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Abstract. Symmetric rank-one updates (SR1) are known to be quasi-Newton algorithms, which 

are enough fast and often provide better approximations to the true Hessian of the minimizing 

function than the most appreciated rank-two approaches. However, these properties are 

guaranteed only in some conditions which frequently do not hold. The main deficiency of SR1 

update is that it does not guarantee the positive definiteness for the Hessian estimate, thus ruining 

the convergence of the corresponding algorithm. This paper introduces the memory-less SR1 

method with cubic regularization as a modification of the classical SR1 update for which the 

updating term is imposed to be positive definite along the iterations. In case this is not possible, 

then the algorithm reduces to the scaled memory-less SR1 method. The global convergence is 

proved under mild assumptions. Intensive numerical experiments on a collection of 800 

unconstrained optimization problems with the number of variables in the range [1000, 10000], 

shows the efficiency and robustness of this approach over the scaled memory-less SR1 method 

and over the BFGS from CONMIN. 

 

 

Key words: Unconstrained optimization, SR1 method, Cubic regularization, Modified 

secant equation, Memory-less SR1, Modified memory-less SR1 

 

Mathematics Subject Classification: 90C30, 90C53, 90-08 

 

 

1 Introduction 

Many algorithms for solving the unconstrained optimization problem min ( ),f x  where 
nx  and : nf   is a continuously differentiable function, bounded from below 

employ a quadratic model of the function .f  The Newton’s method and the quasi-

Newton methods use a second-order Taylor series of the minimizing function with either 
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an explicit or an approximated Hessian matrix. The quasi-Newton methods use an 

approximation to the Hessian, or an approximation to the inverse Hessian, which are 

updated at each step of the optimization algorithm. These algorithms are efficient and 

robust for minimizing functions that satisfy certain assumptions and have a super-linear 

rate of local convergence. In the frame of quasi-Newton methods many variants of the 

updating formula for the approximation to the Hessian (or to the inverse Hessian) were 

suggested: symmetric rank-one (SR1) [Broyden, 1967; Davidon, 1959, 1968; Fiacco and 

McCormick, 1968; Wolfe, 1969, 1971] and the rank-two such as the Davidon-Fletcher-

Powell (DFP) update [Davidon, 1991; Fletcher and Powell, 1963], Powell-symmetric-

Broyden (PSB) [Powell, 1970] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

update [Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970]. A unifying 

framework for many of these updates, including both rank-one and rank-two updates was 

given by Huang [1970]. 

 

Theoretical studies and intensive numerical experiments proved that among the quasi-

Newton methods the BFGS is the most effective. However on certain problems BFGS 

method may require a large number of iterations and function and gradient evaluations. 

The sources of its inefficiency may be caused by a poor initial approximation to the 

Hessian, or more importantly, by the ill-conditioning of the Hessian approximations 

along the iterations. To improve the efficiency and the robustness of the BFGS and to 

overcome the difficulties, some modified versions of it were given. All these modified 

BFGS methods can be classified into four classes: the scaling of the BFGS update matrix, 

the memory-less BFGS method, the BFGS update with modified secant equation and the 

modified BFGS method using different line search conditions for stepsize computation. 

Intensive numerical experiments on minimizing functions with different number of 

variables and complexities showed that all the modified BFGS methods are more 

efficient and more robust than its unmodified version [Contreras and Tapia, 1993; Oren 

and Luenberger, 1974; Oren and Spedicato, 1976; Yabe, Martinez and Tapia, 2004; 

Biggs, 1971, 1973; Liao, 1997; Nocedal and Yuan, 1993; Andrei, 2018a, 2018b, 2018c, 

2020; Yuan, 1991; Yuan and Byrd, 1995; Al-Baali, 1998; Arzam, Babaie-Kafaki and 

Ghanbari, 2017; Yuan, Sheng, Wang, Hu and Li, 2018; Dehmiry, 2020].  

 

On the other hand, quasi-Newton methods based on the symmetric rank-one (SR1) 

update are known to be fast and often under certain conditions, which frequently are not 

satisfied, provide better approximations to the true Hessian of the minimizing function 

than the rank-two approaches. Additionally, SR1 method is affected by the lack of 

guarantee of positive definiteness for the Hessian approximation, thus ruining the 

performances of the corresponding algorithms. The convergence of this method was 

studied inter alia by Conn, Gould and Toint (1991), Khalfan, Byrd and Schnabel (1993). 

In order to remedy the deficiencies of the SR1 method, to relax the conditions on the 

proof of convergence for improving the speed and the accuracy of the solution and to get 

at every step of the algorithm positive definite approximations to the Hessian, Benson 

and Shanno (2018) introduced cubic regularization in SR1 method. 

 

Even not new, recently we notice a great interest using cubic regularization to the 

quadratic model of the minimizing function when computing the search direction within a 
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nonlinear programming algorithm. The idea of using the cubic regularization into the 

context of the Newton method first appeared in Griewank (1981) and was later developed 

by many authors, proving its convergence and complexity (Nesterov and Polyak, 2006), 

(Cartis, Gould and Toint, 2011a, 2011b), (Gould, Porcelli and Toint, 2012), (Bianconcini, 

Liuzzi, Morini and Sciandrone, 2013), (Bellavia and Morini, 2014), Griewank, Fisher and 

Bosse, (2014), (Bianconcini and Sciandrone, 2016), (Hsia, Sheu and Yuan, 2017). For a 

minimizing function f  its p -regularization model is constructed by adding a p -th 

regularization term to the quadratic estimation of .f  The idea is to construct and 

minimize a local quadratic approximation of the minimizing function with a weighted 

regularization term ( / ) ,
p

k p x  2.p   The most common choice to regularize the 

quadratic approximation is the p -regularization with 3,p   which is known as the cubic 

regularization. Griewank proved that any accumulation point of the sequence generated 

by minimizing the p -regularized subproblem is a second-order critical point of ,f  i.e., a 

point nx  satisfying ( ) 0f x   and 2 ( )f x  semipositive definite. Later, Nesterov and 

Polyak (2006) proved that the cubic regularization method has a better global iteration 

complexity bound than the one for the steepest descent method. Based on these results, 

Cartis, Gould and Toint (2011a, 2011b, 2012) proposed the Adaptive Regularization 

algorithm using Cubics (ARC) for minimizing the function ,f  where the sequence of the 

regularization parameter { }k  is dynamically determined and the p -regularized 

subproblems are inexactly solved. In ARC the regularization parameter is initialized at 

the beginning of the iterations and then at each iteration it is updated using different 

schemes based on sufficient descent. The performances of the resulting algorithm are 

strongly dependent by the updating scheme of the regularization parameter. Andrei 

(2020) and Cartis, Gould and Toint (2011a) suggested updating procedures based on the 

trust-region ratio. Another procedure using an interpolation condition was given by Zhao, 

Liu and Liu (2020). Benson and Shanno (2014) proposed a hybrid approach that uses 

cubic regularization within the Newton method only during the iterations in which the 

Hessian is indefinite. In this approach computing the cubic step is equivalent to solving a 

linear system for certain value of the Levenberg-Marquardt perturbation parameter. A 

similar hybrid approach, but in the context of the SR1 quasi-Newton method with line 

search was applied by Benson and Shanno (2018). They introduced the hybrid cubic 

approach for SR1 in which the original SR1 update is used when the search direction is 

descent and a modified update otherwise.  

