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Abstract. The memory-less SR1 and the memory-less BFGS methods are presented 

together with their numerical performances for solving a collection of 800 

unconstrained optimization problems with the number of variables in the range [100, 

1000]. The convergence of the memory-less SR1 method is proved under the 

classical assumptions. Comparison between the memory-less SR1 and the memory-

less BFGS method show that memory-less SR1 is more robust than the memory-less 

BFGS. Comparison between memory-less SR1 and BFGS in implementation of 

Shanno and Phua from CONMIN show that memory-less SR1 method is more 

efficient and more robust than BFGS method from CONMIN, one of the best 

implementation of BFGS. 

 
Keywords: Symmetric-rank one SR1; Quasi-Newton BFGS; Wolfe line search; Numerical 

experiments; Dolan and Moré performance profile 

 

Mathematics Subject Classification: 90C30, 90C53, 90-08 

 

1 Introduction 

For solving the minimizing problem 

 

                                                                min ( ),f x                                                           (1) 

 

where nx  and : nf   is a continuously differentiable function, bounded from 

below, one of the most effective methods is the quasi-Newton methods. In these methods 

the search direction 1kd   is computed as solution of the following linear algebraic system 

 

                                                           1 1 1,k k kB d g                                                          (2) 
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where 1kB   is an approximation to the Hessian 2
1( )kf x   and 1kg   is the gradient 

1( ),kf x   or directly as  

                                                           1 1 1,k k kd H g                                                         (3) 

 

where 1kH   is an approximation to the inverse Hessian, i.e. 1
1 1.k kH B
    

Starting with an initial point 0x  the next approximation 1kx   to *,x  solution of (1), is 

computed as 

                                                           1 ,k k k kx x d                                                         (4) 

 

where k  is the stepsize often computed by the Wolfe line search [1969, 1971]: 

 

                                               ( ) ( ) ,T
k k k k k k kf x d f x g d                                           (5a) 

                                               ( ) ( ) ,T T
k k k k k kf x d d f x d                                            (5b) 

 

where 0 1     are some parameters. 

These algorithms are efficient and robust for minimizing functions that satisfy certain 

assumptions and have a super-linear rate of local convergence. Currently, many variants 

of the updating formula for the approximation to the Hessian (or to the inverse Hessian) 

are known: symmetric rank-one (SR1) [Broyden, 1967; Davidon, 1959, 1968; Fiacco and 

McCormick, 1968; Wolfe, 1969, 1971] and the rank-two such as the Davidon-Fletcher-

Powell (DFP) update [Davidon, 1991; Fletcher and Powell, 1963], Powell-symmetric-

Broyden (PSB) [Powell, 1970] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

update [Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970]. A unifying 

framework for many of these updates, including both rank-one and rank-two updates was 

given by Huang [1970]. These updates have been very intensive studied and in general it 

is accepted that the BFGS method is the most efficient and robust for solving minimizing 

problems with differential functions. However, the main drawback of BFGS is that it is 

limited for solving small and medium minimizing functions. It requires a large amount of 

memory and therefore it involves a large amount of numerical operations. 

The purpose of the paper is to introduce the memory-less quasi-Newton methods 

(memory-less SR1 and the memory-less BFGS) as a technique for solving large-scale 

minimizing problems and to show their performances for solving large-scale 

unconstrained optimization problems. The structure of the paper is as follows. Section 2 

describes the SR1 method. In Section 3 the memory-less SR1 method is introduced. 

Section 4 is dedicated to the memory-less BFGS method. The memory-less SR1 and the 

memory-less BFGS algorithms are presented in Section 5. The convergence of the 

memory-less SR1 method is described in Section 6. The global convergence is proved 

under classical assumptions. The numerical results and comparisons among the 

algorithms are detailed in Section 7. For solving a collection of 800 unconstrained 

optimization problems up to 10000 variables we have the computational evidence that the 

memory-less SR1 method is more robust than the memory-less BFGS method. 

