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Abstract. The scaled memory-less SR1 updating method is obtained from the SR1 quasi-

Newton method in which the current approximation to the Hessian is replaced by the identity 

matrix and the update term is scaled by a parameter. The value of the scaling parameter is 

computed by using the sufficient descent condition or by using the conjugacy condition. 

Numerical experiments with a set of 800 unconstrained optimization problems proved that 

the accelerated scaled memory-less SR1 method is more efficient and more robust than the 

preconditioned BFGS algorithm implemented in CONMIN.  
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1. Introduction 

For solving the unconstrained optimization problem 

 

                                                                min ( ),f x                                                           (1) 

 

where nx  and : nf   is a continuously differentiable function, bounded from 

below we are interested in this paper to use the symmetric rank-one SR1 method. There is 

a prejudice that SR1 method is full of drawbacks and is not to be selected for solving (1). 

In this paper we present a variant of this method which proves to be more efficient and 

more robust than the well known and most appreciated BFGS method. 

 

Many algorithms for solving (1) employ a quadratic model of the function .f  The 

Newton’s method and the quasi-Newton methods use a second-order Taylor series of the 

minimizing function with either an explicit or an approximated Hessian matrix. The 

quasi-Newton methods use an approximation to the Hessian, or an approximation to the 

inverse Hessian, which are updated at each iteration. These algorithms are efficient and 

robust for minimizing functions that satisfy certain assumptions and have a super-linear 

rate of local convergence. Currently, many variants of the updating formula for the 

approximation to the Hessian (or to the inverse Hessian) are known: symmetric rank-one 
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(SR1) [Broyden, 1967; Davidon, 1959, 1968; Fiacco and McCormick, 1968; Wolfe, 

1969, 1971] and the rank-two such as the Davidon-Fletcher-Powell (DFP) update 

[Davidon, 1991; Fletcher and Powell, 1963], Powell-symmetric-Broyden (PSB) [Powell, 

1970] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [Broyden, 1970; 

Fletcher, 1970; Goldfarb, 1970; Shanno, 1970]. A unifying framework for many of these 

updates, including both rank-one and rank-two updates was given by Huang [1970]. 

Theoretical studies and intensive numerical experiments proved that among the quasi-

Newton methods the BFGS is the most effective. However on certain problems BFGS 

method may require a large number of iterations and function and gradient evaluations. 

The sourced of its inefficiency may be caused by a poor initial approximation to the 

Hessian, or more importantly, by the ill-conditioning of the Hessian approximations 

along the iterations. To improve the efficiency and the robustness of the BFGS and to 

overcome the difficulties, some modified versions of it were given. All these modified 

BFGS methods can be classified into four classes: the scaling of the BFGS update matrix, 

the memory-less BFGS method, the BFGS update with modified secant equation and the 

modified BFGS method using different line search conditions for stepsize computation. 

Intensive numerical experiments on minimizing functions with different number of 

variables and complexities showed that all the modified BFGS methods are more 

efficient and more robust than its unmodified version [Contreras and Tapia, 1993; Oren 

and Luenberger, 1974; Oren and Spedicato, 1976; Yabe, Martinez and Tapia, 2004; 

Biggs, 1971, 1973; Liao, 1997; Nocedal and Yuan, 1993; Andrei, 2018a, 2018b, 2018c, 

2020a; Yuan, 1991; Yuan and Byrd, 1995; Al-Baali, 1998; Arzam, Babaie-Kafaki and 

Ghanbari, 2017; Yuan, Sheng, Wang, Hu and Li, 2018; Dehmiry, 2019].  

 

Having in view all these developments on the BFGS method it is quite natural to try to 

extend them to the SR1 method. In this paper we present only the scaled memory-less 

SR1 method which combines both the scaling and the memory-less techniques. Other 

modifications involving modified secant equation or different line search for stepsize 

computation are postponed for future time. By memory-less techniques the 

approximation to the Hessian at a given iteration is computed by updating the unity 

matrix. By scaling we mean that the updating term of the SR1 formula is scaled with a 

parameter selected in such a way to compensate the lost of information by considering 

the unity matrix in updating formula.  