 

Having in view the above mentioned developments of the BFGS method as well as the 

cubic regularization it is quite natural to try to extend them to the SR1 method. In this 

paper we present the memory-less SR1 method with cubic regularization which combines 

both the memory-less and cubic techniques. Generally, by memory-less techniques we 

mean that the approximation to the Hessian in context of quasi-Newton methods, at a 

given iteration, is computed by updating the identity matrix. Cubic regularization is 

introduced to improve the convergence for both the speed and the accuracy and to 

provide at every iteration a positive definite approximation to the Hessian. Besides, cubic 

regularization tries to compensate the loss of information due to the updating the identity 

matrix and not the approximation to the Hessian from the previous iteration. Andrei 

(2021) developed an accelerated scaled memory-less SR1 method in which at every 
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iteration the identity matrix is updated by SR1 formula and the updating term is scaled 

with a parameter determined by the sufficient descent or by the conjugacy conditions. 

This paper introduces the modified memory-less SR1 method with cubic regularization 

which is obtained by the modified secant equation corresponding to a cubic over-

estimator of the minimizing function.  

  

The structure of the paper is as follows. Section 2 is dedicated to present the quasi-

Newton SR1 update and the general quasi-Newton algorithm. The main drawbacks of the 

SR1 update are discussed. The scaled memory-less quasi-Newton SR1 update is 

developed in Section 3. The scaling parameter is determined in such a way to ensure that 

the search direction is a descent well defined one. Two procedures for computing the 

scaling parameter are described. The first one is based on conjugacy condition, while the 

second one is based on the sufficient descent condition. In Section 4 the SR1 with cubic 

regularization is presented. Both the modified SR1 update formula and the modified 

memory-less SR1 update formula are detailed. The convergence of the algorithm is 

proved in Section 5. Under mild conditions it is proved that the modified memory-less 

SR1 update matrix with cubic regularization is bounded above in norm and the modified 

memory-less SR1 search direction is a descent direction, Section 6 presents the numerical 

results of the accelerated algorithms described in this paper on a collection of 800 

unconstrained optimization test problems with the number of variables in the range 

[1000, 10000]. The acceleration of the algorithms is taken in sense of Andrei (2009). It is 

proved that the accelerated modified memory-less SR1 method with cubic regularization 

is more efficient and more robust than the accelerated scaled memory-less SR1 method. 

 

2 The Quasi-Newton SR1 Update 

Starting from an initial point 0x  a line search algorithm for solving the unconstrained 

optimization problem 

 

                                                               min ( ),f x                                                             (1) 

 

where nx  and : nf   is a continuously differentiable function, bounded from 

below, determine a descent direction kd  and a stepsize k  on this direction and compute 

the next approximation of the minimum point as 

 

                                                 1 ,k k k kx x d      0,1, .k                                               (2) 

 

Often the stepsize k  is computed as solution of the Wolfe line search conditions 

 

                                  ( ) ( ) ,T
k k k k k k kf x d f x g d                                     (3.a) 

                                  ( ) ( ) .T T
k k k k k kf x d d f x d                                      (3.b) 

 

where   and   are scalar parameters with 0 1.      

The structure of a quasi-Newton method with Wolfe line search, in the variant in which 

an approximation to the Hessian is used, can be presented as follows 
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   General quasi-Newton Algorithm 

1) Set 0.k   Consider an initial point 0x  and an initial Hessian approximation 

0 ,B  Select some values for the Wolfe line search conditions   and   with 

0 1.     Select a sufficiently small parameter 0   used in the 

criterion for stopping the iterations. 

2) While ( )kf x    do  

a. Evaluate the gradient ( ).k kg f x   

b. Solve the system k k kB d g   subject to the search direction kd   

c. Find the stepsize 0k   which satisfies the standard Wolfe line 

search conditions (3.a) and (3.b) 

d. Compute: 1k k k kx x d    and set 1.k k   

e. Update 1,kB  according the quasi-Newton formula in use. 

3) End while. 

 

Another variant of the above general quasi-Newton algorithm, often used in the current 

implementations of the quasi-Newton algorithms for solving the problem (1), at every 

iteration uses an approximation to the inverse Hessian .kH  In this variant in step 1) of the 

algorithm instead of 0B  an initial approximation to the inverse Hessian 0H  is selected 

and in step 2.b) instead of solving the linear algebraic system ,k k kB d g   the search 

direction is computed as .k k kd H g   In step 2.e) instead of updating the approximation 

to the Hessian 1,kB   a formula for approximation to the inverse Hessian 1kH   is used. The 

quasi-Newton algorithms differentiate in step 2.e) concerning the updating the 

approximation to the Hessian 1kB  , or to the inverse Hessian 1kH  .  

In the quasi-Newton methods the basic requirement for the updating formula to 

the Hessian is the so called the secant equation to be satisfied at each iteration, namely 

 

                                                  1k k kB s y   or 1 ,k k kH y s                                                 (4) 

 

where 1k k ks x x   and 1 .k k ky g g   

 

The symmetric rank-one SR1 update formula, in which we are interested in this paper, 

can be derived as solution of the following simple problem. “Given a symmetric matrix 

kB  and the vectors ks  and ,ky  finds a new symmetric matrix 1kB   such that 1k kB B   has 

rank one and such that the secant equation 1k k kB s y   is satisfied.” It is easy to see that if 

( ) 0,T
k k k ky B s s   then the unique solution of the above problem is 

 

                                            1

( )( )
.

( )

T
k k k k k k

k k T
k k k k

y B s y B s
B B

y B s s


 
 


                                        (5) 

 

If k k ky B s  then the solution is 1 .k kB B   However, if ( ) 0T
k k k ky B s s   and ,k k ky B s  

then there is no solution to the problem. Therefore, to get the SR1 method in step 2.e) of 
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the general quasi-Newton algorithm the update 1kB   approximation to the Hessian is 

computed like in (5). 

Let kH  be the inverse approximation to the Hessian at iteration .k  By using the 

Sherman-Morrison-Woodbury formula in (5), the following update to the inverse Hessian 

for SR1 is obtained 

 

                                           1

( )( )
.

( )

T
k k k k k k

k k T
k k k k

s H y s H y
H H

s H y y


 
 


                                      (6) 

 

This variant of the algorithm is only applicable in cases in which the inverse kH  exists.   

 

Now a comparison between the BFGS and SR1 updates is welcomed. As we know the 

most effective quasi-Newton updating of the approximations to the Hessian is considered 

the BFGS formula [Nocedal, 1992], [Nocedal & Wright, 2006] where 

 

                                                  1

T T
k k k k k k

k k T T
k k k k k

B s s B y y
B B

s B s y s
                                                 (7) 

 

which is a rank-two update that satisfies the secant equation (4). If kH  is the inverse 

approximation to the Hessian at iteration ,k  then by applying the Sherman-Morrison-

Woodbury formula twice the following update to the inverse Hessian for BFGS is 

 

                                1 1
T T T T

k k k k k k k k k k k
k k T T T

k k k k k k

s y H H y s y H y s s
H H

y s y s y s


 
    

 
.                           (8) 

 

The most important properties of BFGS are as follows. If kH  is positive definite, then 

also 1kH   given by (8) is positive definite for any ,k  provided that 0T
k ky s   (which 

always is satisfied when the Wolfe line search (3) are satisfied). Therefore, if 0H  is 

chosen to be positive definite, then the rest of all the approximations kH  will also be 

positive definite. Also BFGS has the self-correcting property, i.e. if kH  incorrectly 

approximates the curvature of the minimizing function and this estimate slows down the 

iteration, then the inverse Hessian approximation will tend to correct itself in the next few 

iterations. The self-correcting property depends on the quality of the implementation of 

the Wolfe line search. For the Wolfe line search, always the initial value 1   is tried 

and this produce superlinear convergence of the method. All these properties of BFGS 

update make this quasi-Newton method one of the best in this class. However, the things 

are not what they seem to be. 

