For each test function we have considered 10 numerical experiments with the number of variables increasing as
[image: image371.wmf]1000,2000,,10000.

n

=

K

 The algorithms compared in this section use the Wolfe line search conditions with cubic interpolation [32],
[image: image372.wmf]0.0001,

r

=

[image: image373.wmf]0.8

s

=

 and the same stopping criterion
[image: image374.wmf]6

10,

k

g

-

¥

£

where
[image: image375.wmf].

¥

is the maximum absolute component of a vector.

When the algorithms are compared we can consider at least two points of view: the first is based on the optimal point generated by the algorithm, and the second one is using the objective function value in this point. Since all the algorithms used and compared in this paper generate local solutions, we compare them by using the point of view based on the objective function value in the point determined by each of the algorithms. Therefore, the comparisons of algorithms are given in the following context. Let
[image: image376.wmf]1

ALG

i

f

and
[image: image377.wmf]2

ALG

i

f

 be the optimal value found by ALG1 and ALG2, for problem
[image: image378.wmf]1,,800,

i

=

K

 respectively. We say that, in the particular problem
[image: image379.wmf],

i

 the performance of ALG1 was better than the performance of ALG2 if:

[image: image380.wmf]123

10

ALGALG

ii

ff

-

-<

 (5.1)

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the CPU time of ALG1 was less than the number of iterations, or the number of function-gradient evaluations, or the CPU time corresponding to ALG2, respectively. Possibly, some other points of view for comparing the algorithms can be used, but in this paper we consider this one. Of course, the test problems where the algorithms do not converge to the same function value, according to criterion (5.1), are discarded from comparisons.
Since, CG-DESCENT [35] is among the best nonlinear conjugate gradient algorithms proposed in the literature, but not necessarily the best, in the first set of numerical experiments we compare our algorithm ACGSSV versus CG-DESCENT. Fig. 1 presents the Dolan and Moré’s [36] performance profile of ACGSSV versus CG-DESCENT for
[image: image381.wmf]1

k

t

=

 subject to CPU time metric. Fig. 2 presents the same performance profile of ACGSSV versus CG-DESCENT for
[image: image382.wmf]2

/.

T

kkkk

tsys

=

 Similarly, Fig. 3 presents the performance profile of ACGSSV versus CG-DESCENT for
[image: image383.wmf]2

/.

T

kkkk

tysy

=

In these figures, for every
[image: image384.wmf]1,

t

³

 the performance profile gives the fraction of the test problems that each considered algorithmic variant has a performance within a factor of
[image: image385.wmf]t

 from the best. The left-hand side of the figures gives the percentage of the test problems for which an algorithm is the fastest; the right-hand side gives the percentage of the test problems that are successfully solved by these algorithms. Mainly, the left-hand side is a measure of the efficiency of an algorithm; the right-hand side is a measure of the robustness of an algorithm. Clearly, the top curve corresponds to the algorithm that solved the most problems in a time that was within a factor
[image: image386.wmf]t

 of the best time.

[image: image387.png]095

09

085

08

075

07

065
0

ACGSSV

" CG-DESCENT

ACGSSV CG-DESCENT

Hiter 627 88 56

#fg 468 264 39]
cpu 257 224 290
CPU time metric, 771 problems

4 6 8 10 12 14

Fig. 1. ACGSSV with
[image: image388.wmf]1

k

t

=

 versus CG-DESCENT.
[image: image389.png]095

09
085 -
ACGSSV CG-DESCENT =
Hiter 630 85 56
08 #g 456 277 38
cpu 253 232 286
075
07
CPU time metrics, 771 problems
4 6 8 10 12 14

065
0

Fig. 2. ACGSSV with
[image: image390.wmf]2

/

T

kkkk

tsys

=

 versus CG-DESCENT.
[image: image391.png]068 ACGSSV
*" CG-DESCENT
09
085
ACGSSV CGDESCENT =
siter 626 89 56
08 #g 465 268 38
pu 254 225 292
075
07
H CPU tinte metrie, 771 problemts
4 6 8 10 12 14