Comparing memory-less SR1 versus the BFGS from CONMIN [Shanno and Phua, 1976; 

Shanno, 1980] shows that, for solving problems up to 10000 variables, memory-less SR1 

is way more efficient and more robust. This section also presents the performances of 
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these algorithms for solving five applications from MINPACK-2 collection, each of them 

with 40,000 variables. The conclusion of this study is that the memory-less technique 

applied here for the SR1 and for the BFGS methods is a simple and efficient technique 

for adapting these quasi-Newton methods for solving large-scale problems. Besides, it 

seems that the accuracy of the Hessian approximations along the iterations in quasi-

Newton methods is not as crucial in these methods as it is believed. 

 

2 SR1 Method 

In the quasi-Newton methods the basic requirement for the updating formula to the 

Hessian is the so called the secant equation, to be satisfied at each iteration, namely 

 

                                                  1k k kB s y      or    1 ,k k kH y s                                           (6) 

 

where 1k k ks x x   and 1 .k k ky g g   

 

The symmetric rank-one SR1 update formula, in which we are interested in this paper, 

can be derived as solution of the following simple problem. “Given a symmetric matrix 

kB  and the vectors ks  and ,ky  finds a new symmetric matrix 1kB   such that 1k kB B   has 

rank one and such that the secant equation 1k k kB s y   is satisfied.” It is easy to see that if 

( ) 0,T
k k k ky B s s   then the unique solution of the above problem is 

 

                                            1

( )( )
.

( )

T
k k k k k k

k k T
k k k k

y B s y B s
B B

y B s s


 
 


                                        (7) 

 

If k k ky B s  then the solution is 1 .k kB B   However, if ( ) 0T
k k k ky B s s   and ,k k ky B s  

then there is no solution to the problem.  

Let kH  be the inverse approximation to the Hessian at iteration .k  By using the 

Sherman-Morrison-Woodbury formula in (7), the following update to the inverse Hessian 

for SR1 is 

                                           1

( )( )
.

( )

T
k k k k k k

k k T
k k k k

s H y s H y
H H

s H y y


 
 


                                      (8) 

 

This variant of the algorithm is only applicable in cases in which the inverse kH  exists.  

 

The main drawbacks of SR1 update are as follows. 

1) The denominator ( )T
k k k ky B s s  of the SR1 update term in (7) may vanish, i.e. 

( ) 0T
k k k ky B s s  , cases in which 1kB   is not well-defined.  

2) The step directions computed by using the SR1 updating formula given by (7) may no 

longer be uniform linear independent, thus leading to slow down the convergence or even 

the stalling.  

3) The SR1 Hessian approximation may not be positive definite along the iterations, thus 

resulting a direction that does not produce descent. 
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To prevent the method from failing due to the first drawback one simple remedy is to set 

1 .k kB B   However, this will slow down the convergence of the method. Conn, Gould 

and Toint (1991) and Khalfan, Byrd and Schnabel (1993) showed that the denominator of 

(7) vanishes rarely in practice and setting 1k kB B   does not have a significant impact on 

the performances of the SR1 method subject to the number of the iterations or runtimes. 

The second drawback is more delicate, being in close connection with the uniform linear 

independence of the search directions generated by the SR1 algorithm. A more precise 

definition of the uniform linear independence was given by Conn, Gould and Toint 

(1991). “A sequence { }ks  is uniformly linearly independent if there exist 0,   0k  and 

m n  such that, for each 0,k k  there is n  distinct indices 1 2 nk k k k k m       for 

which the minimum singular value of the matrix 1

1

, , n

n

kk

k k

ss
S

s s

 
 
 
 

 is at least . ” Conn, 

Gould and Toint (1991) proved that the sequence of matrices generated by the SR1 

formula converges to the exact Hessian, when the sequence of iterates converges to a 

limit point and the sequence of steps is uniformly linearly independent. Kelley and Sachs 

[1998] provide similar convergence results removing the first of these assumptions. 

Fiacco and McCormick [1968] showed that if the search directions are linearly 

independent and the denominator of (7) is always non-zero, then the SR1 method without 

line searches minimize a strongly convex quadratic function in at most 1n   steps. In this 

case 1nB   is exactly the Hessian of the quadratic function. Observe that this result is 

significant since it does not require exact line search, as is the case for the BFGS update. 

