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Abstract. The memory-less SR1 with generalized secant equation (MM-SR1gen) is 

presented and developed together with its numerical performances for solving a collection of 

800 unconstrained optimization problems with the number of variables in the range [1000, 

10000]. The convergence of the MM-SR1gen method is proved under the classical 

assumptions. Comparison between the MM-SR1gen versus the memory-less SR1 method, 

versus the memory-less BFGS method and versus the BFGS in implementation of Shanno 

and Phua from CONMIN show that MM-SR1gen is more efficient and more robust than 

these algorithms. By solving five applications from MINPACK-2 collection, each of them 

with 40,000 variables, we have the computational evidence that MM-SR1gen is more 

efficient than memory-less SR1 and than memory-less BFGS. The conclusion of this study is 

that the memory-less SR1 method with generalized secant equation is a rapid and reliable 

method for solving large-scale minimizing problems. Besides, it is shown that the accuracy of 

the Hessian approximations along the iterations in quasi-Newton methods is not as crucial in 

these methods as it is believed. 
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1 Introduction 

For solving the unconstrained optimization problem    

 

                                                              min ( ),f x                                                             (1) 

 

where nx  and : nf   is a continuously differentiable function, bounded from 

below, one of the most efficient methods is the quasi-Newton methods. Plenty of quasi-

Newton methods are known. In these methods the search direction 1kd   is computed as 

solution of the following linear algebraic system 

 

                                                           1 1 1,k k kB d g                                                          (2) 
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where 1kB   is an approximation to the Hessian 2
1( )kf x   and 1kg   is the gradient 

1( )kf x   of the minimizing function, or directly as  

 

                                                           1 1 1,k k kd H g                                                         (3) 

 

where 1kH   is an approximation to the inverse Hessian, 1
1( ) ,kf x 
  i.e. 1

1 1.k kH B
   

Starting with an initial point 0x  the next approximation 1kx   to *,x  solution of (1), is 

computed as 

                                                 1 ,k k k kx x d       0,1,...,k                                               (4) 

 

where k  is the stepsize often computed by the Wolfe line search [36, 37]: 

 

                                               ( ) ( ) ,T
k k k k k k kf x d f x g d                                           (5a) 

                                               ( ) ( ) ,T T
k k k k k kf x d d f x d                                            (5b) 

 

where 0 1     are some parameters. Usually, 0 0.d g    

 

The quasi-Newton algorithms are efficient and robust for minimizing functions that 

satisfy certain assumptions and have a super-linear rate of local convergence. Currently, 

many variants of the updating formula for the approximation to the Hessian (or to the 

inverse Hessian) are known: symmetric rank-one (SR1) [9, 15, 16, 18] and the rank-two 

such as the Davidon-Fletcher-Powell (DFP) update [16, 19], Powell-symmetric-Broyden 

(PSB) [30] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [10, 20, 22, 31]. 

A unifying framework for many of these updates, including both rank-one and rank-two 

updates was given by Huang [24]. All these quasi-Newton methods are based on secant 

equation which is a formula linking the displacements 1k k ks x x   and the change of 

gradients 1k k ky g g   under the curvature condition. These updates have been very 

intensive studied and in general it is accepted that the BFGS method is the most efficient 

and robust for solving minimizing problems with differential functions. However, the 

main drawback of BFGS is that it is limited for solving minimizing problems with a 

small or a medium number of variables (let say 1000 variables). It requires a large 

amount of memory and therefore it involves a large amount of numerical operations. 

 

The purpose of the paper is to introduce and study the memory-less symmetric-rank one 

SR1 quasi-Newton methods with generalized secant equation, as a technique for solving 

large-scale minimizing problems and to show their performances for solving large-scale 

unconstrained optimization problems. The structure of the paper is as follows. Section 2 

describes the SR1 method. Section 3 is devoted to the memory-less SR1 method. In 

Section 4 the memory-less SR1 with generalized secant equation method is introduced. 

Section 5 is dedicated to the memory-less BFGS method. The memory-less SR1, the 

memory-less SR1 with generalized secant equation and the memory-less BFGS 

algorithms are presented in Section 6. The convergence of the memory-less SR1 method 

with generalized secant equation is described in Section 7. The global convergence is 
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proved under classical assumptions. The numerical results and comparisons among the 

algorithms are detailed in Section 8. For solving a collection of 800 unconstrained 

optimization problems up to 10000 variables we have the computational evidence that the 

memory-less SR1 method with generalized secant equation is more efficient and more 

robust than the memory-less SR1 method and the memory-less BFGS method. 

Comparing memory-less SR1 with generalized secant equation versus the BFGS from 

CONMIN [34, 35] shows that, for solving problems up to 1000 variables, memory-less 

SR1 with generalized secant equation is way more efficient and more robust. This section 

also presents the performances of these algorithms for solving five applications from 

MINPACK-2 collection, each of them with 40,000 variables. The conclusion of this 

study is that the memory-less SR1 method with generalized secant equation is a simple 

and efficient technique for solving large-scale problems. Besides, it seems that the 

accuracy of the Hessian approximations along the iterations in quasi-Newton methods is 

not as crucial in these methods as it is believed. 