065
0

Fig. 3. ACGSSV with
[image: image392.wmf]2

/

T

kkkk

tysy

=

 versus CG-DESCENT.
When comparing ACGSSV versus CD-DESCENT for
[image: image393.wmf]1,

k

t

=

 from Fig. 1, we see that subject to the number of iterations ACGSSV was better in 627 problems (i.e. it achieved the minimum number of iterations for solving 627 problems), CG-DESCENT was better in 88 problems and they achieved the same number of iterations in 56 problems, etc. Out of 800 problems considered in these numerical experiments, only for 771 problems does the criterion (5.1) hold. From Figs. 2 and 3 we see the same behavior of ACGSSV versus CG-DESCENT. In fact, the differences among these three variants of the algorithm ACGSSV determined by
[image: image394.wmf]1

,

k

h

[image: image395.wmf]OL

k

h

 or
[image: image396.wmf]OS

k

h

 are very small. However, intensive numerical experiments show that the variant of ACGSSV with
[image: image397.wmf]1

k

h

 is slightly more efficient and the variant of the algorithm with
[image: image398.wmf]OL

k

h

 is slightly more robust. In comparison with CG-DESCENT, on average, ACGSSV appears to generate the best search direction. We see that this computational scheme based on the minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update lead us to algorithms which substantially outperform the CG-DESCENT, being way more efficient and more robust.
Since all these three variants of ACGSSV algorithm (with
[image: image399.wmf]1

,

k

h

[image: image400.wmf]OL

k

h

 or
[image: image401.wmf]OS

k

h

) have similar performances, in the second set of numerical experiments we compare ACGSSV with
[image: image402.wmf]2

/

T

kkkk

tsys

=

 versus SCALCG (spectral, accelerated) [12] and versus CONMIN [21], respectively. In Figsures 4 and 5 we have the computational evidence that ACGSSV is more efficient and more robust than the BFGS memoryless preconditioned conjugate gradient algorithms SCALCG and CONMIN.
[image: image403.png]1
055
09 ACGSSV
085 \ B
08 i g
{ SCALCG (spectral}
075 H]
orb i ACGSSV SCALCG = i
i #iter 123 530 73
oest f #g 256 159 11 ,
H cpu 333 120 273
o6f § ,
0551 §]
CPU time metric, 726 problems
4 B s 1 1z 14

05
0

2

Fig. 4. ACGSSV with
[image: image404.wmf]2

/

T

kkkk

tsys

=

 versus SCALCG.
[image: image405.png]095

09 1
085 1
08 1

ACGSSV CONMIN -

ors Hiter 346 304 78
#ig 182 514 32

cpu 278 164 286
07 1
065 1

CPU time metric, 728 problems
0 4 6 8 10 12 14

Fig. 5. ACGSSV with
[image: image406.wmf]2

/

T

kkkk

tsys

=

 versus CONMIN.
The search direction in CONMIN by Shanno [11] is exactly the Beale-Powell restart memoryless BFGS quasi-Newton method, where the approximation to the inverse Hessian is reinitialized as the identity matrix at every step. On the other hand, the search direction in SCALCG by Andrei [12] is a scaled memoryless BFGS preconditioned conjugate gradient algorithm, which mainly is a double, positive definite quasi-Newton update scheme using the restart philosophy of Beale-Powell. Both SCALCG and CONMIN are very close to the memoryless quasi-Newton methods. In Figures 4 and 5 we have the numerical evidence that the symmetrical scaled Perry conjugate gradient algorithm ACGSSV based on the self-scaling memoryless BFGS update is far away more efficient and more robust.
In the third set of numerical experiments we compare ACGSSV versus the adaptive conjugate gradient algorithm ADCG [22]. The search direction in ADCG is computed as

[image: image407.wmf]111

11

,

TTT

ADCG

kkkkkk

kkkkk

TTT

kkkkkk

ygsgsg

dgtsy

ysysys

+++

++

éù

=-+--

êú

ëû

 (5.2)
where the parameter
[image: image408.wmf]k

t

is computed in an adaptive manner as:

[image: image409.wmf]22

2

21,if,

()