Generally, the above condition given by the definition of the uniform linear 

independency is not implemented in practice, it serves only as one of the main 

assumptions of a proof that the SR1 approximations to the Hessian converge to the true 

Hessian as the iterates converge to the solution of (1). 

Subject to the uniform linear independency of the search directions Khalfan, Byrd and 

Schnabel [1993] showed that many problems do not satisfy this requirement, but they 

proved the local convergence of the SR1 method using only the positive definiteness and 

boundedness assumptions for the approximate Hessian. More than this Conn, Gould and 

Toint [1991] proved that if the minimizing function f  is twice continuously 

differentiable and its Hessian is bounded and Lipschitz continuous and the iterates 

generated by the SR1 method converge to a point *x  and in addition for all ,k  

 

                                             ( ) ,T
k k k k k k k ky B s s y B s s                                            (9) 

 

for some (0,1),   and the steps ks  are uniformly linearly independent, then  

 

                                                      2 *lim ( ) 0.k
k

B f x


                                                  (10) 

 

Often condition (9) is used in implementations of the SR1 method in order to ensure that 

this update is well behaved. If this condition is not satisfied, then the update is skipped. 

Conn, Gould and Toint [1991] and Khalfan, Byrd and Schnabel [1993] provide 

theoretical and computational results, respectively, that if the uniform linear 
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independence assumption is satisfied, then the approximations to the Hessian generated 

by the SR1 method are more accurate than those generated by BFGS, and SR1 converge 

faster to the true Hessian than BFGS. Therefore, if all these above drawbacks are 

addressed in a reliable and efficient manner, then SR1 can be used for solving (1) instead 

of the rank-two updates. More details on SR1 method concerning the undefined updates, 

choosing the initial approximate 0B , uniform linear independence of the steps, are found 

in [Benson and Shanno, 2018] and in [Chen, Lam and Chan, 2019].  

 

3 Memory-less SR1 Method 

The memory-less SR1 method with direct approximation to the Hessian is obtained by 

considering kB I  in (7), i.e. 

 

                                                 1

( )( )
.

( )

T
k k k k

k T
k k k

y s y s
B I

y s s


 
 


                                           (11) 

 

Observe that this is a very simple formula in which the information about the Hessian is 

not accumulated from iteration to iteration. Besides, we see that the memory-less SR1 

method has the same drawbacks as the SR1 method, i.e. when the denominator 

( )T
k k ky s s , is zero, or is very close to zero, then the SR1 method is not defined. By 

considering in (8) kH I , i.e. 

 

                                                1

( )( )
,

( )

T
k k k k

k T
k k k

s y s y
H I

s y y


 
 


                                           (12) 

 

the memory-less SR1 method with inverse approximation to the Hessian is obtained. 

From (12), after some simple algebraic manipulations, the memory-less SR1 search 

direction 1 1 1k k kd H g     is obtained as 

 

                                             1
1 1

( )
( ).

( )

T
k k k

k k k kT
k k k

s y g
d g s y

s y y


 


   


                                  (13) 

 

The main advantage of the memory-less SR1 update (13) is that for its implementation in 

computer programs only two scalar products 1( )T
k k ks y g   and ( )T

k k ks y y  must be 

computed. This is very advantageous for solving large-scale problems. Observe that in 

the memory-less SR1 update the information on the Hessian approximation from the 

previous iteration is not accumulated to the current iteration.  

 

Proposition 1. Suppose that ( ) 0,T
k k ks y y   then the memory-less SR1 search direction 

(13) is a descent direction. 

 

Proof. From (13) we get 
2

2 1
1 1 1

(( ) )
0,

( )

T
T k k k
k k k T

k k k

s y g
g d g

s y y
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i.e. 1kd   given by (13) is a descent direction.                                                                      ♦ 

 

Now, it can be noticed that the memory-less SR1 search direction (13) has three terms. 

The first one is the negative gradient 1kg  , the last two terms involve ks  and ,ky  both of 

them being multiplied by the same scalar. It is very simple to see that the search direction 

(13) satisfies the conjugacy condition, i.e. 1 1.
T T
k k k ky d s g    Therefore, we can say that 

the memory-less SR1 method is a conjugate gradient method which satisfies the Dai and 

Liao [2001] conjugacy condition.  