 

There are great differences between the SR1 update (5) and the BFGS update (7). Firstly, 

observe that SR1 is a rank-one update of the Hessian and BFGS is a rank-two update, 

both of them satisfying the secant equation. Secondly, there are some drawbacks of SR1 

which are not encountered in BFGS. The main drawbacks of SR1 update are as follows. 
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1) The denominator ( )T
k k k ky B s s  of the SR1 update term in (5) may vanish, i.e. 

( ) 0T
k k k ky B s s  , cases in which 1kB   is not well-defined.  

2) The step directions computed by using the SR1 updating formula given by (5) 

may no longer be uniform linear independent, thus leading to slow down the convergence 

or even the stalling.  

3) The SR1 Hessian approximation may not be positive definite along the 

iterations, thus resulting a direction that does not produce descent. 

 

To prevent the method from failing due to the first drawback one simple remedy 

is to set 1 .k kB B   However, this will slow down the convergence of the method. Conn, 

Gould and Toint (1991) and Khalfan, Byrd and Schnabel (1993) showed that the 

denominator of (5) vanishes rarely in practice and setting 1k kB B   does not have a 

significant impact on the performances of the SR1 method subject to the number of the 

iterations or runtimes. 

The second drawback is more subtle, being in close connection with the uniform 

linear independence of the search directions generated by the SR1 algorithm. A more 

precise definition of the uniform linear independence was given by Conn, Gould and 

Toint (1991). “A sequence { }ks  is uniformly linearly independent if there exist 0,   0k  

and m n  such that, for each 0,k k  there is n  distinct indices 1 2 nk k k k k m       

for which the minimum singular value of the matrix 1

1

, , n

n

kk

k k

ss
S

s s

 
 
 
 

 is at least . ” 

Conn, Gould and Toint (1991) proved that the sequence of matrices generated by the SR1 

formula converges to the exact Hessian, when the sequence of iterates converges to a 

limit point and the sequence of steps is uniformly linearly independent. Kelley and Sachs 

[1998] provide similar convergence results removing the first of these assumptions. 

Fiacco and McCormick [1968] showed that if the search directions are linearly 

independent and the denominator of (5) is always non-zero, then the SR1 method without 

line searches minimize a strongly convex quadratic function in at most 1n   steps. In this 

case 1nB   is exactly the Hessian of the quadratic function. Observe that this result is 

significant since it does not require exact line search, as is the case for the BFGS update. 

Generally, the above condition given by the definition of the uniform linear 

independency is not implemented in practice, it serves only as one of the main 

assumptions of a proof that the SR1 approximations to the Hessian converge to the true 

Hessian as the iterates converge to the solution of (1). 

Subject to the uniform linear independency of the search directions Khalfan, Byrd and 

Schnabel [1993] showed that many problems do not satisfy this requirement, but they 

proved the local convergence of the SR1 method using only the positive definiteness and 

boundedness assumptions for the approximate Hessian. More than this Conn, Gould and 

Toint [1991] proved that if the minimizing function f  is twice continuously 

differentiable and its Hessian is bounded and Lipschitz continuous and the iterates 

generated by the SR1 method converge to a point *x  and in addition for all ,k  

 

                                             ( ) ,T
k k k k k k k ky B s s y B s s                                            (9) 
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for some (0,1),   and the steps ks  are uniformly linearly independent, then  

 
2 *lim ( ) 0.k

k
B f x


   

 

Often condition (9) is used in implementations of the SR1 method in order to ensure that 

this update is well behaved. If this condition is not satisfied, then the update is skipped. 

Conn, Gould and Toint [1991] and Khalfan, Byrd and Schnabel [1993] provide 

theoretical and computational results, respectively, that if the uniform linear 

independence assumption is satisfied, then the approximations to the Hessian generated 

by the SR1 method are more accurate than those generated by BFGS, and SR1 converge 

faster to the true Hessian than BFGS. Therefore, if all these above drawbacks are 

addressed in a reliable and efficient manner, then SR1 can be used for solving (1) instead 

of the rank-two updates. 

 

3 The Scaled Memory-less Quasi-Newton SR1 Update 

Andrei (2021) introduced the scaled memory-less SR1 update by considering in (6) 

kH I , i.e. 

 

                                               1

( )( )
,

( )

T
k k k k

k k T
k k k

s y s y
H I t

s y y


 
 


                                         (10) 

 

where kt  is the scaling parameter. After some simple algebraic manipulations the scaled 

memory-less SR1 search direction 1 1 1k k kd H g     is obtained as 

 

                                          1
1 1

( )
( ).

( )

T
k k k

k k k k kT
k k k

s y g
d g t s y

s y y


 


   


                                  (11) 

 

If 1,kt   then the memory-less SR1 search direction is obtained. Of course the memory-

less SR1 search direction (with 1kt  , i.e. not scaled) is plagued by the lack of guarantee 

of positive definiteness for the Hessian estimate (10). Therefore, the scaling parameter kt  

is particularly introduced to ensure the positive definiteness of (10), i.e. to ensure that the 

search direction (11) is a descent well defined one. 

The main advantage of the scaled memory-less SR1 search direction (11) is that only two 

scalar products 1( )T
k k ks y g   and ( )T

k k ks y y  have to be computed. This is very 

advantageous for solving large-scale problems. Observe that in the scaled memory-less 

SR1 update the information on the Hessian approximation from the previous iteration is 

not accumulated to the current iteration. In a way the scaling parameter kt  in (10) is 

introduced to compensate this loss of information and as we said to ensures that the 

search direction (11) is a descent one. 

To determine a value for the scaling parameter kt  two procedures have been developed in 

(Andrei, 2021). The first one is based on the sufficient descent condition the second 

considers the conjugacy condition from the conjugate gradient algorithms.  
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1) Firstly, by imposing the sufficient descent condition  

 

                                                        
2

1 1 1 ,T
k k kg d c g                                                     (12) 

 

where 1kd   is given by (11) the following value for the scaling parameter is obtained 

 

                                             
2

12
1

( )
( 1) .

[( ) ]

T
k k k

k kT
k k k

s y y
t c g

s y g





 


                                       (13) 

 

Observe that in (12) the classical sufficient descent condition (11) is modified with 

equality. In (13) c  is selected close to 1, but not too close. In our numerical experiments 

we selected 7 / 8.c   Therefore, introducing the value for kt  given by (13) in (11) the 

following scaled memory-less SR1 search direction is obtained 

 

                                           

2

1
1 1

1

( 1)
( ).