0,otherwise,

kkk

T

k

k

kk

yys

t

s

ys

tt

ì

-³

ï

=

í

ï

î

 (5.3)
by clustering the eigenvalues of the matrix defining it, and
[image: image410.wmf]1

t

>

 is a positive constant. The stepsize is computed using the classical Wolfe line search conditions, and is modified by an acceleration technique exactly as in ACGSSV algorithm. Figure 6 presents the performance profile of ACGSSV with
[image: image411.wmf]2

/

T

kkkk

tsys

=

 versus ADCG with
[image: image412.wmf]3.

t

=

[image: image413.png]1
095 : \ 1
09 ADCG (tau=3)]
085 H 1
ACGSSV ADCG =
08 #iter 164 241 386 1
#fg 168 303 320
o7sp : \ cpu 125 278 388 q
i ACGSSV
o7 : 1
065
CPU time metric, 791 problems

Fig.6. ACGSSV with
[image: image414.wmf]2

/

T

kkkk

tsys

=

 versus ADCG with
[image: image415.wmf]3.

t

=

Observe that the search direction of the ACGSSV conjugate gradient algorithm given by (3.4) is very similar to the search direction corresponding to ADCG. The sign of the third term in (5.2) is modified in order to ensure the descent property of
[image: image416.wmf]1

.

ADCG

k

d

+

 However, the parameter
[image: image417.wmf]k

h

 in (3.4) is computed by minimizing the difference between the symmetric matrix
[image: image418.wmf]1

k

P

+

 of Perry (1.14) and the self-scaling memoryless BFGS update matrix (2.4). On the other hand, ADCG belongs to another class of conjugate gradient algorithms. The parameter
[image: image419.wmf]k

t

 in (5.2) is computed by clustering the eigenvalues of the matrix defining the search direction (5.2). From Figure 6 we have computational evidence that ADCG conjugate gradient algorithm based on clustering the eigenvalues of the iteration matrix defined by the search direction is clearly more efficient than ACGSSV which is based on the self-scaling memoryless BFGS update. However, ACGSSV is slightly more robust than ADCG. The difference between ACGSSV and ADCG is substantial. ACGSSV tries to improve the condition number of the successive approximations to the inverse Hessian
[image: image420.wmf]1

k

H

+

 by scaling this matrix as
[image: image421.wmf],

kk

tH

 where
[image: image422.wmf]0

k

t

>

 is the scaling parameter given by Oren and Luenberger [2], or Oren and Spedicato [3]. On the other hand, ADCG tries to improve the condition number of
[image: image423.wmf]1

k

H

+

by clustering its eigenvalues. Clustering the eigenvalues of the iteration matrix determined by the search direction is one of the most important ingredients in designing efficient conjugate gradient algorithms [22, 37].
In the last set of numerical experiments we present comparisons between ACGSSV with
[image: image424.wmf]2

/

T

kkkk

tsys

=

 versus CG-DESCENT conjugate gradient algorithms for solving some applications from the MINPACK-2 test problem collection [38]. In Table 1 we present these applications, as well as the values of their parameters.
Table 1
Applications from the MINPACK-2 collection.
	A1
	Elastic–plastic torsion [39, pp. 41–55],
[image: image425.wmf]5

c

=

	A2
	Pressure distribution in a journal bearing [40],
[image: image426.wmf]10,

b

=

[image: image427.wmf]0.1

e

=

	A3
	Optimal design with composite materials [41],
[image: image428.wmf]0.008

l

=

	A4
	Steady-state combustion [42, pp. 292–299], [43],
[image: image429.wmf]5

l

=

	A5
	Minimal surfaces with Enneper conditions [44, pp. 80–85]

The infinite-dimensional version of these problems is transformed into a finite element approximation by triangulation. Thus a finite-dimensional minimization problem is obtained whose variables are the values of the piecewise linear function at the vertices of the triangulation. The discretization steps are
[image: image430.wmf]1,000

nx

=

 and
[image: image431.wmf]1,000,

ny

=

 thus obtaining minimization problems with 1,000,000 variables. A comparison between ACGSSV (Powell restart criterion,
[image: image432.wmf]6

()10,

k

fx

-

¥

Ñ£

[image: image433.wmf]0.0001,

r

=

 EMBED Equation.DSMT4 [image: image434.wmf]0.8

s

=

,
[image: image435.wmf]2

/

T

kkkk

tsys

=

) and CG-DESCENT (version 1.4, Wolfe line search, default settings,
[image: image436.wmf]6

()10,

k

fx

-

¥

Ñ£

) for solving these applications is given in Table 2.