 

2 Symmetric rank-one SR1 method 

In the quasi-Newton methods the basic requirement for the updating formula to the 

Hessian is the so called the secant equation, to be satisfied at each iteration, namely 

 

                                                  1k k kB s y      or    1 ,k k kH y s                                           (6) 

 

where 1k k ks x x   and 1 .k k ky g g   The secant equation (6) is obtained from the 

requirement that the gradient of the quadratic model of the minimizing function should 

match the gradient of the minimizing function at the latest two iterations kx  and 1.kx   

 

The symmetric rank-one SR1 update formula, in which we are interested in this paper, 

can be derived as solution of the following simple problem. “Given a symmetric matrix 

kB  and the vectors ks  and ,ky  finds a new symmetric matrix 1kB   such that 1k kB B   has 

rank one and such that the secant equation 1k k kB s y   is satisfied.” It is easy to see that if 

( ) 0,T
k k k ky B s s   then the unique solution of the above problem is 

 

                                            1

( )( )
.

( )

T
k k k k k k

k k T
k k k k

y B s y B s
B B

y B s s


 
 


                                        (7) 

 

If k k ky B s  then the solution is 1 .k kB B   However, if ( ) 0T
k k k ky B s s   and ,k k ky B s  

then there is no solution to the problem.  

 

The main drawbacks of SR1 update are as follows. 

1) The denominator ( )T
k k k ky B s s  of the SR1 update term in (7) may vanish, i.e. 

( ) 0T
k k k ky B s s  , cases in which 1kB   is not well-defined.  

2) The step directions computed by using the SR1 updating formula given by (7) may no 

longer be uniform linear independent, thus leading to slow down the convergence or even 

the stalling.  
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3) The SR1 Hessian approximation may not be positive definite along the iterations, thus 

resulting a direction that does not produce descent. 

 

To prevent the method from failing due to the first drawback one simple remedy is to set 

1 .k kB B   However, possible this will slow down the convergence of the method. Conn, 

Gould and Toint [13] and Khalfan, Byrd and Schnabel [26] showed that the denominator 

of (7) vanishes rarely in practice and setting 1k kB B   does not have a significant impact 

on the performances of the SR1 method subject to the number of the iterations or 

runtimes. 

The second drawback is more delicate, being in close connection with the uniform linear 

independence of the search directions generated by the SR1 algorithm. A more precise 

definition of the uniform linear independence was given by Conn, Gould and Toint [13]. 

“A sequence { }ks  is uniformly linearly independent if there exist 0,   0k  and m n  

such that, for each 0,k k  there is n  distinct indices 1 2 nk k k k k m       for which 

the minimum singular value of the matrix 1

1

, , n

n

kk

k k

ss
S

s s

 
 
 
 

 is at least . ” Conn, Gould 

and Toint [13] proved that the sequence of matrices generated by the SR1 formula 

converges to the exact Hessian, when the sequence of iterates converges to a limit point 

and the sequence of steps is uniformly linearly independent. Kelley and Sachs [25] 

provide similar convergence results removing the first of these assumptions. Fiacco and 

McCormick [18] showed that if the search directions are linearly independent and the 

denominator of (7) is always non-zero, then the SR1 method without line searches 

minimize a strongly convex quadratic function in at most 1n   steps. In this case 1nB   is 

exactly the Hessian of the quadratic function. Observe that this result is significant since 

it does not require exact line search, as is the case for the BFGS update. Generally, the 

above condition given by the definition of the uniform linear independency is not 

implemented in practice, it serves only as one of the main assumptions of a proof that the 

SR1 approximations to the Hessian converge to the true Hessian as the iterates converge 

to the solution of (1). 

Subject to the uniform linear independency of the search directions Khalfan, Byrd and 

Schnabel [26] showed that many problems do not satisfy this requirement, but they 

proved the local convergence of the SR1 method using only the positive definiteness and 

boundedness assumptions for the approximate Hessian. More than this Conn, Gould and 

Toint [13] proved that if the minimizing function f  is twice continuously differentiable 

and its Hessian is bounded and Lipschitz continuous and the iterates generated by the 

SR1 method converge to a point *x  and in addition for all ,k  

 

                                             ( ) ,T
k k k k k k k ky B s s y B s s                                            (8) 

 

for some (0,1),   and the steps ks  are uniformly linearly independent, then  

 

                                                      2 *lim ( ) 0.k
k

B f x


                                                    (9) 
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Often condition (8) is used in implementations of the SR1 method in order to ensure that 

this update is well behaved. If this condition is not satisfied, then the update is skipped. 

Conn, Gould and Toint [13] and Khalfan, Byrd and Schnabel [26] provide theoretical and 

computational results, respectively, that if the uniform linear independence assumption is 

satisfied, then the approximations to the Hessian generated by the SR1 method are more 

accurate than those generated by BFGS, and SR1 converge faster to the true Hessian than 

BFGS. Therefore, if all these above drawbacks are addressed in a reliable and efficient 

manner, then SR1 can be used for solving (1) instead of the rank-two updates. More 

details on SR1 method concerning the undefined updates, choosing the initial 

approximate 0B , uniform linear independence of the steps, are found in [7, 11].  