( )

k
k k k kT

k k k

c g
d g s y

s y g


 




   


                                    (14) 

 

Observe that the iterations are affected if the denominator 1( )T
k k ks y g   of the update 

term becomes too small. In this case the update term in (14) may start to dominate the 

negative gradient and therefore the influence of the negative gradient in the search 

direction is lost. In order to accommodate these situations, the rule we apply is that the 

updates are skipped whenever the denominator 1( )T
k k ks y g   is too small in the sense 

 

                                              1 1( ) ,T
k k k k k ks y g s y g                                            (15) 

 

that is, if (15) is satisfied, then 1 1k kd g   . A typical value for   is 810 .  

2) Secondly, from the conjugacy condition  

 

                                                           1 1 ,T T

k k k kd y hg s                                                    (16) 

 

where 0h   is a scalar and 1kd   is given by (11) the following value for the scaling 

parameter kt  is obtained 

 

                                                        1

1

( )
.

( )

T
k k k

k T
k k k

hs y g
t

s y g









                                                 (17) 

 

Now, introducing the value for kt  given by (17) in (11) the following scaled memory-less 

SR1 search direction is obtained 

 

                                          1
1 1

( )
( ).

( )

T
k k k

k k k kT
k k k

hs y g
d g s y

s y y


 


   


                                   (18) 
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In our numerical experiments we selected 0.5.h   Again observe that the iterations are 

affected if the denominator ( )T
k k ks y y  of the update term is too small. In these cases if 

 

                                                 ( ) ,T
k k k k k ks y y s y y                                            (19) 

 

with 810 ,   then 1 1k kd g   . In Andrei (2021) it is proved that the scaled memory-less 

SR1 search direction (18) computed from the conjugacy conditions is a descent direction. 

Besides, numerical test for solving 800 unconstrained optimization problems with 

different structures and complexities with the number of variables in the range [100, 

1000] showed that the scaled memory-less SR1 method based on sufficient descent or on 

conjugacy conditions are more efficient and more robust versus BFGS from CONMIN 

[Shano, 1983; Shanno and Phua, 1976], one of the best implementation of BFGS. 

 

4 SR1 with Cubic Regularization 

The key feature of the cubic regularization is the computation of the step from the current 

iteration to the next one by minimizing a cubic over-estimator of the minimizing 

function. As we know, the step direction d  computed by the Newton method minimizes 

 

21
( ) ( ) ( ) ( ) .

2

T T
N k k k kf x d f x f x d d f x d      

 

If the Hessian of the minimizing function f  is Lipschitz continuous with constant L , 

then the Taylor expansion of f  around the current point kx  gives 

 
1

2 2 2

0

1
( ) ( ) ( ) ( ) (1 ) ( ( ) ( )) d

2

T T T
k k k k k kf x d f x f x d d f x d d f x d f x d             

                     
321

( ) ( ) ( ) ( ),
2 6

T T
k k k L k

L
f x f x d d f x d d f x d                                 (20) 

 

for all .nd   Therefore, using this estimation we can get a method for solving (1). 

However, the main deficiency of this approach is that for general nonlinear optimization 

problems there is no algorithm for explicit determination of .L  Instead, better is to 

consider a positive approximation M  to the Lipschitz constant, known as regularization 

parameter, and define 

 

                           
321

( ) ( ) ( ) ( ) .
2 6

T T
M k k k k

M
f x d f x f x d d f x d d                           (21) 

 

Therefore, the cubic step direction is obtained as solution of the following subproblem 

 

                                                      argmin ( ),M k
s

d f x s                                                  (22) 
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which is exactly the Adaptive Regularization algorithm using Cubics (ARC) suggested 

by Cartis, Gould and Toint (2011a, b). Two problems are present with this approach 

based on minimizing (21). The first one is how to choice the regularization parameter .M  

The second one is how to solve the nonlinear optimization problem (22). A simple 

approach to choice M  is to start with a very small positive value and then to increase it 

to be sufficiently large. For the second problem, Cartis, Gould and Toint (2011a, b) 

propose solving (22) only approximately. They prove that the resulting algorithm retain 

the convergence properties described by Nesterov and Polyak (2006).  

 

4.1 Modified SR1 Update Formula 

For the very beginning observe that the secant equation (4) is associated with a quadratic 

model of the minimizing function in a neighborhood of ,kx  i.e. it is associated to .Nf  

Besides, this equation is satisfied exactly only when 1kB   is equal to the true Hessian and 

the minimizing function is a quadratic. Benson and Shanno (2018) introduced a modified 

secant equation using for this the function Mf  instead of .Nf  In this case the secant 

equation (4) is replaced with 1 ,M M
k k kB s y   where from (21) we have 

 

                                       1 ,M
k k ks x x   

1( ) ( ) .
2

M
k M k M k k k k

M
y f x f x y s s      

 

Therefore, substituting the above elements in (4) the new secant equation is 

 

                                                     .
2

k k k k

M
y B s I s

 
  
 

                                                (23) 

 

Now, to get a new rank-one formula for updating the approximation kB  is to find the 

scalar   and the vector nu  such that 1 .T
k kB B uu    Substituting this expression 

into the secant equation we get 

2

T
k k k k

M
y B uu s I s

 
   
 

 

 

But, ( ) ( ) .T T T
k k kuu s s u u u s u   With this, we get 

 

( ) .
2

T
k k k k k

M
y B s I s u s u

 
   
 

 

 

Since ( )T
ku s  is a scalar, in order to satisfy this equation we can select 

2
k k k k

M
u y B s I s

 
   

 
 and 1( ) .T

ku s   Therefore, the following modified SR1 

updating formula for approximation to the Hessian is obtained 
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                          1

[ ( ) ][ ( ) ]
2 2 .

[ ( ) ]
2

T
k k k k k k k k

k k
T

k k k k k

M M
y B s I s y B s I s

B B
M

y B s I s s


   
 

 

                    (24) 

 

Using the Sherman-Morrison formula to (24), the following modified SR1 updating 

formula for approximation to the inverse Hessian is obtained 

 

                       1

[ ( )][ ( )]
2 2 .

[ ( )] ( )
2 2

T
k k k k k k k k k k

k k
T

k k k k k k k k

M M
s H y s s s H y s s

H H
M M

s H y s s y s s


   
 

  

                 (25) 

 

Observe that if 0,M   then the SR1 updating formulae (5) and respectively (6) are 

obtained.  

 

4.2 Modified Memory-less SR1 Update Formula 

This update is obtained by considering kB I  in (24) or kH I  in (25). Therefore 

considering kH I  in (25) we get 

 

                             1

[ ( )][ ( )]
2 2

[ ( )] ( )
2 2

T
k k k k k k k k

k
T

k k k k k k k

M M
s y s s s y s s

H I
M M

s y s s y s s


   
 

  

                        (26) 

 

which is the modified memory-less SR1 updating formula for approximation to the 

inverse Hessian. The modified memory-less SR1 search direction is computed as 

1 1 1,k k kd H g     where 1kH   is given by (26), i.e. 

 

                
1

1 1

[ ( )]
2 [ ( )].

2
[ ( )] ( )

2 2

T
k k k k k

k k k k k k
T

k k k k k k k

M
s y s s g

M
d g s y s s

M M
s y s s y s s



 

 
    

  

        (27) 

 

Denote .
2

k k k k

M
v y s s   With this, the search direction (27) corresponding to the 

modified memory-less SR1 updated formula can be written as 

 

                                            1
1 1

( )
( ).