Table 2
Performance of ACGSSV versus CG-DESCENT.
1,000,000 variables.
[image: image437.wmf]2

/.

T

kkkk

tsys

=

 CPU seconds.

	
	ACGSSV
	CG-DESCENT

	
	#iter
	#fg
	cpu
	#iter
	#fg
	cpu

	A1
	1113
	2257
	354.95
	1145
	2291
	474.64

	A2
	2845
	5718
	1159.18
	3370
	6741
	1835.51

	A3
	5906
	12087
	3609.19
	4814
	9630
	3949.71

	A4
	1413
	2864
	2023.27
	1802
	3605
	3786.25

	A5
	1608
	3361
	755.75
	1225
	2451
	753.75

	TOTAL
	12885
	26287
	7902.34
	12356
	24718
	10799.86

From Table 2, we see that, subject to the CPU time metric, the ACGSSV algorithm is top performer and the difference is significant, about 2897.52 seconds for solving all these five applications. It is worth saying that intensive numerical experiments for solving the applications from MINPACK-2 collection with different values of the parameter
[image: image438.wmf]k

t

 (i.e.
[image: image439.wmf]1

k

t

=

 or
[image: image440.wmf]2

/

T

kkkk

tysy

=

) mainly yield similar results concerning the numerical performances of ACGSSV algorithm. In all cases, for all these numerical experiments, ACGSSV was top performer versus CG-DESCENT.

The ACGSSV and CG-DESCENT algorithms (and codes) are different in many respects. Since both of them use the Wolfe line search (however, implemented in different manners), these algorithms mainly differ in their choice of the search direction. The search direction
[image: image441.wmf]1

k

d

+

 given by (3.4) where the parameter
[image: image442.wmf]k

h

 is computed as in (3.12) is more elaborate: it is descent and it is as close as possible by the search direction corresponding to the self-scaling memoryless BFGS update. On the other hand, the search direction in CG-DESCENT is a simple ad-hoc modification of the Hestenes and Stiefel algorithm.
6. Conclusions
In the panoply of the conjugate gradient algorithms we placed a new one based on symmetrization of the scaled Perry conjugate gradient direction which depends by a positive parameter. The value of this parameter is obtained by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update. The scaling parameter in self-scaling memoryless BFGS update by Oren [19] is selected as those given by Oren and Luenberger [2] or Oren and Spedicato [3]. On the other hand, the parameter in scaled symmetrical Perry search direction matrix is computed in an adaptive manner in such a way to minimize the distance between this direction matrix and the self-scaling memoryless BFGS matrix, and to satisfy the descent condition. To improve the performances of the algorithm an acceleration scheme is included. The global convergence of the corresponding ACGSSV algorithm is proved both for uniformly convex functions and for general nonlinear functions. The numerical experience with ACGSSV, using 800 unconstrained optimization test problems and 5 large-scale applications from MINPACK-2 collection, prove that this adaptive computational scheme is more efficient and more robust than the well known CG-DESCENT [35], SCALCG [12] and CONMIN [21] conjugate gradient algorithms. On the other hand, comparisons of ACGSSV versus the adaptive conjugate gradient algorithm ADCG [22], based on clustering the eigenvalues of the corresponding iteration matrix, show that ADCG is more efficient and slightly more robust. Both these algorithms, ACGSSV and ADCG, are adaptive algorithms in a similar way. However, in ADCG algorithm the parameter is selected to cluster the eigenvalues of the iteration matrix. On the other hand in ACGSSV the parameter is computed to get the search direction as close as possible to the self-scaled memoryless BFGS approximation to the iteration matrix. Both these approaches based on closeness to the self-scaled BFGS approximation to the iteration matrix, and clustering the eigenvalues of the iteration matrix determined by the search direction are important ingredients in designing efficient conjugate gradient algorithms. In the same way of development another conjugate gradient algorithm can be obtained by using a hybridization of the scaling parameter given by Oren and Spedicato [3] and that suggested by Babaie-Kafaki [45].
References
[1] A. Perry, A modified conjugate gradient algorithm. Operations Research 26 (1978) 1073-1078.