 

Now, let kH  be the inverse approximation to the Hessian at iteration .k  By using the 

Sherman-Morrison-Woodbury formula in (7), the following update to the inverse Hessian 

for SR1 is 

 

                                           1

( )( )
.

( )

T
k k k k k k

k k T
k k k k

s H y s H y
H H

s H y y


 
 


                                    (10) 

 

This variant of the algorithm is only applicable in cases in which the inverse kH  exists. 

The search direction corresponding to the quasi-Newton SR1 method is 1 1 1,k k kd H g     

i.e. 

                                    1
1 1

( )
( ).

( )

T
k k k k

k k k k k kT
k k k k

s H y g
d H g s H y

s H y y


 


   


                              (11) 

 

3 Memory-less SR1 method 

The memory-less SR1 method is obtained by setting kB I  in (7), thus obtaining 

 

                                                 1

( )( )
.

( )

T
k k k k

k T
k k k

y s y s
B I

y s s


 
 


                                           (12) 

 

Now, applying the Sherman-Morrison-Woodbury formula in (12) the following update to 

the inverse Hessian for the memory-less SR1 method is obtained as 

 

                                                1

( )( )
.

( )

T
k k k k

k T
k k k

s y s y
H I

s y y


 
 


                                           (13) 

 

With this, the search direction corresponding to the memory-less SR1 method is 

 

                                           1
1 1

( )
( ).

( )

T
k k k

k k k kT
k k k

s y g
d g s y

s y y


 


   


                                    (14) 

 

Observe that if ( ) 0,T
k k ks y y   then the search direction (14) is not defined. In this case 

the remedy is to skip this iteration and to set 1 1.k kd g    
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4 Memory-less SR1 method with generalized secant equation 

This quasi-Newton method is based on the generalized secant equation 

 

                                                             1 ,k k k ky B s                                                        (15) 

 

where k  is a positive parameter. The generalized secant equation is obtained from the 

requirement that the quadratic model of the minimizing function with scaled 

approximation to the Hessian should match the gradient of the minimizing function at the 

latest two iterations kx  and 1.kx    

Suppose that in the current point kx  we know the approximation kB  to the Hessian, 

which is a symmetric matrix. To derive the SR1 method with generalized secant equation 

we impose that 1,kB   the approximation to the Hessian in 1,kx   satisfies (15) and is 

obtained after a rank-one update of ,kB  i.e. has the form 

 

                                                         1 ,T
k k kB B uu                                                       (16) 

 

where k  is a scalar and .nu  Substituting this form into the generalized secant 

equation, we get that 

,T
k k k k k k ky B s uu s     

or, alternatively 

( ) .T
k k k k k k ky B s u s u     

 

Since ( )T
k k ku s   is a scalar, in order to satisfy this equation we can simply set 

1

( )
k T

k ku s



   and   .k k k ku y B s   Therefore, introducing these elements in (16) the 

SR1 method with generalized secant equation is obtained as 

 

                                         1

( )( )
.

( )

T
k k k k k k k k

k k T
k k k k k k

y B s y B s
B B

y B s s

 

 


 
 


                                   (17) 

 

Note that the SR1 update formula (17) is unique, that is, there is exactly one rank-one 

update satisfying the generalized secant equation. Moreover, if 1k   in (17), then the 

SR1 update (7) is obtained. 

If k k k ky B s  then the solution is 1 .k kB B   However, if ( ) 0T
k k k k ky B s s   and 

,k k k ky B s  then there is no solution to the problem.  

Let kH  be the inverse approximation to the Hessian at iteration .k  By using the 

Sherman-Morrison-Woodbury formula in (17), the following update to the inverse 

Hessian for SR1 with generalized secant equation is obtained 

 

                                        1

( )( )
.

( )

T
k k k k k k k k

k k T
k k k k k

H y s H y s
H H

H y s y

 




 
 


                                 (18) 
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From (18) after some simple algebraic manipulation the search direction corresponding 

to the inverse Hessian SR1 updating with generalized secant equation is 1 1 1k k kd H g     

i.e.  

                                 1
1 1

( )
( ).

( )

T
k k k k k

k k k k k k kT
k k k k k

H y s g
d H g H y s

H y s y







 


   


                           (19) 

 

Now, the memory-less SR1 method with generalized secant equation is obtained by 

considering kB I  in (17), i.e. 

 

                                               1

( )( )
.

( )

T
k k k k k k

k T
k k k k k

y s y s
B I

y s s

 

 


 
 


                                      (20) 

 

Observe that this is a very simple formula in which the information about the Hessian is 

not accumulated from iteration to iteration. Besides, we see that the memory-less SR1 

method with generalized secant equation has the same drawbacks as the SR1 method, i.e. 

when the denominator ( )T
k k k ky s s , is zero, or is very close to zero, then the method is 

not defined. 

Now, choosing in (18) kH I , i.e. 

 

                                              1

( )( )
.

( )

T
k k k k k k

k T
k k k k

y s y s
H I

y s y

 




 
 


                                      (21) 

 

the memory-less inverse of SR1 method with generalized secant equation is obtained. 