( )

T
k k k

k k k kT
k k k

s v g
d g s v

s v v


 


   


                                    (28) 

 

The numerator of 1kH   from (26) is a symmetric, rank-one, positive definite matrix for 

any .M  Therefore, in order to have 1kH   a positive definite matrix, we have to choose M  

in such a way that the denominator of  1kH   is strictly positive, i.e. 
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                                        [( ) ] ( ) 0.
2 2

T
k k k k k k k

M M
s y s s y s s                                    (29) 

 

After some simple algebraic manipulations (29) can be written as 2 0,aM bM c    

where  

                              

4

,
4

ks
a      

3

( ),
2

k T
k k k

s
b s y s     

2
.T

k k kc y s y                         (30) 

 

Define 2( ) .M aM bM c     Observe that the denominator of (26) is exactly ( ),M  

which is a quadratic concave function with positive values between its roots, if they exist. 

Observe that 0.a   Now, since c  is the denominator of the memory-less SR1 update it 

follows that 0.c   Therefore, 4 0.ac   On the other hand, b  can be positive or negative. 

If they exist, the roots of the equation ( ) 0M   are  

 
2

1,2

4
.

2

b b ac
M

a

  
  

 

Therefore, taking into consideration the quadratic function ( ),M  in order to have a well 

defined modified memory-less SR1 updating formula (26), the positive regularization 

parameter M  may be selected as follows. 

 

Case 1 If 2 4 0,b ac   then the quadratic function ( )M  does not have real roots. In 

this case the highest value attained by ( )M  is negative, i.e. / 2 0.b a   

Therefore, in this case there is no value for M  for which the modified 

memory-less updated matrix 1kH   is positive definite. Set 0.M   

Case 2 If 2 4 0b ac   and 0,b   then both roots of the quadratic ( )M  are negative, 

or one is negative and the other one is positive. If both roots of ( )M  are 

negative, then set 0,M   i.e. there is no positive value of M  for which 1kH   

is positive definite. If one root, let say 1 0M  , and the other one, let say 

2 0M  , then set M  to any value in interval 2(0, ).M  

Case 3 If 2 4 0b ac   and 0,b   then both roots of the quadratic ( )M  are positive, 

or one is negative and the other one is positive. If both roots of ( )M  are 

positive, then set / 2M b a   to get the highest positive value of the 

quadratic which corresponds to the largest value of the denominator of (26). 

If one root, let say 1 0M  , and the other one, let say 2 0M  , then set M  to 

any value in interval 2(0, ).M  

 

We emphasize that if 0M  , then we can not guarantee a positive definite update matrix 

1kH  , given by (26), with this modified memory-less SR1 formula. In other words, 1kH   

given by (26) with 0M   reduces to 
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1

( )( )
,

( )

T
k k k k

k T
k k k

s y s y
H I

s y y


 
 


 

 

which is plagued by the lack of guarantee of positive definiteness. In fact, the scaling 

parameter kt  was introduced in the scaling memoryless SR1 updating formula (10) as a 

technical artifice to get a positive definite scaled memory-less updating matrix, as was 

discussed in Section 3 above. Therefore, in these cases, when 0,M   we suggest using 

some strategies as follows. One is to consider as search direction the negative gradient 

instead of (28), i.e. 1 1.k kd g    This is not the best selection, as it is equivalent to 

reverting to the steepest descent, which as we know converges very slow. However, 

selection of negative gradient is motivated by the fact that even Newton methods for 

nonconvex nonlinear optimization use a steepest descent step when negative curvature is 

encountered. The other one, we adopt in our numerical experiments, is to consider the 

search directions corresponding to the scaled memory-less SR1 update (10) in which the 

parameter kt  is computed by imposing the sufficient descent condition (12), or from the 

conjugacy condition (16). Anyway, when 0M   the cubic regularization is abandoned 

and we revert to the scaled memory-less SR1 update formula. In order to implement this 

strategy the algorithm includes two logical parameters: suff and conj. If 0M   and suff = 

.true., then the scaled memory-less SR1 search direction based on sufficient descent 

condition given by (14) and (15) is used. On the other hand if 0M   and conj = .true., 

then the scaled memory-less SR1 search direction based on conjugacy condition given by 

(18) and (19) is used. 

 

When the above cases determine 0M  , then several variants for its computation have 

been implemented and tested. All of them refer to the selection of a value of M  in the 

interval defined by zero and by the positive root of the quadratic ( ),M  when it exists.  

In Case 1, if 2 4 0,b ac   there is no positive value for the regularization parameter M for 

which the modified memory-less SR1 approximation to the inverse Hessian is positive 

definite. However, it is quite possible that 2 4 ,rb ac    where 0r   is a sufficiently 

small parameter and 0.b   In this case, since 0a   we can set / 2 .M b a   In our 

numerical experiments we selected 810 .r
  However, this selection of M  does not 

proved to be benefic subject to the performances of the algorithm. 

In Cases 2 and 3, as we noticed, there is more room for selecting a positive value for M  

in the interval 2(0, ).M  Our selection is more conservative in sense that we selected M as 

the middle of the interval.   

It is worth mentioning that Case 2 arises more often than Case 3, but this is not a 

definitive remark.  

 

Proposition 1 The modified memory-less SR1 search direction with cubic regularization 

(28) is a descent direction. 

 

Proof Since the parameter M  is selected in such a way that ( ) 0,T
k k ks v v   from (28) we 

have that 
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2
2 1

1 1 1

[ ( )]
0,

( )

T
T k k k
k k k T

k k k

g s v
g d g

s v v


  


   


 

 

i.e. the search direction (28) is a descent one.                                                                     ♦  

 

 

With these developments the following accelerated modified memory-less SR1 with 

cubic regularization algorithm may be presented.  

 

Algorithm AMMSR1 

1. Initialization. Consider an initial point 0x . Set 0.k   Select some values for the 

Wolfe line search conditions   and   with 0 1.     Compute 0 0( )g f x   and 

set 0 0.d g   Select the sufficiently small parameters 0   used in the criterion for 

stopping the iterations and 0A   used in the acceleration scheme. Select some 

positive values for parameters c  and .h  Set the logical variables conj or suff on 

.true. or on .false. 

2. Test a criterion for stopping the iterations: if kg 

  then stop the iterations, 

otherwise go to step 3 

3. Compute the stepsize k  using the standard Wolfe line search conditions 

4. Update the variables 1k k k kx x d    and compute 1kf   and 1.kg   Compute 

1k k ks x x   and 1k k ky g g   

5. Acceleration scheme: 

a) Compute: k k kz x d  , ( )zg f z  and k k zy g g   

b) Compute: T

k k k ka g d , and T

k k k kb y d   

c) If ,k Ab   then compute /k k ka b    and update the variables as 

1k k k k kx x d    . Compute 1kf   and 1.kg   Compute 1k k ky g g   and 

1k k ks x x   

6. Compute the regularization parameter M   

7. If 0,M   and if suff = .true., then compute the scaled memory-less SR1 search 

direction based on the sufficient descent condition, as in (14) with (15) 

If 0,M   and if conj = .true., then compute the scaled memory-less SR1 search 

direction based on the conjugacy condition, as in (18) with (19) 

8. 
If 0,M   compute 

2
k k k k

M
v y s s   and then compute the search direction 

1
1 1

( )
( )

( )

T
k k k

k k k kT
k k k

s v g
d g s v

s v v


 


   


 

9. Restart iterations. If 3
1 1 1 110 ,T

k k k kg d g d
      then set 1 1k kd g    

10. Consider 1k k   and go to step 2                                                                              ♦ 
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Observe that the algorithm is equipped with an acceleration scheme (see step 5) 

introduced by Andrei (2006, 2009). This scheme modifies the stepsize determined by the 

Wolfe line search conditions (3) in such a way as to improve the reduction of the 

minimizing function values along the iterations. It is proved that this acceleration scheme 

is linear convergent, but the reduction in the function value is significantly improved.  