[2] S.S. Oren, D. G. Luenberger, Self-scaling variable metric (SSVM) algorithms. I. Criteria and sufficient conditions for scaling a class of algorithms. Management Science 20 (1973/74) 845-862.

[3] S.S. Oren, E. Spedicato, Optimal conditioning of self-scaling variable metric algorithms. Mathematical Programming 10 (1976) 70-90.
[4] N. Andrei, Criticism of the Unconstrained Optimization Algorithms Reasoning. Editura Academiei Române, Bucureşti, 2009.
[5] P. Wolfe, Convergence conditions for ascent methods. SIAM Review 11 (1969) 226-235.

[6] P. Wolfe, Convergence conditions for ascent methods. II: Some corrections. SIAM Review 13 (1971) 185-188.

[7] W.W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods. Pacific Journal of Optimization 2 (2006) 35-58.

[8] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards 49 (1952) 409-436.

[9] Y.H. Dai, L.Z. Liao, New conjugate conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001) 87-101.

[10] H.D. Sherali, O. Ulular, Conjugate gradient methods using quasi-Newton updates with inexact line search. Journal of Mathematical Analysis and Applications 150 (1990) 359-377.

[11] D.F. Shanno, Conjugate gradient methods with inexact searches. Math. Oper. Res. 3 (1978) 244-256.

[12] N. Andrei, Scaled conjugate gradient algorithms for unconstrained optimization. Computational Optimization and Applications 38 (2007) 401-416.

[13] D.F. Shanno, Globally convergent conjugate gradient algorithms. Mathematical Programming 33 (1985) 61-67.

[14] D.F. Shanno, On the convergence of a new conjugate gradient algorithm. SIAM J. Numer. Anal. 15 (1978) 1247-1257.

[15] M.J.D. Powell, Nonconvex minimization calculations and the conjugate gradient method. In: Lecture Notes in Mathematics vol. 1066, Springer-Verlag, Berlin (1984) 122-141.

[16] S. Babaie-Kafaki, A note on the global convergence theorem of the scaled conjugate gradient algorithms proposed by Andrei. Comput. Optim. Appl. 52 (2012) 409-414.
[17] Yu, G.H., Nonlinear self-scaling conjugate gradient methods for large-scale optimization problems. Ph.D. Thesis, Sun Yat-Sen University, 2007.

[18] Yu, G.H., Guan, L., Chen, W., Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization. Optimization Methods and Software 23 (2) (2008) 275-293.

[19] S.S. Oren, Self-scaling variable metric (SSVM) algorithms. II. Implementation and experiments. Management Science 20 (1974) 863-874.
[20] W.W. Hager, H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on Optimization 16 (2005) 170-192.

[21] D.F. Shanno, K.H. Phua, Algorithm 500, minimization of unconstrained multivariate functions. ACM Trans. Math. Soft. 2 (1976) 87-94
[22] N. Andrei, An adaptive conjugate gradient algorithm for large-scale unconstrained optimization. Journal of Computational and Applied Mathematics 292 (2016) 83-91.
[23] J. Nocedal, S.J. Wright, Numerical optimization. (2nd ed.). Springer Series in Optimizations Research. Springer Science+Business Media, New York, 2006.

[24] C.D. Meyer, Matrix analysis and applied linear algebra. SIAM, Philadelphia, 2000.

[25] J. Nocedal, Conjugate gradient methods and nonlinear optimization. In Linear and nonlinear Conjugate Gradient related methods, L. Adams and J.L. Nazareth (Eds.) SIAM 1996 9-23.

[26] N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation 213(2009) 361-369.

[27] M.J.D. Powell, Restart procedures of the conjugate gradient method. Mathematical Programming 2 (1977) 241-254.

[28] Y.H. Dai, L.Z. Liao, D. Li, On restart procedures for the conjugate gradient method. Numerical Algorithms 35 (2004) 249-260.

[29] J.C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods for optimization. SIAM Journal on Optimization 2 (1992) 21-42.