Therefore, from (21) the memory-less SR1 search direction with generalized secant 

equation is 1 1 1k k kd H g    , i.e. 

 

                                        1
1 1

( )
( ).

( )

T
k k k k

k k k k kT
k k k k

y s g
d g y s

y s y







 


   


                                 (22) 

 

The main advantage of the memory-less SR1 search direction  with generalized secant 

equation (22) is that for its implementation in computer programs only two scalar 

products 1( )T
k k k ky s g   and ( )T

k k k ky s y  have to be computed. This is very 

advantageous for solving large-scale problems. Observe that in this memory-less SR1 

update the information on the Hessian approximation from the previous iteration is not 

accumulated to the current iteration.  

 

Proposition 1 If  

                                                              ,
T
k k

k T
k k

y y

s y
                                                           (23) 

 

then the memory-less SR1 search direction with generalized secant equation (22) is a 

descent direction. 
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Proof. From (23) it follows that ( ) 0.T
k k k ky s y   Therefore, by direct computation, 

from (18) we get 

 

                                      
2

2 1
1 1 1

(( ) )
0,

( )

T
T k k k k
k k k T

k k k k

y s g
g d g

y s y






  


   


                                    ♦ 

 

Now, it can be noticed that the memory-less SR1 search direction with generalized secant 

equation (22) has three terms. The first one is the negative gradient 1kg  , the last two 

terms involve ks  and ,ky  both of them being multiplied by some scalars. It is very simple 

to see that the search direction (22) satisfies the conjugacy condition, i.e. 

1 1,
T T
k k k k ky d s g    where k  is a positive parameter. Therefore, the memory-less SR1 

method with generalized secant equation is a conjugate gradient method which satisfies 

the Dai and Liao [14] conjugacy condition.  

 

5 Memory-less BFGS method 

As we know the most effective quasi-Newton updating of the approximations to the 

Hessian is considered to be the BFGS formula [28, 29] where 

 

                                                  1

T T
k k k k k k

k k T T
k k k k k

B s s B y y
B B

s B s y s
                                               (24) 

 

which is a rank-two update that satisfies the secant equation (6). If kH  is the inverse 

approximation to the Hessian at iteration ,k  then from (24) by applying the Sherman-

Morrison-Woodbury formula twice the following update to the inverse Hessian for BFGS 

is obtained 

 

                                1 1
T T T T

k k k k k k k k k k k
k k T T T

k k k k k k

s y H H y s y H y s s
H H

y s y s y s


 
    

 
.                         (25) 

 

The most important properties of BFGS are as follows. If kH  is positive definite, then 

also 1kH   given by (25) is positive definite for any ,k  provided that 0T
k ky s   (which 

always is satisfied when the Wolfe line search (5) are satisfied). Therefore, if 0H  is 

chosen to be positive definite, then the rest of all the approximations kH  will also be 

positive definite. Also BFGS has the self-correcting property, i.e. if kH  incorrectly 

approximates the curvature of the minimizing function and this estimate slows down the 

iteration, then the inverse Hessian approximation will tend to correct itself in the next few 

iterations. The self-correcting property depends on the quality of the implementation of 

the Wolfe line search. For the Wolfe line search, always the initial value 1   is tried 

and this produce superlinear convergence of the method. All these properties of BFGS 

update make this quasi-Newton method one of the best in this class.  
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Now considering kH I  in (25), the memory-less BFGS method for the inverse 

approximation to the Hessian is obtained as 

 

                                        1 1 .
T T T T

k k k k k k k k
k T T T

k k k k k k

s y y s y y s s
H I

y s y s y s


 
    

 
                                 (26) 

 

The corresponding search direction is 1 1 1,k k kd H g     where 1kH   is given by (26), i.e. 

 

                        1 1 1
1 1

( ) ( ) ( )
1 .

T T T T
k k k k k k k k k k k

k k T T T
k k k k k k

y g s s g y y y s g s
d g

y s y s y s

  
 

 
     

 
                  (27) 

 

Observe that the numerical computation of 1kd   from (27) involves only four scalar 

products: ,T
k ky s  ,T

k ky y  1
T
k ky g   and 1 1.

T
k ks g   Therefore, the memory-less BFGS method is 

very suitable for solving large-scale problems. It is worth seeing that the search direction 

corresponding to the memory-less BFGS updating has three terms. Besides, it is easy to 

prove that this search direction satisfies the Dai-Liao conjugacy condition, i.e. 

1 1.
T T
k k k ky d s g    We showed that also the memory-less SR1 method with generalized 

secant equation has this property of satisfying the conjugacy condition. Therefore, there 

is close connection between the quasi-Newton and the conjugate gradient methods. It is 

worth mentioning that Shanno [32, 33] was the first who observed that the conjugate 

gradient methods are precisely the quasi-Newton methods where the approximation to 

the inverse to the Hessian is restarted as the identity matrix at every iteration.  