If f  is bounded along the direction ,kd  then there exists a stepsize k  satisfying the  

Wolfe line search conditions (3). The first trial of the stepsize crucially affects the 

practical behavior of the algorithm. At every iteration 1,k   the starting guess for the 

step k  in the line search is computed as 1 1 / .k k kd d     

In our algorithm we introduced a restarting condition. If this restarting condition is 

satisfied, then the algorithm is restarted with the negative gradient. Some other restarting 

procedures may be implemented, but we are interested in seeing the performances of 

AMMSR1 implementing this restart condition. 

 

5 Convergence of the Algorithm 

In this section the global convergence of the algorithm is established under the following 

assumptions: 

(A1) The level set 0{ : ( ) ( )}nx f x f x    is bounded, i.e. there exists a constant 

0B   such that for any ,x  .x B  

(A2) The function : nf   is continuously differentiable and its gradient is 

Lipschitz continuous in a neighborhood N  of ,  i.e. there exists a constant 

0L   such that ( ) ( ) ,f x f y L x y     for any , .x y N  

 

It is easy to see that under these assumptions, there exists a constant 0   such that 

( ) ,f x    for any .x  

Although the search directions 1kd   generated by the algorithm AMMSR1 are always 

descent directions, in order to get the convergence of the algorithm we need to derive a 

lower bound for the stepsize .k   

 

Proposition 2 Suppose that kd  is a descent direction and f  satisfies the Lipschitz condition 

 

( ) ( )k kf x f x L x x     

 

for all x on the line segment connecting kx  and 1,kx   where L  is a constant. If the line search 

satisfies the standard Wolfe conditions (3), then 

 

                                                                 
2

1
.

T
k k

k

k

g d

L d





                                                        (31) 

 

Proof Subtracting T
k kg d  from both sides of (3.b) and using the Lipschitz condition, it follows 

that 
2

1( 1) ( ) .T T
k k k k k k kg d g g d L d      
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But kd  is a descent direction and 1,  therefore (31) follows from the above inequality.           ♦ 

 

Proposition 3 Suppose that ( )( ) ,T
k k k ks v s v   where ,

2
k k k k

M
v y s s   is bounded 

above in norm. Then the modified memory-less SR1 update matrix 1kH   with cubic 

regularization given by (26) is bounded above in norm. 

 

Proof The proof follows the three cases presented above. In the first case 1kH   is updated 

with 0.M   Therefore, since kH  and ( )( )T
k k k ks v s v   are bounded above, it follows that 

1kH   is bounded above. In Cases 2 and 3, 1kH   is updated using (26) with the 

regularization parameter M  computed in such a way that the denominator of the update 

matrix is strictly greater than zero. In fact the value of M  is selected in the open interval 

given by zero and the positive root of the quadratic function ( ).M  Therefore, the 

denominator of (26) is sufficiently larger than zero. Now, since the matrix 

( )( )T
k k k ks v s v   is bounded above in norm and 1 1 2 ,k k k k ks x x x x B       (see 

assumption (A1)), it follows that the numerator of 1kH   given by (26) is bounded above 

as well. Therefore, the modified memory-less SR1 update matrix 1kH   is bounded above 

in norm.                                                                                                                                ♦ 

 

Proposition 4 For any iteration ,k  the modified memory-less SR1 search direction (27), 

is a descent direction, that is 1 1 0.T
k kg d    Besides, 1 ,kd D   for some 0.D   

 

Proof Observe that the numerator of the update (26) is a rank-one positive semidefinite 

matrix and the regularization positive parameter M is chosen so that the denominator of 

(26) is strictly positive. Therefore the update matrix 1kH   given by (26) is positive 

semidefinite. Without loss of generality, kH  is positive definite, hence, 1kH   given by 

(26) is positive definite. Thus, 1 1 1 1 1 0.T T
k k k k kg d g H g        

The boundedness of 1kd   may be established as follows. If the restart condition is 

satisfied, then 1 1.k kd g    Therefore, 1 1 ,k kd g D    where D    by assumption 

(A2). On the other hand, for non-restart iterations the search direction is computed as 

1 1 1,k k kd H g     where 1kH   is given by (26). In this case, by Proposition 3 the sequence 

of the Hessian matrices given by (26) remains bounded above in norm. Therefore, 

1 1 1 1 1k k k k kd H g H g       , which is bounded above by some constant 0.D           ♦ 

 

Theorem 1 Suppose that the assumptions (A1) and (A2) are satisfied. If f  is Lipschitz 

continuous, then lim 0.k kg   

 

Proof The assumptions and the above Propositions 2, 3 and 4 show that the algorithm 

AMMSR1 is globally convergent to a point in which the first-order optimality conditions 

are satisfied.                                                                                                                         ♦ 
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6 Numerical Examples 

In this section we report some numerical results obtained with an implementation of the 

AMMSR1 algorithm. The code is written in Fortran and compiled with f77 (default 

compiler settings) on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number 

of 80 large-scale unconstrained optimization test functions in generalized or extended 

form we presented in [Andrei, 2020]. The vast majority of these problems are taken from 

CUTE collection [Bongartz, Conn, Gould and Toint, 1995]. For each test function we 

have taken ten numerical experiments with the number of variables increasing as 

1000,2000,...,10000.n   Therefore, a number of 800 unconstrained optimization 

problems have been considered. The algorithms used in all numerical test implement the 

Wolfe line search conditions (3) with 0.0001,   0.8   and the same stopping 

criterion gk 

10 6 , where .


is the maximum absolute component of a vector. In all 

algorithms, we considered in our numerical studies, the maximum number of iterations is 

limited to 10000, while the maximum number of function and its gradient evaluations is 

limited to 10000. In all codes the stepsize k  is computed as in subroutine CONMIN 

(Shanno, 1983), which generates safeguarded stepsizes satisfying the Wolfe line search 

condition (3) by building a cubic model of the minimizing function and trying to 

minimize the cubic model by stopping at any iteration that gives a sufficient reduction of 

the minimizing function subject to the Armijo condition (3.a). 

The comparisons of algorithms are given in the following context. Let f i

ALG1 and 

f i

ALG2 be the optimal value found by ALG1 and ALG2, for problem 1, ,800,i   

respectively. We say that, in the particular problem i,  the performance of ALG1 was 

better than the performance of ALG2 if:  

 

                                                        f fi

ALG

i

ALG1 2 310                                               (32) 

 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), 

or the CPU time of ALG1 was less than the number of iterations, or the number of 

function-gradient evaluations, or the CPU time corresponding to ALG2, respectively. 