 

4. Memory-less BFGS Method 

As we know the most effective quasi-Newton updating of the approximations to the 

Hessian is considered to be the BFGS formula [Nocedal, 1992], [Nocedal & Wright, 

2006] where 

 

                                                  1

T T
k k k k k k

k k T T
k k k k k

B s s B y y
B B

s B s y s
                                               (14) 

 

which is a rank-two update that satisfies the secant equation (6). If kH  is the inverse 

approximation to the Hessian at iteration ,k  then by applying the Sherman-Morrison-

Woodbury formula twice the following update to the inverse Hessian for BFGS is 

obtained 

                                1 1
T T T T

k k k k k k k k k k k
k k T T T

k k k k k k

s y H H y s y H y s s
H H

y s y s y s


 
    

 
.                         (15) 

 

The most important properties of BFGS are as follows. If kH  is positive definite, then 

also 1kH   given by (15) is positive definite for any ,k  provided that 0T
k ky s   (which 

always is satisfied when the Wolfe line search (5) are satisfied). Therefore, if 0H  is 

chosen to be positive definite, then the rest of all the approximations kH  will also be 

positive definite. Also BFGS has the self-correcting property, i.e. if kH  incorrectly 

approximates the curvature of the minimizing function and this estimate slows down the 

iteration, then the inverse Hessian approximation will tend to correct itself in the next few 

iterations. The self-correcting property depends on the quality of the implementation of 

the Wolfe line search. For the Wolfe line search, always the initial value 1   is tried 

and this produce superlinear convergence of the method. All these properties of BFGS 

update make this quasi-Newton method one of the best in this class.  

 

Now considering kH I  in (15), the memory-less BFGS method is obtained  

 

                                        1 1 .
T T T T

k k k k k k k k
k T T T

k k k k k k

s y y s y y s s
H I

y s y s y s


 
    

 
                                 (16) 

 

The corresponding search direction is 1 1 1,k k kd H g     where 1kH   is given by (16), i.e. 
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                        1 1 1
1 1

( ) ( ) ( )
1 .

T T T T
k k k k k k k k k k k

k k T T T
k k k k k k

y g s s g y y y s g s
d g

y s y s y s

  
 

 
     

 
                  (17) 

 

Observe that the numerical computation of 1kd   from (17) involves only four scalar 

products: ,T
k ky s  ,T

k ky y  1
T
k ky g   and 1 1.

T
k ks g   Therefore, it very suitable for solving large-

scale problems. It is worth seeing that the search direction corresponding to the memory-

less BFGS updating has three terms. Besides, it is easy to prove that this search direction 

satisfies the Dai-Liao conjugacy condition, i.e. 1 1.
T T
k k k ky d s g    We showed that also the 

memory-less SR1 method has this property of satisfying the conjugacy condition. 

Therefore, there is close connection between the quasi-Newton and the conjugate 

gradient methods. Shanno [1978a, 1978b] was the first who observed that the conjugate 

gradient methods are precisely the quasi-Newton methods where the approximation to 

the inverse to the Hessian is restarted as the identity matrix at every iteration.  

 

There is a great difference between the memory-less SR1 method and the memory-less 

BFGS method. If in these methods the stepsize is computed by the Wolfe line search (5), 

then the memory-less BFGS method is well defined since at every iteration 0.T
k ky s   On 

the other hand, in case of SR1 method the Wolfe line search do not guarantee that 

( ) 0.T
k k ks y y   However, both these methods are implemented in such a way that if the 

corresponding search directions are not defined, i.e. 0,T
k ky s   or ( ) 0,T

k k ks y y   then the 

search direction considered at that iteration is the negative gradient. In the following let 

us present the algorithms corresponding to the memory-less SR1 and to the memory-less 

BFGS methods. 

 

5 The Memory-less SR1 and BFGS Algorithms 

The memory-less algorithms corresponding to SR1 and BFGS are very simple and 

implement the Wolfe line search conditions (5) for stepsize computation and the 

corresponding search direction (13) and (17), respectively. In our numerical experiments 

in these algorithms we implemented the acceleration scheme developed by Andrei [2006, 

2020a]. 