 

There is a great difference between the memory-less SR1 method with generalized secant 

equation and the memory-less BFGS method. If in these methods the stepsize is 

computed by the Wolfe line search (5), then the memory-less BFGS method is well 

defined since at every iteration 0.T
k ky s   On the other hand, in case of SR1 method with 

generalized secant equation the Wolfe line search do not guarantee that 

( ) 0.T
k k k ky s y   However, both these methods are implemented in such a way that if 

the corresponding search directions are not defined, i.e. if in BFGS or in SR1 with 

generalized secant equation T
k ky s  or ( )T

k k k ky s y  are very close to zero, respectively, 

then the search direction considered at that iteration is the negative gradient, i.e. the 

steepest descent. In the following let us present the algorithms corresponding to the 

memory-less SR1, to the memory-less SR1 with generalized secant equation and to the 

memory-less BFGS methods. 

 

6 Memory-less algorithms: SR1, SR1 with generalized secant equation and BFGS 

The memory-less algorithms corresponding to SR1 (MM-SR1), to SR1 with generalized 

secant equation (MM-SR1gen) and to BFGS (MM-BFGS) are very simple. In all of them 

the stepsize is computed by the Wolfe line search (5). The search direction in memory-

less SR1 method is computed as in (14). The search direction in memory-less SR1 

method with generalized secant equation is computed as in (22), while the search 

direction in the memory-less BFGS method is computed as in (27). In our numerical 
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experiments with these algorithms an acceleration scheme developed by Andrei [1, 3] 

was implemented. 

 

 

MM-SR1, MM-SR1gen and MM-BFGS Algorithms 

 MM-SR1 MM-SR1gen MM-BFGS 

1. Consider an initial point 0x . Set 0.k   Select some values for the Wolfe line 

search conditions   and   with 0 1.     Compute 0 0( )g f x   and set 

0 0.d g   Select the sufficiently small parameters: 0   used in the criterion for 

stopping the iterations, 0q   used in search direction computation and 0A   

used in acceleration scheme 

2. Test a criterion for stopping the iterations: if kg 

  then stop the iterations, 

otherwise go to step 3 

3. Compute the stepsize k  using the standard Wolfe line search conditions 

4. Update the variables 1k k k kx x d    and compute 1kf   and 1.kg   Compute 

1k k ks x x   and 1k k ky g g   

5. Acceleration scheme: 

a) Compute: k k kz x d  , ( )zg f z  and k k zy g g   

b) Compute: T

k k k ka g d , and T

k k k kb y d   

c) If ,k Ab   then compute /k k ka b    and update the variables as 

1k k k k kx x d    . Compute 1kf   and 1.kg   Compute 1k k ky g g   and 

1k k ks x x   

6. If ,T T
k k k k qs y y y    then 

compute the search 

direction 1kd   as in (14). 

Otherwise set 

1 1k kd g    

Select a value for 

parameter k  as in (23). If 

,T T
k k k k k qy y s y    then 

compute the search 

direction 1kd   as in (22). 

Otherwise set 1 1k kd g    

If ,T
k k qy s   compute 

the search direction 1kd   

as in (27). Otherwise, set 

1 1k kd g    

7. Restart iterations. If 3
1 1 1 110 ,T

k k k kg d g d
      then set 1 1k kd g    

8. Consider 1k k   and go to step 2                                                                           ♦ 

 

Observe that the algorithm is equipped with an acceleration scheme (see step 5) 

introduced by Andrei [1, 2]. This scheme modifies the stepsize determined by the Wolfe 

line search conditions (5) in such a way as to improve the reduction of the minimizing 

function values along the iterations. It is proved that this acceleration scheme is linear 

convergent, but the reduction in the function value is significantly improved.  

If f  is bounded along the direction ,kd  then there exists a stepsize k  satisfying the 

Wolfe line search conditions (5). The first trial of the stepsize crucially affects the 

practical behavior of the algorithm. At every iteration 1,k   the starting guess for the 

step k  in the line search is computed as 1 1 / .k k kd d    Observe that in step 6 of the 
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algorithms if the search direction for the memory-less SR1 is not defined, i.e. if 

( )T
k k ks y y  is close to zero, or if the search direction for the memory-less SR1 method 

with generalized secant equation is not defined, i.e. if ( )T
k k ky s y  is close to zero, or if 

the search direction for the memory-less BFGS is not defined, i.e. if T
k ky s  is close to zero, 

then the search direction is commuted to be the steepest descent. In our algorithm we 

introduced a restarting condition. If this restarting condition is satisfied, then the 

algorithm is restarted with the negative gradient. Some other restarting procedures may 

be implemented, but we are interested in seeing the performances of these algorithms 

implementing this restart condition. 

 

7 Convergence of the MM-SR1gen method 

In this section the global convergence of the MM-SR1gen algorithm is established under 

the following assumptions: 

(A1) The level set 0{ : ( ) ( )}nx f x f x    is bounded, i.e. there exists a constant 

0B   such that for any ,x  .x B  

(A2) The function : nf   is continuously differentiable and its gradient is 

Lipschitz continuous in a neighborhood N  of ,  i.e. there exists a constant 

0L   such that ( ) ( ) ,f x f y L x y     for any , .x y N  

 

It is easy to see that under these assumptions, there exists a constant 0   such that 

( ) ,f x    for any .x  

Although the search directions 1kd   generated by the above memory-less algorithms are 

always descent directions, in order to get the convergence of the algorithm we need to 

derive a lower bound for the stepsize .k   

 

Proposition 2 Suppose that kd  is a descent direction and f  satisfies the Lipschitz 

condition 

( ) ( )k kf x f x L x x     

 

for all x on the line segment connecting kx  and 1,kx   where L  is a constant. If the line 

search satisfies the standard Wolfe conditions (5), then 

 

                                                           
2

1
.