 

The general algorithm AMMSR1 may be particularized as: AMMSR1C – the accelerated 

modified memory-less SR1 with cubic regularization using the conjugacy condition, i.e. 

with conj = .true. and AMMSR1S - the accelerated modified memory-less SR1 with 

cubic regularization using the sufficient descent condition, i.e. with suff = .true. These 

algorithms are compared versus ASMSR1C – the accelerated scaled memory-less SR1 

with conjugacy condition in which the search direction is computed as in (18) with (19) 

and versus ASMSR1S – the accelerated scaled memory-less SR1 with sufficient descent 

condition in which the search direction is computed as in (14) with (15). 

 

In the first set of numerical experiments AMMSR1C is compared versus 

ASMSR1C and versus ASMSR1S for solving 800 unconstrained optimization problems 

with the number of variables in the range [1000, 10000]. Figure 1 presents the Dolan and 

Moré (2002) performance profiles of these algorithms subject to the CPU computing 

time. 
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a) b) 

Fig. 1. Performance profiles of AMMSR1C versus ASMSR1C and versus ASMSR1S.  

[1000,10000]n  

 

 

In a performance profile plot, the top curve corresponds to the method that solved the 

most problems in a time that was within a given factor of the best time. The percentage of 

the test problems for which a method is the fastest is given on the left axis of the plot. 

The right side of the plot gives the percentage of the test problems that were successfully 

solved by these algorithms, respectively. Mainly the left side of the plot is a measure of 

the efficiency of an algorithm, while the right side is a measure of the robustness of an 

algorithm. 

 

Comparing AMMSR1C versus ASMSR1C, (see Figure 1.a) subject to the number of 

iterations, we see that AMMSR1C was better in 70 problems (i.e. it achieved the 

minimum number of iterations in 70 problems). ASMSR1C was better in 21 problems 

and they achieved the same number of iterations in solving 703 problems, etc. Out of 800 

problems considered in this numerical experiment, only for 794 problems does the 

criterion (32) hold. Observe that the differences are significant. Subject to the CPU time 

metric, AMMSR1C was faster in 316 problems, while ASMSR1C was faster only in 289, 

i.e. AMMSR1C is more efficient than ASMSR1C. The accelerated modified memory-

less SR1 with cubic regularization and conjugacy condition is more efficient and more 

robust than the accelerated scaled memory-less SR1 method based on conjugacy 

condition. Notice that both AMMSR1C and ASMSR1C use the same implementation of 

the standard Wolfe line search (3) based on cubic interpolation (Shanno, 1983), as well as 

the same optimization conditions.  

 

Comparing AMMSR1C versus ASMSR1S (see Figure 1.b) we observe that the 

accelerated modified memory-less SR1 method with cubic regularization and conjugacy 

condition is more efficient and more robust than the accelerated scaled memory-less SR1 

method based on sufficient descent condition. The differences between these algorithms 

are significant. For example, subject to the CPU time metric, AMMSR1C was fastest for 

solving 353 problems, while ASMSR1S was fastest only in 173 problems, etc. Anyway, 
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cubic regularization ensures sufficient descent at each iteration by controlling in an 

efficient manner the approximation to the Lipschitz constant M  rather than to impose a 

stepsize k  as in the Newton method. 

 

In the second set of numerical experiments AMMSR1S is compared versus ASMSR1C 

and versus ASMSR1S. Figure 2 shows the performance profiles of these algorithms 

subject to the CPU computing time. 

 

 

  
a) b) 

Fig. 2. Performance profiles of AMMSR1S versus ASMSR1C and versus ASMSR1S 

[1000,10000]n  

 

 

From Figure 2.a we see that the accelerated scaled memory-less SR1 method with 

conjugacy condition, ASMSR1C, is more efficient and more robust than the accelerated 

modified memory-less SR1 with cubic regularization and using sufficient descent 

condition, AMMSR1S. The scaled memory-less SR1 search direction computed from the 

conjugacy conditions is a descent direction (Andrei, 2021). In the economy of an 

optimization algorithm the conjugacy condition is an important ingredient. The main 

characteristic of conjugate directions is that to minimize a convex quadratic function in a 

subspace spanned by a set of mutually conjugate directions is equivalent to minimize the 

function along each conjugate direction in turn. However, the performances of algorithms 

satisfying the conjugacy condition are strongly dependent on the accuracy of the line 

search. If the line search procedure for stepsize computation is highly accurate, then the 

corresponding optimization algorithm is extremely fast. 

In Figure 2.b we have a numerical confirmation that the accelerated modified memory-

less SR1 with cubic regularization using sufficient descent condition, AMMSR1S, is 

more efficient and more robust than the accelerated scaled memory-less SR1 method with 

sufficient descent, ASMSR1S. Both algorithm AMMSR1S and ASMSR1S are based on 

the sufficient descent condition. However, AMMSR1S implements cubic regularization 

through the modified secant equation. 
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Fig. 3. Performance profiles of AMMSR1C versus AMMSR1S. 

[1000,10000]n  

 

 

It is worth comparing AMMSR1C versus AMMSR1S. Figure 3 presents the performance 

profiles of these algorithms. Observe that the accelerated modified memory-less SR1 

method based on cubic regularization with conjugacy condition is way more efficient and 

more robust than the accelerated modified memory-less SR1 methods based on cubic 

regularization with sufficient descent condition. Both these algorithms implement the 

same line search procedure and both of them generate descent search directions (Andrei, 

2021). However, this is not sufficient to get highly performer algorithms. In this case, it is 

the conjugacy condition that makes the difference. 

 

We emphasize here that SR1 method (5) is obtained by updating an approximation to the 

Hessian of the minimizing function with a rank-one matrix computed by using the 

classical secant equation. On the other hand, the modified SR1 method (24) is obtained 

by updating an approximation to the Hessian with a rank-one matrix computed this time 

by using the modified secant equation (23). This modified secant equation which includes 

an estimation M  of the Lipschitz constant L  of the Hessian determines a better updating 

term in (24), leading us to better approximations to the true Hessian. Like in (Benson and 

Shanno, 2018) in this paper the estimation M  of the Lipschitz constant L  of the Hessian 

is obtained by cubic regularization. It is worth saying that the memory-less technique 

used here in an intensive manner is one of the simplest methods to adapt the known 

optimization methods for solving large-scale problems. In the frame of the quasi-Newton 

methods, by memory-less technique we understand that, at every iteration, the current 

approximation to the Hessian is obtained by updating the identity matrix. This technique 

was for the first time introduced by Shanno (1978, 1978) who proved that the conjugate 

gradient methods are precisely the BFGS quasi-Newton method, where the 

approximation to the inverse Hessian is restarted as the identity matrix at every iteration.  
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From the above numerical experiments we see that the cubic regularization of the 

quadratic model of the minimizing function is more robust than the scaling of the 

memory-less SR1 updating term.   

 

In the third set of numerical experiments let us compare accelerated modified memory-

less SR1 method based on cubic regularization with conjugacy condition, AMMSR1C, 

and the accelerated modified memoryless SR1 method based on cubic regularization with 

sufficient descent, AMMSR1S, versus BFGS implemented in CONMIN (Shanno and 

Phua, 1976) using the same set of 800 unconstrained optimization problems with the 

number of variables in the range [100-1000]. Figure 4 shows the performance profiles of 

these algorithms. 