[30] Y. Dai, J. Han, G. Liu, D. Sun, H. Yin, Y-X, Yuan. Convergence properties of nonlinear conjugate gradient methods. SIAM Journal on Optimization 10 (1999) 345-358.
[31] Zoutendijk, G., Nonlinear programming, computational methods. In J. Abadie (Ed.), Integer and Nonlinear Programming, North-Holland, (1970), 37-86.

[32] W. Sun, Y.X. Yuan, Optimization Theory and Methods. Nonlinear Programming. Springer Science + Business Media, New York, 2006.

[33] N. Andrei, An unconstrained optimization test functions collection. Advanced Modeling and Optimization 10 (2008) 147-161.

[34] N.I.M. Gould, D. Orban, P.L. Toint, CUTEr: A constrained and unconstrained testing environment, revised. ACM Transactions on Mathematical Software 29 (2003) 373-394.
[35] W.W. Hager, H. Zhang, Algorithm 851: CG-DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. 32 (2006) 113-137.

[36] E. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles. Mathematical Programming 91 (2002) 201-213.

[37] N. Andrei, Eigenvalues versus singular values study in conjugate gradient algorithms for large-scale unconstrained optimization. Optimization Methods and Software, 2016 [DOI: 10.1080/10556788.2016.1225211].
[38] B.M. Averick, R.G. Carter, J.J. Moré, G.L. Xue, The MINPACK-2 test problem collection, Mathematics and Computer Science Division, Argonne National Laboratory, Preprint MCS-P153-0692, June 1992.
[39] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, Berlin, 1984.
[40] G. Cimatti, On a problem of the theory of lubrication governed by a variational inequality, Applied Mathematics and Optimization 3 (1977) 227–242.

[41] J. Goodman, R. Kohn, L. Reyna, Numerical study of a relaxed variational problem from optimal design, Computer Methods in Applied Mechanics and Engineering 57 (1986) 107–127.

[42] R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Oxford, 1975.
[43] J. Bebernes, D. Eberly, Mathematical Problems from Combustion Theory. In: Applied Mathematical Sciences, 83, Springer-Verlag, 1989.
[44] J.C.C. Nitsche, Lectures on Minimal Surfaces, Vol. 1, Cambridge University Press, 1989.

[45] S. Babaie-Kafaki, A modified scaling parameter for the memoryless BFGS updating formula. Numerical Algorithms 72 (2016) 425-433.
October 5, 2016
PAGE
11