T
k k

k

k

g d

L d





                                                    (28) 

 

Proof Subtracting T
k kg d  from both sides of (5.b) and using the Lipschitz condition, it 

follows that 
2

1( 1) ( ) .T T
k k k k k k kg d g g d L d      

 

But kd  is a descent direction and 1,  therefore (28) follows from the above inequality.♦ 
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Proposition 3 Suppose that ( ) 0T
k k k ky s y   and ( )( )T

k k k k k ky s y s    is a matrix  

bounded above in norm. Then, the memory-less SR1 with generalized secant equation 

update matrix 1kH   given by (21) is bounded above in norm. 

 

Proof. From (21), since the denominator ( )T
k k k ky s y  is strictly negative, the numerator 

( )( )T
k k k k k ky s y s    is bounded above in norm and 1 1 2 ,k k k k ks x x x x B       

(see assumption (A1)), it follows that 1kH   given by (21) is bounded above in norm.       ♦ 

 

Proposition 4 Suppose that ( ) 0T
k k k ky s y   Then the memory-less SR1 with 

generalized secant equation search direction (22), is a descent direction, that is 

1 1 0.T
k kg d    Besides, 1 ,kd D   for some 0.D   

 

Proof. Observe that the numerator of the update (21) is a rank-one positive semidefinite 

matrix and the denominator of (21) is strictly negative. Therefore the update matrix 1kH   

given by (21) is positive semidefinite. Without loss of generality, 1kH   given by (21) is 

positive definite. Thus, 1 1 1 1 1 0.T T
k k k k kg d g H g        

The boundedness of 1kd   may be established as follows. If the restart condition is 

satisfied, then 1 1.k kd g    Therefore, 1 1 ,k kd g D    where D    by assumption 

(A2). On the other hand, for non-restart iterations the search direction is computed as 

1 1 1,k k kd H g     where 1kH   is given by (21). In this case, by Proposition 3 the sequence 

of the Hessian matrices given by (21) remains bounded above in norm. Therefore, 

1 1 1 1 1k k k k kd H g H g       , which is bounded above by some constant 0.D           ♦ 

 

Theorem 1 Suppose that the assumptions (A1) and (A2) are satisfied. If f  is Lipschitz 

continuous, then lim 0.k kg   

 

Proof The assumptions and the above Propositions 2, 3 and 4 show that the algorithm 

MM-SR1gen is globally convergent to a point in which the first-order optimality 

conditions are satisfied.                                                                                                        ♦ 

 

8 Numerical results 

In this section we report some numerical results obtained with MM-SR1, MM-SR1gen 

and with MM-BFGS methods for solving a collection of 800 unconstrained optimization 

problems. The codes are written in Fortran and compiled with f77 (default compiler 

settings) on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 80 

large-scale unconstrained optimization test functions in generalized or extended form we 

presented in [3]. The vast majority of these problems are taken from CUTE collection [8]. 

For each test function we have taken ten numerical experiments with an increasing 

number of variables. Therefore, a number of 800 unconstrained optimization problems 

have been considered. The algorithms used in all numerical test implement the Wolfe line 

search conditions (5) with 0.0001,   0.8   and the same stopping criterion 
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gk 

10 6 , where .


is the maximum absolute component of a vector. In all 

algorithms, we considered in our numerical studies, the maximum number of iterations is 

limited to 10000, while the maximum number of function and its gradient evaluations is 

limited to 10000. In our numerical experiments we selected: 1510 ,   1410A
  and 

910 .q
  In MM-SR1gen the parameter k  is computed as 100( / ).T T

k k k k ky y s y   

The comparisons of algorithms are given in the following context. Let f i

ALG1 and 

f i

ALG2 be the optimal value found by ALG1 and ALG2, for problem 1, ,800,i   

respectively. We say that, in the particular problem i,  the performance of ALG1 was 

better than the performance of ALG2 if:  

 

                                                        f fi

ALG

i

ALG1 2 310                                               (29) 

 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), 

or the CPU time of ALG1 was less than the number of iterations, or the number of 

function-gradient evaluations, or the CPU time corresponding to ALG2, respectively. 

 

In the first set of numerical experiments MM-SR1gen is compared versus MM-SR1 for 

solving this set of 800 unconstrained minimization problems with the number of variables 

in the range [1000, 10000]. Figure 1 shows the Dolan and Moré [17] performance 

profiles of these algorithms. 

 

 
Fig. 1. MM-SR1gen versus MM-SR1, range [1000, 10000] 

 

 

In a performance profile plot, the top curve corresponds to the method that solved the 

most problems in a time that was within a given factor of the best time. The percentage of 
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the test problems for which a method is the fastest is given on the left axis of the plot. 