 

MM-SR1 and MM-BFGS Algorithms 

 MM-SR1 MM-BFGS 

1 Consider an initial point 0x . Set 0.k   Select some values for the Wolfe line 

search conditions   and   with 0 1.     Compute 0 0( )g f x   and set 

0 0.d g  Select a sufficiently small parameters 0   used in the criterion for 

stopping the iterations and 0A   used in acceleration scheme 

2. Test a criterion for stopping the iterations: if kg 

  then stop the iterations, 

otherwise go to step 3 

3. Compute the stepsize k  using the standard Wolfe line search conditions 

4. Update the variables 1k k k kx x d    and compute 1kf   and 1.kg   Compute 
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1k k ks x x   and 1k k ky g g   

5. Acceleration scheme: 

a) Compute: k k kz x d  , ( )zg f z  and k k zy g g   

b) Compute: T

k k k ka g d , and T

k k k kb y d   

c) If ,k Ab   then compute /k k ka b    and update the variables as 

1k k k k kx x d    . Compute 1kf   and 1.kg   Compute 1k k ky g g   and 

1k k ks x x   

6. Compute the search direction 1kd   as 

in (13). If the search direction (13) is 

not defined, then set 1 1k kd g    

Compute the search direction 1kd   as in 

(17). If the search direction (17) is not 

defined, then set 1 1k kd g    

7. Restart iterations. If 3
1 1 1 110 ,T

k k k kg d g d
      then set 1 1k kd g    

8. Consider 1k k   and go to step 2                                                                         ♦ 

 

Observe that the algorithm is equipped with an acceleration scheme (see step 5) 

introduced by Andrei [2006, 2009]. This scheme modifies the stepsize determined by the 

Wolfe line search conditions (5) in such a way as to improve the reduction of the 

minimizing function values along the iterations. It is proved that this acceleration scheme 

is linear convergent, but the reduction in the function value is significantly improved.  

If f  is bounded along the direction ,kd  then there exists a stepsize k  satisfying the 

Wolfe line search conditions (5). The first trial of the stepsize crucially affects the 

practical behavior of the algorithm. At every iteration 1,k   the starting guess for the 

step k  in the line search is computed as 1 1 / .k k kd d    Observe that in step 6 of the 

algorithms if the search direction for the memory-less SR1 method is not defined, i.e. if 

( )T
k k ks y y  is close to zero, or if the search direction for the memory-less BFGS is not 

defined, i.e. if T
k ky s  is close to zero, then the search direction is commuted to be the 

steepest descent. In our algorithm we introduced a restarting condition. If this restarting 

condition is satisfied, then the algorithm is restarted with the negative gradient. Some 

other restarting procedures may be implemented, but we are interested in seeing the 

performances of these algorithms implementing this restart condition. 

 

6 Convergence of the memory-less SR1 method 

In this section the global convergence of the algorithm is established under the following 

assumptions: 

(A1) The level set 0{ : ( ) ( )}nx f x f x    is bounded, i.e. there exists a constant 

0B   such that for any ,x  .x B  

(A2) The function : nf   is continuously differentiable and its gradient is 

Lipschitz continuous in a neighborhood N  of ,  i.e. there exists a constant 

0L   such that ( ) ( ) ,f x f y L x y     for any , .x y N  
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It is easy to see that under these assumptions, there exists a constant 0   such that 

( ) ,f x    for any .x  

Although the search directions 1kd   generated by the memory-less algorithms SR1 and 

BFGS are always descent directions, in order to get the convergence of the algorithm we 

need to derive a lower bound for the stepsize .k   

 

Proposition 2 Suppose that kd  is a descent direction and f  satisfies the Lipschitz condition 

 

( ) ( )k kf x f x L x x     

 

for all x on the line segment connecting kx  and 1,kx   where L  is a constant. If the line search 

satisfies the standard Wolfe conditions (5), then 

 

                                                                 
2

1
.

T
k k

k

k

g d

L d





                                                        (18) 

 

Proof Subtracting T
k kg d  from both sides of (5.b) and using the Lipschitz condition, it follows 

that 
2

1( 1) ( ) .T T
k k k k k k kg d g g d L d      

 

But kd  is a descent direction and 1,  therefore (18) follows from the above inequality.           ♦ 

 

Proposition 3 Suppose that ( ) 0T
k k ks y y   and ( )( )T

k k k ks y s y    is a matrix  bounded 

above in norm. Then, the memory-less SR1 update matrix 1kH   given by (12) is bounded 

above in norm. 