_1511328084.unknown

_1526826505.unknown

_1527057472.unknown

_1536574162.unknown

_1536574750.unknown

_1536576989.unknown

_1536577424.unknown

_1536577636.unknown

_1537000476.unknown

_1537000534.unknown

_1557208124.unknown

_1536577837.unknown

_1536577955.unknown

_1536578159.unknown

_1536577731.unknown

_1536577510.unknown

_1536577622.unknown

_1536577445.unknown

_1536577296.unknown

_1536577395.unknown

_1536577216.unknown

_1536575460.unknown

_1536576610.unknown

_1536576846.unknown

_1536576337.unknown

_1536575342.unknown

_1536575399.unknown

_1536574865.unknown

_1536574326.unknown

_1536574481.unknown

_1536574631.unknown

_1536574402.unknown

_1536574206.unknown

_1536574265.unknown

_1536574180.unknown

_1536498568.unknown

_1536554852.unknown

_1536554957.unknown

_1536574147.unknown

_1536554867.unknown

_1536554545.unknown

_1536554796.unknown

_1536498569.unknown

_1527080644.unknown

_1536476322.unknown

_1536479013.unknown

_1536498567.unknown

_1527080657.unknown

_1528032275.unknown

_1527057492.unknown

_1527057651.unknown

_1527057704.unknown

_1527057479.unknown

_1526919465.unknown

_1526921344.unknown

_1526922007.unknown

_1526996518.unknown

_1526996599.unknown

_1527057455.unknown

_1526996633.unknown

_1526996588.unknown

_1526964115.unknown

_1526971152.unknown

_1526971346.unknown

_1526971470.unknown

_1526970667.unknown

_1526922288.unknown

_1526922330.unknown

_1526922510.unknown

_1526922314.unknown

_1526922020.unknown

_1526921672.unknown

_1526921735.unknown

_1526921777.unknown

_1526921683.unknown

_1526921447.unknown

_1526921460.unknown

_1526921404.unknown

_1526919759.unknown

_1526920782.unknown

_1526921276.unknown

_1526921292.unknown

_1526920999.unknown

_1526919949.unknown

_1526920304.unknown

_1526920401.unknown

_1526920317.unknown

_1526920075.unknown

_1526920259.unknown

_1526919948.unknown

_1526919577.unknown

_1526919649.unknown

_1526919679.unknown

_1526919632.unknown

_1526919545.unknown

_1526919563.unknown

_1526919501.unknown

_1526919230.unknown

_1526919341.unknown

_1526919400.unknown

_1526919431.unknown

_1526919353.unknown

_1526919247.unknown

_1526919315.unknown

_1526918959.unknown

_1526919061.unknown

_1526919118.unknown

_1526919179.unknown

_1526918999.unknown

_1526841975.unknown

_1526918912.unknown

_1526828772.unknown

_1511452013.unknown

_1511776804.unknown

_1525527947.unknown

_1525669233.unknown

_1526308624.unknown

_1526822286.unknown

_1526822312.unknown

_1526822578.unknown

_1526823978.unknown

_1526822442.unknown

_1526822294.unknown

_1526821131.unknown

_1525672414.unknown

_1525767305.unknown

_1526196745.unknown

_1526196761.unknown

_1526196724.unknown

_1525673718.unknown

_1525669480.unknown

_1525672142.unknown

_1525669446.unknown

_1525542755.unknown

_1525543921.unknown

_1525586925.unknown

_1525586974.unknown

_1525544255.unknown

_1525543008.unknown

_1525528132.unknown

_1525530419.unknown

_1525530754.unknown

_1525528512.unknown

_1525528084.unknown

_1511884279.unknown

_1525526851.unknown

_1525527003.unknown

_1525527268.unknown

_1525527875.unknown

_1525527267.unknown

_1525526885.unknown

_1525526249.unknown

_1525526328.unknown

_1525526397.unknown

_1525526264.unknown

_1511884291.unknown

_1511848332.unknown

_1511848722.unknown

_1511849863.unknown

_1511850432.unknown

_1511850511.unknown

_1511850540.unknown

_1511850389.unknown

_1511848733.unknown

_1511848383.unknown

_1511848559.unknown

_1511848350.unknown

_1511847978.unknown

_1511848314.unknown

_1511847335.unknown

_1511775967.unknown

_1511776118.unknown

_1511776586.unknown

_1511776641.unknown

_1511776353.unknown

_1511776004.unknown

_1511776084.unknown

_1511775467.unknown

_1511775677.unknown

_1511775696.unknown

_1511775610.unknown

_1511775525.unknown

_1511674775.unknown

_1511775242.unknown

_1511775429.unknown

_1511674796.unknown

_1511591638.unknown

_1511591706.unknown

_1511591683.unknown

_1511452099.unknown

_1511338708.unknown

_1511340609.unknown

_1511352307.unknown

_1511425056.unknown

_1511450661.unknown

_1511451240.unknown

_1511451381.unknown

_1511451547.unknown

_1511451239.unknown

_1511451238.unknown

_1511425189.unknown