 

  
Fig. 4. Performance profiles of AMMSR1C versus BFGS and of AMMSR1S versus  

BFGS. [100,1000]n  

 

 

From Figure 4 we see that subject to the CPU computing time both AMMSR1C and 

AMMSR1S are way more efficient and more robust than the BFGS in implementation of 

CONMIN. For example, subject to CPU time metric, AMMSR1C was better in solving 

549 problems, while BFGS was better in solving only 28 problems, etc. There is a great 

difference between these algorithms. The BFGS in CONMIN is a variable metric method 

with initial scaling which approximately needs 2 / 2 11 / 2n n  double precision words of 

working storage. In comparison AMMSR1 requires approximately 7n  double precision 

words of working storage. BFGS requires more memory and involves a greater 

computational effort.  

 

In the fourth set of numerical experiments let us present comparisons between 

AMMSR1C versus ASMSR1C and between AMMSR1S versus ASMSR1S algorithms 

for solving some applications from the MINPACK-2 test problem collection [Averick, 

Carter, Moré, & Xue, 1992]. The minimizing function of all these applications is 

quadratic. In Table 1, we present these applications, as well as the values of their 

parameters. The infinite-dimensional version of these problems is transformed into a 

finite element approximation by triangulation. Thus a finite-dimensional minimization 

problem is obtained whose variables are the values of the piecewise linear function at the 
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vertices of the triangulation. The discretization steps are 200nx   and 200ny  , thus 

obtaining minimization problems with 40,000nx ny   variables. 

 

 
Table 1 

Applications from the MINPACK-2 collection 

A1 Elastic–plastic torsion [Glowinski, 1984, pp. 41–55], c = 5 

A2 Pressure distribution in a journal bearing [Cimatti, 1977], b = 10, ε = 0.1 

A3 Optimal design with composite materials [Goodman, Kohn, & Reyna, 1986], λ = 0.008 

A4 Steady-state combustion [Aris, 1975, pp. 292–299], [Bebernes, & Eberly, 1989], λ = 5 

A5 Minimal surfaces with Enneper conditions [Nitsche, 1989, pp. 80–85] 

 

 

The performances of the accelerated modified memory-less SR1 method based on cubic 

regularization with conjugacy condition, AMMSR1C, versus the accelerated scaled 

memory-less SR1 method based on conjugacy condition, ASMSR1C, are given in Table 

2, where #iter is the number of iterations, #fg is the number of function and its gradient 

evaluations and cpu is the CPU time computing.  

 

 
Table 2 

Performances of AMMSR1C versus ASMSR1C (40,000 variables, CPU seconds) 

 AMMSR1C ASMSR1C 

 #iter #fg cpu #iter #fg cpu 

A1 13138 26297 277.10 13138 26297 273.64 

A2 66922 133876 1476.36 66922 133876 1608.61 

A3 87482 175001 3498.05 89559 179187 3430.25 

A4 49631 99287 3964.23 49631 99287 3815.94 

A5 11374 22784 285.36 11374 22784 300.46 

TOTAL 228547 457245 9501.10 230624 461431 9428.90 

 

The performances of the accelerated modified memory-less SR1 method based on cubic 

regularization with sufficient descent, AMMSR1S, versus the accelerated scaled 

memory-less SR1 method based on sufficient descent, ASMSR1S, are given in Table 3. 

 

 
Table 3 

Performances of AMMSR1S versus ASMSR1S (40,000 variables, CPU seconds) 

 AMMSR1S ASMSR1S 

 #iter #fg cpu #iter #fg cpu 

A1 514 1314 12.28 1197 3061 32.19 

A2 12306 26343 288.34 9691 20279 228.76 

A3 3587 8809 136.30 6665 16587 295.33 

A4 941 2436 103.98 1715 4394 172.60 

A5 627 1592 20.01 718 1831 20.83 

TOTAL 17975 40494 560.91 19986 46152 749.71 

 

 

Table 4 presents the characteristics of the optimization process for AMMSR1C and 

AMMSR1S, respectively. In these tables #conj is the number of iterations in which the 
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search direction is computed as the scaled memory-less SR1 search direction given by 

(18) with (19) using the conjugacy condition. #suff is the number of iterations in which 

the search direction is computed as the scaled memory-less SR1 search direction given by 

(14) with (15) using the sufficient descent. On the other hand, #grad represents the 

number of iterations in which the search direction is the negative gradient. 

 

 
Table 4 

Characteristics of AMMSR1C versus AMMSR1S (40,000 variables, CPU seconds) 

 AMMSR1C AMMSR1S 

 #iter #conj #grad #iter #suff #grad 

A1 13138 13137 1 514 498 16 

A2 66922 66919 3 12306 3648 8658 

A3 87482 87478 4 3587 3561 26 

A4 49631 49630 1 941 909 32 

A5 11374 11372 2 627 613 14 

TOTAL 228547 228536 11 17975 9229 8746 

 

 

 

From the above tables we see that both the scaled memory-less SR1 and the modified 

memory-less SR1 with cubic regularization algorithms are able to solve large-scale 

unconstrained optimization problems. Both AMMSR1C and ASMSR1C have similar 

performances. However, subject to the number of iterations, to the number of function 

and its gradient evaluations and to the CPU computing time, AMMSR1S is more efficient 

than ASMSR1S. It seems that cubic regularization with sufficient descent condition is an 

important ingredient for improving the performances of SR1 method. 

Observe that, subject to the CPU time metric, the scaled memory-less SR1 

method with sufficient descent and the modified memory-less SR1 method also with 

sufficient descent are faster than the scaled memory-less SR1 method with conjugacy 

condition and the modified memory-less SR1 method also with conjugacy condition. In 

other words, AMMSR1S is more efficient than AMMSR1C. Obviously, sufficient 

descent condition is more important than conjugacy condition.  

From Table 4 we see that in case of AMMSR1C the search direction given by the 

negative gradient very rare is used. Out of 228547 iterations for solving all 5 applications, 

only in 11 (i.e. 0.0048%) iterations the negative gradient was used. In contrast, in case of 

AMMSR1S we see that out of 17975 iterations for solving all 5 applications, only in 

8746 (i.e. 48.66%) iterations the negative gradient was used. Of course, excepting the 

application A2, in case of AMMSR1S, also the negative gradient is used in a very small 

number of iterations. It is worth saying that for solving large-scale optimization problems 

the best performances are obtained by those algorithms for which for a small fraction of 

iterations the negative gradient is used. AMMSR1S satisfies this tacit custom. 

 

7 Conclusions 

The paper presents new variants for SR1 update based on the memory-less technique and 

on a modified secant equation obtained from the cubic overestimation of the minimizing 

function. The idea of using these techniques was to get a positive definite update of the 

SR1 method able for solving large-scale minimization problems. When is not possible to 
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get a strictly positive value for the cubic regularization parameter, then the modified 

memory-less SR1 with cubic regularization reduces to the scaled memory-less SR1 

method based on sufficient descent or on conjugacy condition. The global convergence of 

the corresponding algorithm is established under classical assumptions. The numerical 

results show that the modified memory-less SR1 update based on the cubic regularization 

is more efficient and more robust than the scaled memory-less SR1 method and than 

preconditioned BFGS method implemented in CONMIN. 
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