 

Proof. From (12), since the denominator ( )T
k k ks y y  is strictly positive, the numerator 

( )( )T
k k k ks y s y   is bounded above in norm and 1 1 2 ,k k k k ks x x x x B       (see 

assumption (A1)), it follows that 1kH   given by (12) is bounded above in norm.              ♦ 

 

Proposition 4 Suppose that ( ) 0.T
k k ks y y   Then the memory-less SR1 search direction 

(13), is a descent direction, that is 1 1 0.T
k kg d    Besides, 1 ,kd D   for some 0.D   

Proof. Observe that the numerator of the update (13) is a rank-one positive semidefinite 

matrix and the denominator of (13) is strictly positive. Therefore the update matrix 1kH   

given by (13) is positive semidefinite. Without loss of generality, kH  is positive definite, 

hence, 1kH   given by (13) is positive definite. Thus, 1 1 1 1 1 0.T T
k k k k kg d g H g        

The boundedness of 1kd   may be established as follows. If the restart condition is 

satisfied, then 1 1.k kd g    Therefore, 1 1 ,k kd g D    where D    by assumption 

(A2). On the other hand, for non-restart iterations the search direction is computed as 

1 1 1,k k kd H g     where 1kH   is given by (12). In this case, by Proposition 3 the sequence 
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of the Hessian matrices given by (12) remains bounded above in norm. Therefore, 

1 1 1 1 1k k k k kd H g H g       , which is bounded above by some constant 0.D           ♦ 

 

Theorem 1 Suppose that the assumptions (A1) and (A2) are satisfied. If f  is Lipschitz 

continuous, then lim 0.k kg   

 

Proof The assumptions and the above Propositions 2, 3 and 4 show that the algorithm 

MM-SR1 is globally convergent to a point in which the first-order optimality conditions 

are satisfied.                                                                                                                         ♦ 

 

7 Numerical results 

In this section we report some numerical results obtained with memory-less SR1 and with 

memory-less BFGS methods for solving unconstrained optimization problems. The 

memory-less SR1 method is given by (4), where the stepsize is computed by the Wolfe 

line search (5) and the search direction is given by (13). The memory-less BFGS method 

is given by (4), where the stepsize is computed as in (5) and the search direction is given 

by (17).  

The codes are written in Fortran and compiled with f77 (default compiler settings) on a 

Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale 

unconstrained optimization test functions in generalized or extended form we presented 

in [Andrei, 2020a]. The vast majority of these problems are taken from CUTE collection 

[Bongartz, Conn, Gould and Toint, 1995]. For each test function we have taken ten 

numerical experiments with an increasing number of variables. Therefore, a number of 

800 unconstrained optimization problems have been considered. The algorithms used in 

all numerical test implement the Wolfe line search conditions (5) with 0.0001,   

0.8   and the same stopping criterion gk 

10 6 , where .


is the maximum 

absolute component of a vector. In all algorithms, we considered in our numerical 

studies, the maximum number of iterations is limited to 10000, while the maximum 

number of function and its gradient evaluations is limited to 10000. 

The comparisons of algorithms are given in the following context. Let f i

ALG1 and 

f i

ALG2 be the optimal value found by ALG1 and ALG2, for problem 1, ,800,i   

respectively. We say that, in the particular problem i,  the performance of ALG1 was 

better than the performance of ALG2 if:  

 

                                                        f fi

ALG

i

ALG1 2 310                                               (19) 

 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), 

or the CPU time of ALG1 was less than the number of iterations, or the number of 

function-gradient evaluations, or the CPU time corresponding to ALG2, respectively. 

 

In the first set of numerical experiments let us compare MM-SR1 versus MM-BFGS for 

solving this set of unconstrained minimization problems with the number of variables in 

the range [100, 1000]. Figure 1 shows the Dolan and Moré [2002] performance profiles 

of these algorithms. 
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Fig. 1. Memory-less SR1 versus memory-less BFGS, range [100, 1000] 

 

 

In a performance profile plot, the top curve corresponds to the method that solved the 

most problems in a time that was within a given factor of the best time. The percentage of 

the test problems for which a method is the fastest is given on the left axis of the plot. 