The right side of the plot gives the percentage of the test problems that were successfully 

solved by these algorithms, respectively. Mainly the left side of the plot is a measure of 

the efficiency of an algorithm, while the right side is a measure of the robustness of an 

algorithm. 

From Figure 1 we have the computational evidence that MM-SR1gen is slightly more 

efficient and obviously more robust. Comparing these two algorithms we see that subject 

to the number of iterations, MM-SR1gen was better in 257 problems, (i.e. it achieved the 

minimum number of iterations in solving 257 problems). MM-SR1 was better in 287 

problems and they achieved the same number of iterations in solving 120 problems, etc. 

Out of 800 problems considered in this numerical experiment, only for 664 problems 

does the criterion (29) hold. 

 

It is worth mentioning that for solving all 800 unconstrained optimization problems, 

MM-SR1 needed a number of 1087913 iterations out of which in 96657 iterations (i.e. a 

percentage of 8.88%) the negative gradient were used. In contrast, MM-SR1gen needed 

589593 iterations, out of which in only 11227 iterations (i.e. a percentage of 1.90%) the 

negative gradient was used. There is a great difference between the search direction of 

MM-SR1 given by (14) and the search direction of MM-SR1gen given by (22). In MM-

SR1 no information is accumulated along the iterations, the denominator ( )T
k k ks y y  

cannot be modified and consequently in a large number of iterations the steepest descent 

is used. On the other hand, in MM-SR1gen, at every iteration, the value of the scaling 

parameter k  from the generalized secant equation, computed as in (23), is used in the 

denominator ( )T
k k k ky s y  of the updating term of the search direction. Since 

( )T
k k k ky s y  may be modified through an adequate value of k  in order to be negative, 

it follows that in a smaller number of iterations the steepest descent is used. This is 

motivation that MM-SR1gen is more efficient and more robust versus MM-SR1. 

 

In the second set of numerical experiments MM-SR1gen versus MM-BFGS are 

compared for solving this set of 800 unconstrained minimization problems with the 

number of variables in the range [1000, 10000]. Figure 2 shows the Dolan and Moré [17] 

performance profiles of these algorithms. 

From Figure 2 we see that MM-SR1gen algorithm is more efficient and more robust than 

the MM-BFGS method. Indeed, comparing MM-SR1gen versus MM-BFGS subject to 

the number of iterations, we see that MM-SR1gen was better in 308 problems (i.e. it 

achieved the minimum number of iterations in 308 problems). MM-BFGS was better in 

315 problems and they achieved the same number of iterations in solving 101 problems, 

etc. Out of 800 problems considered in this numerical experiment, only for 724 problems 

does the criterion (29) hold. Subject to the CPU computing time, from Figure 2 we see 

that MM-SR1gen was faster in 305 problems, while MM-BFGS was faster only in 256 

problems. Notice that both MM-SR1gen and MM-BFGS use the same implementation of 

the standard Wolfe line search (5) based on cubic interpolation [34], as well as the same 

optimization conditions.  
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Fig. 2. MM-SR1gen versus MM-BFGS, range [1000, 10000] 

 

 

In the third set of numerical experiments let us compare the performances of MM-

SR1gen versus BFGS from CONMIN [35]. CONMIN package includes two optimization 

algorithms: a BFGS preconditioned conjugate gradient one and a variant of the BFGS 

quasi-Newton algorithm.  

 
Fig. 3. MM-SR1gen versus BFGS from CONMIN, range [100, 1000] 
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Figure 3 shows the performance profiles of these algorithms for solving 800 

unconstrained optimization problems from our collection with the number of variables in 

the range [100, 1000].  

Obviously, MM-SR1gen is way more efficient and more robust than BFGS from 

CONMIN, one of the best implementation of this quasi-Newton method. Observe that 

subject to the CPU computing time MM-SR1 was faster in 664 problems, while BFGS 

from CONMIN was faster only in 9 problems. The BFGS from CONMIN is a variable 

metric method with initial scaling which approximately needs 2 / 2 11 / 2n n  double 

precision words of working storage. In comparison MM-SR1gen requires approximately 

6n  double precision words of working storage. BFGS requires more memory and 

involves a greater computational effort. We emphasize that at every iteration BFGS from 

CONMIN update an approximation to the Hessian by accumulating the information from 

the previous iterations. On the other hand memory-less MM-SR1gen algorithm at every 

iteration update the identity matrix (see (20) or (21) for the inverse Hessian updating). 

Obviously, MM-SR1gen doesn’t accumulate the information from iteration to iteration 

when updating the approximation to the Hessian. However, MM-SR1gen having a very 

simple updating formula is way more efficient and more robust than BFGS from 

CONMIN. 

 

In the last set of numerical experiments let us present comparisons between MM-SR1gen 

and MM-BFGS algorithms for solving five applications from the MINPACK-2 test 

problem collection [5]. MINPACK-2 contains applications from different fields, such as: 

elasticity, fluid dynamics, combustion, lubrication, molecular conformation, 

nondestructive testing, chemical kinetics, etc. Table 1, presents the applications 

considered in our numerical experiments, as well as the values of their parameters. The 

infinite-dimensional version of these problems is transformed into a finite element 

approximation by triangulation. Thus a finite-dimensional minimization problem is 

obtained whose variables are the values of the piecewise linear function at the vertices of 

the triangulation. The discretization steps are 200nx   and 200ny  , thus obtaining 

minimization problems with 40,000nx ny   variables. 