_1511425318.unknown

_1511425103.unknown

_1511353654.unknown

_1511370170.unknown

_1511376507.unknown

_1511417992.unknown

_1511418242.unknown

_1511418302.unknown

_1511377981.unknown

_1511378016.unknown

_1511377125.unknown

_1511376383.unknown

_1511364287.unknown

_1511365269.unknown

_1511365308.unknown

_1511359344.unknown

_1511353223.unknown

_1511353417.unknown

_1511352991.unknown

_1511353087.unknown

_1511346967.unknown

_1511347284.unknown

_1511351927.unknown

_1511352138.unknown

_1511347349.unknown

_1511351889.unknown

_1511346998.unknown

_1511341343.unknown

_1511341461.unknown

_1511340935.unknown

_1511340185.unknown

_1511340544.unknown

_1511340587.unknown

_1511340443.unknown

_1511338926.unknown

_1511340033.unknown

_1511338760.unknown

_1511332704.unknown

_1511334612.unknown

_1511338599.unknown

_1511338669.unknown

_1511338533.unknown

_1511333643.unknown

_1511333786.unknown

_1511332985.unknown

_1511331029.unknown

_1511331107.unknown

_1511331273.unknown

_1511331039.unknown

_1511331014.unknown

_1511331021.unknown

_1511330024.unknown

_1511330365.unknown

_1511329490.unknown

_1506144754.unknown

_1511255521.unknown

_1511257608.unknown

_1511259705.unknown

_1511327278.unknown

_1511327368.unknown

_1511259765.unknown

_1511259483.unknown

_1511259631.unknown

_1511259347.unknown

_1511256421.unknown

_1511257093.unknown

_1511257373.unknown

_1511256973.unknown

_1511255657.unknown

_1511255688.unknown

_1511255648.unknown

_1511252574.unknown

_1511253308.unknown

_1511254386.unknown

_1511255351.unknown

_1511253491.unknown

_1511254029.unknown

_1511253394.unknown

_1511252975.unknown

_1511253029.unknown

_1511252643.unknown

_1511252388.unknown

_1511252481.unknown

_1511252531.unknown

_1511252430.unknown

_1506147957.unknown

_1511252274.unknown

_1511252357.unknown

_1509947255.unknown

_1509947300.unknown

_1509947361.unknown

_1506179441.unknown

_1506147687.unknown

_1506147707.unknown

_1506147675.unknown

_1506145197.unknown

_1506147644.unknown

_1388302933.unknown

_1471245499.unknown

_1472318981.unknown

_1472327070.unknown

_1496833900.unknown

_1505889046.unknown

_1506144729.unknown

_1497245161.unknown

_1472327136.unknown

_1472327280.unknown

_1472327281.unknown

_1472327146.unknown

_1472327101.unknown

_1472318995.unknown

_1472319241.unknown

_1472319573.unknown

_1472319012.unknown

_1472318986.unknown

_1471245683.unknown

_1471245703.unknown

_1472318541.unknown

_1472318586.unknown

_1472318957.unknown

_1472318563.unknown

_1472318511.unknown

_1471245693.unknown

_1471245521.unknown

_1471245582.unknown

_1471245568.unknown

_1471245511.unknown

_1471164201.unknown

_1471164570.unknown

_1471164894.unknown

_1471245475.unknown

_1471245486.unknown

_1471166201.unknown

_1471244370.unknown

_1471244427.unknown

_1471244331.unknown

_1471164937.unknown

_1471164603.unknown

_1471164657.unknown

_1471164586.unknown

_1471164493.unknown

_1471164550.unknown

_1471164462.unknown

_1388303530.unknown

_1471163280.unknown

_1471163319.unknown

_1471163354.unknown

_1471163413.unknown

_1471163298.unknown

_1388303721.unknown

_1388303798.unknown

_1471075181.unknown

_1388303573.unknown

_1388302948.unknown

_1296223116.unknown

_1314768351.unknown

_1388302886.unknown

_1388302903.unknown

_1388302925.unknown

_1388302732.unknown

_1388302860.unknown

_1388302256.unknown

_1315285278.unknown

_1314768047.unknown

_1314768213.unknown

_1314768222.unknown

_1314768053.unknown

_1307516407.unknown

_1314768006.unknown

_1314768027.unknown

_1307516429.unknown

_1296223121.unknown

_1254288320.unknown

_1296223109.unknown

_1296223112.unknown

_1296223115.unknown

_1296223111.unknown

_1254292253.unknown

_1265302100.unknown

_1265302740.unknown

_1254292389.unknown

_1254292487.unknown

_1254292371.unknown

_1254288745.unknown

_1254291090.unknown

_1254288640.unknown

_1254252883.unknown

_1254253142.unknown

_1254253241.unknown

_1254288142.unknown

_1254288181.unknown

_1254253231.unknown

_1254252961.unknown

_1254253104.unknown

_1254252903.unknown

_1254251797.unknown

_1254252868.unknown

_1254252130.unknown

_1223122826.unknown

_1254251418.unknown

_1223122825.unknown