The right side of the plot gives the percentage of the test problems that were successfully 

solved by these algorithms, respectively. Mainly the left side of the plot is a measure of 

the efficiency of an algorithm, while the right side is a measure of the robustness of an 

algorithm. 

 

From Figure 1 we see that memory-less BFGS algorithm is more efficient than the 

memory-less SR1 method, but MM-SR1 is slightly more robust. Indeed, comparing MM-

SR1 versus MM-BFGS subject to the number of iterations, we see that MM-BFGS was 

better in 315 problems (i.e. it achieved the minimum number of iterations in 315 

problems). MM-SR1 was better in 201 problems and they achieved the same number of 

iterations in solving 157 problems, etc. Out of 800 problems considered in this numerical 

experiment, only for 673 problems does the criterion (19) hold. Subject to the CPU 

computing time, from Figure 1 we see that MM-BFGS was faster in 137 problems, while 

MM-SR1 was faster only in 78 problems. Notice that both MM-SR1 and MM-BFGS use 

the same implementation of the standard Wolfe line search (5) based on cubic 

interpolation [Shanno, 1983], as well as the same optimization conditions.  

 

In the second set of numerical experiments, Figure 2 presents the performance profiles of 

MM-SR1 versus MM-BFGS for solving unconstrained optimization problems from our 

collection, where this time the number of variables is in the range [1000, 10000]. 
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Fig. 2. Memory-less SR1 versus memory-less BFGS, range [1000, 10000] 

 

 

Observe that MM-SR1 is more robust than MM-BFGS. Subject to the CPU time metric, 

MM-SR1 was faster in 186 problems, but MM-BFGS was faster in 200 problems. 

Practically, these memory-less quasi-Newton algorithms have the same efficiency.  

 

In the third set of numerical experiments let us compare the performances of MM-SR1 

versus BFGS from CONMIN [Shanno and Phua, 1976]. CONMIN package includes two 

optimization algorithms: a BFGS preconditioned conjugate gradient one and a variant of 

the BFGS quasi-Newton algorithm. Figure 3 shows the performance profiles of these 

algorithms for solving 800 unconstrained optimization problems from our collection with 

the number of variables in the range [100, 1000]. 
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Fig. 3. Memory-less SR1 versus BFGS from CONMIN, range [100, 1000] 

 

 

Obviously, MM-SR1 is more efficient and more robust than BFGS from CONMIN, one 

of the best implementation of this quasi-Newton method. Observe that subject to the CPU 

computing time MM-SR1 was faster in 532 problems, while BFGS from CONMIN was 

faster only in 48 problems. The BFGS from CONMIN is a variable metric method with 

initial scaling which approximately needs 2 / 2 11 / 2n n  double precision words of 

working storage. In comparison MM-SR1 requires approximately 6n  double precision 

words of working storage. BFGS requires more memory and involves a greater 

computational effort. It is worth showing the performances of MM-SR1 and of BFGS 

from CONMIN for solving the problem Freudenstein & Roth with 1000n   variables. 

BFGS from CONMIN gives a solution for which *( ) 24492.126839,f x   in 20 iterations, 

21 evaluations of the function and its gradient and 0.44 seconds. On the other hand, MM-

SR1 gives a solution with the same value of the minimizing function, but in 6 iterations, 

19 evaluations of the function and its gradient and 0 seconds. We emphasize that at every 

iteration BFGS from CONMIN update an approximation to the Hessian by accumulating 

the information from the previous iterations. On the other hand memory-less MM-SR1 

algorithm at every iteration update the identity matrix (see (12)). Obviously, MM-SR1 

doesn’t accumulate the information from iteration to iteration when updating the 

approximation to the Hessian. However, MM-SR1 is way more efficient and more robust 

than BFGS from CONMIN.  