 

 
Table 1 

Applications from the MINPACK-2 collection 

A1 Elastic–plastic torsion [21, pp. 41–55], c = 5 

A2 Pressure distribution in a journal bearing [12], b = 10, ε = 0.1 

A3 Optimal design with composite materials [23], λ = 0.008 

A4 Steady-state combustion [4, pp. 292–299], [6], λ = 5 

A5 Minimal surfaces with Enneper conditions [27, pp. 80–85] 

 

 

The performances of the MM-SR1gen method versus MM-SR1 and versus the MM-

BFGS method are given in Table 2, where #iter is the number of iterations, #fg is the 

number of function and its gradient evaluations, #ig is the number of iterations in which 

the search direction is the negative gradient and cpu is the CPU time computing for 

solving these applications. 
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Table 2 

Performances of MM-SR1gen versus MM-SR1 and versus MM-BFGS  

(40,000 variables, CPU seconds) 

 MM-SR1gen MM-SR1 MM-BFGS 

 #iter #fg cpu #ig #iter #fg cpu #ig #iter #fg cpu #ig 

A1 372 772 7.79 0 13138 26297 326.04 1 6711 20133 180.56 6611 

A2 1257 2547 31.97 0 66930 133892 1343.10 0 9312 27937 298.50 8883 

A3 4093 10001 202.28 0 88142 176330 4915.73 822 861 2584 53.28 15 

A4 609 1260 65.10 0 49631 99287 3708.33 1 666 1997 140.00 416 

A5 308 697 9.47 0 11370 22775 320.38 1 2177 6520 148.46 199 

Total 6639 15277 316.61 0 229211 458481 10613.58 825 19727 59171 820.80 16124 

 

 

From Table 2 we see that MM-SR1gen is more efficient for solving these applications 

from MINPACK-2 collection, each of them with 40,000 variables. For solving all these 

applications MM-SR1gen needs 316.61 seconds, while MM-SR1 needs 10613.58 

seconds, and MM-BFGS needs 820.80 seconds. In other words, MM-SR1gen is 33.52 

times faster than MM-SR1 and MM-SR1gen is 2.60 times faster than MM-BFGS. It is 

worth showing that for solving all these applications MM-SR1gen does not use the 

negative gradient in any iteration. This is in sharp contrast with MM-SR1 and MM-

BFGS. In case of MM-SR1 out of 229211 iterations in exactly 825 iterations (i.e. 0.35%) 

the negative gradient was used. For MM-BFGS out of 19727 iterations for solving all 

five applications, in exactly 16124 iterations (i.e. 81.73%) the negative gradient was 

used.  

Both these algorithms, MM-SR1gen, MM-SR1 and MM-BFGS, are memory-less, i.e. 

they do not accumulate the information about Hessian from iteration to iteration. They 

use the same initialization and exactly the same implementation of the Wolfe line search 

conditions (5). The differences are in the formula for the search direction computation. 

Observe that the search direction corresponding to MM-SR1gen (22), based on the 

generalized secant equation (15), is obtained from the memory-less inverse SR1 method 

(21) which involves the scalar parameter ,k  updated at every iteration as in (23). On the 

other hand, the search direction corresponding to MM-SR1 (14), based on the secant 

equation (6), is obtained from the memory-less SR1 method (13). Similarly, the search 

direction corresponding to MM-BFGS (27), based on the secant equation (6), is obtained 

from the memory-less BFGS method (26). Therefore, in contrast to MM-SR1 and MM-

BFGS, the proposed memory-less inverse SR1 method (21) accumulates information 

from an unlimited number of past iterations without storing any history. This is the 

reason why the memory-less SR1 method with generalized secant equation is more 

efficient and more robust versus the memory-less SR1 or the memory-less BFGS 

methods. 

 

9 Conclusions 

The memory-less SR1 method with generalized secant equation prove to be one of the 

best quasi-Newton method for solving large-scale unconstrained optimization problems. 

This method involved two ingredients: the memory-less technique and the generalized 

secant equation. By the memory-less technique in the formula for updating the Hessian, 

at every iteration, instead of using the approximation to the Hessian from the previous 
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iteration the identity matrix is used. The generalized secant equation, used in this method, 

is derived from the requirement that the quadratic model of the minimizing function with 

scaled approximation to the Hessian should match the gradient of the minimizing 

function at the latest two iterations. The convergence of the algorithm is proved under the 

classical assumptions. Comparisons for solving a large class of unconstrained 

optimization problems with different structures and complexities, and large-scale 

applications from MINPACK-2 collection showed that the memory-less SR1 method 

with generalized secant equation is more efficient and more robust than the memory-less 

SR1, than the memory-less BFGS method and than the BFGS from CONMIN. The 

advantage of the memory-less SR1 with generalized secant equation over the memory-

less SR1 and over the memory-less BFGS method is that the formula for updating the 

inverse Hessian of this method, accumulate information from an unlimited number of 

past iterations without storing any history of iterations.  
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