 

In the last set of numerical experiments let us present comparisons between MM-SR1 and 

MM-BFGS algorithms for solving five applications from the MINPACK-2 test problem 
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collection [Averick, Carter, Moré, & Xue, 1992]. MINPACK-2 contains applications 

from different fields, such as: elasticity, fluid dynamics, combustion, lubrication, 

molecular conformation, nondestructive testing, chemical kinetics, etc. Table 1, presents 

the applications considered in our numerical experiments, as well as the values of their 

parameters. The infinite-dimensional version of these problems is transformed into a 

finite element approximation by triangulation. Thus a finite-dimensional minimization 

problem is obtained whose variables are the values of the piecewise linear function at the 

vertices of the triangulation. The discretization steps are 200nx   and 200ny  , thus 

obtaining minimization problems with 40,000nx ny   variables. 

 

 
Table 1 

Applications from the MINPACK-2 collection 

A1 Elastic–plastic torsion [Glowinski, 1984, pp. 41–55], c = 5 

A2 Pressure distribution in a journal bearing [Cimatti, 1977], b = 10, ε = 0.1 

A3 Optimal design with composite materials [Goodman, Kohn, & Reyna, 1986], λ = 0.008 

A4 Steady-state combustion [Aris, 1975, pp. 292–299], [Bebernes, & Eberly, 1989], λ = 5 

A5 Minimal surfaces with Enneper conditions [Nitsche, 1989, pp. 80–85] 

 

 

The performances of the accelerated memory-less SR1 method (MM-SR1) versus the 

accelerated memory-less BFGS (MM-BFGS) method are given in Table 2, where #iter is 

the number of iterations, #fg is the number of function and its gradient evaluations, #ig is 

the number of iterations in which the search direction is the negative gradient and cpu is 

the CPU time computing for solving these applications. 

 

 
Table 2 

Performances of MM-SR1 versus MM-BFGS (40,000 variables, CPU seconds) 

 MM-SR1 MM-BFGS 

 #iter #fg cpu #ig #iter #fg cpu #ig 

A1 13138 26297 326.04 1 6711 20133 180.56 6611 

A2 66930 133892 1343.10 0 9312 27937 298.50 8883 

A3 88142 176330 4915.73 822 861 2584 53.28 15 

A4 49631 99287 3708.33 1 666 1997 140.00 416 

A5 11370 22775 320.38 1 2177 6520 148.46 199 

TOTAL 229211 458481 10613.58 825 19727 59171 820.80 16124 

 

 

From Table 2 we see that MM-BFGS is more efficient than MM-SR1. For example, 

subject to the CPU time metric, for solving all these five applications, MM-BFGS needs 

820.80 seconds, while MM-SR1 needs 10613.50 seconds, i.e. MM-BFGS is 12.93 times 

faster than MM-SR1. It is worth mentioning that for solving all these five applications, in 

MM-SR1 out of 229211 iterations, the negative gradient was used only for 825 iterations 

(i.e. 0.36%), while in MM-BFGS out 19727 iterations, the negative gradient was used for 

16124 iterations (i.e. 81.73%). Even that, for solving all these five applications, in the 

vast majority of iterations MM-BFGS used the negative gradient as the search direction, 

the performances of MM-BFGS are better. This is because the MM-BFGS retains the 
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self-correcting property of BFGS, i.e. if kH  incorrectly approximates the curvature of the 

minimizing function, mainly due to the line search, then the inverse Hessian 

approximation will tend to correct itself in the next iterations. MM-SR1 does not have the 

self-correcting property and this is the reason why its performances are modest. 

 

8 Conclusions 

This paper presents two quasi-Newton methods, SR1 and BFGS, with memory less. At 

every iteration, the memory-less SR1 and the memory-less BFGS initialize the 

approximation to the Hessian with the identity matrix. Therefore, at the current iteration 

these methods do not accumulate the information about the Hessian from the previous 

iteration. The memory-less technique is simple and efficient for adapting the quasi-

Newton methods for solving large-scale problems. Our numerical experiments, involving 

800 large-scale unconstrained optimization problems with different structures and 

complexities, show that the memory-less SR1 method is more robust than the limited-

memory BFGS method, and more efficient and more robust than the BFGS from 

CONMON package. It seems that the accuracy of the approximation to the Hessian is not 

a crucial ingredient in efficiency and robustness of quasi-Newton methods. 
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