The structure of the paper is as follows. Section 2 presents the quasi-Newton SR1 method 

insisting on the updating formula and its weakness. Notice that the SR1 updating formula 

is very simple, easy to be implemented in computing programs, but it is corrupted by 

some drawbacks which dramatically limit its applicability. Section 3 is dedicated to the 

scaled memory-less quasi-Newton symmetric rank-one SR1 update. As we said, this 

method consists of updating at every iteration the unity matrix and scaling the updating 

term with parameter. The scaling parameter is determined in two different ways. In the 

first one it is computed by involving the sufficient descent condition. The second one is 

based on the conjugacy condition from the conjugate gradient methods.  The accelerated 

scaled memory-less SR1 algorithm is showed in Section 4. The convergence of the scaled 

memory-less SR1 algorithm is presented in Section 5. The last section is dedicated to the 

numerical results obtained with an implementation of the suggested algorithm. It is 

shown that the accelerated scaled memory-less SR1 algorithm is more efficient and more 
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robust than the BFGS algorithm implemented in CONMIN developed by Shanno and 

Phua (1976) on solving a se of 800 unconstrained optimization test problems with the 

number of variables in the range [100, 1000]. Finally the performances of the algorithm 

are presented for solving five applications from MINPACK2 collection, each of then 

having 40.000 variables.  

 

2. The quasi-Newton SR1 (Symmetric Rank One) Update 

Mainly, the structure of a quasi-Newton method with Wolfe line search, in the variant in 

which an approximation to the Hessian is used, can be presented as follows: 

 

   General quasi-Newton Algorithm 

1) Set 0.k   Consider an initial point 0x  and an initial Hessian approximation 

0 ,B  Select some values for the Wolfe line search conditions   and   with 

0 1.     Select a sufficiently small parameter 0   used in the 

criterion for stopping the iterations. 

2) While ( )kf x    do  

a. Evaluate the gradient ( ).k kg f x   

b. Solve the system .k k kB d g    

c. Find the stepsize 0k   which satisfies the standard Wolfe line 

search conditions: 

                                  ( ) ( ) ,T
k k k k k k kf x d f x g d                            (2.a) 

                                  ( ) ( ) .T T
k k k k k kf x d d f x d                             (2.b) 

d. Compute: 1k k k kx x d    and set 1.k k   

e. Update 1,kB  according the quasi-Newton formula in use. 

3) End while. 

 

 

Another variant of the above general quasi-Newton algorithm, often implemented for 

solving the problem (1), at every iteration uses an approximation to the inverse Hessian 

.kH  In this variant in step 1) of the algorithm instead of 0B  an initial approximation to 

the inverse Hessian 0H  is selected and in step 2.b) instead of solving the linear algebraic 

system ,k k kB d g   the search direction is computed as .k k kd H g   In step 2.e) instead 

of updating the approximation to the Hessian 1,kB   a formula for approximation to the 

inverse Hessian 1kH   is used. The quasi-Newton algorithms differentiate in step 2.e) 

concerning the updating the approximation to the Hessian 1kB  , or to the inverse Hessian 

1kH  .  

 

In the quasi-Newton methods the basic requirement for the updating formula to 

the Hessian is the so called the secant equation to be satisfied at each iteration, namely 

 

                                                  1k k kB s y   or 1 ,k k kH y s                                                 (3) 

 

where 1k k ks x x   and 1 .k k ky g g   



 4 

 

The symmetric rank-one SR1 update formula, in which we are interested in this paper, 

can be derived as solution of the following simple problem. “Given a symmetric matrix 

kB  and the vectors ks  and ,ky  finds a new symmetric matrix 1kB   such that 1k kB B   has 

rank one and such that the secant equation 1k k kB s y   is satisfied.” It is easy to see that if 

( ) 0,T
k k k ky B s s   then the unique solution of the above problem is 

 

                                            1

( )( )
.

( )

T
k k k k k k

k k T
k k k k

y B s y B s
B B

y B s s


 
 


                                        (4) 

 

If k k ky B s  then the solution is 1 .k kB B   However, if ( ) 0T
k k k ky B s s   and ,k k ky B s  

then there is no solution to the problem. Therefore, to get the SR1 method in step 2.e) of 

the general quasi-Newton algorithm the update 1kB   approximation to the Hessian is 

computed like in (4). 

Let kH  be the inverse approximation to the Hessian at iteration .k  By using the 

Sherman-Morrison-Woodbury formula in (4), the following update to the inverse Hessian 

for SR1 is 

                                           1

( )( )
.

( )

T
k k k k k k

k k T
k k k k

s H y s H y
H H

s H y y


 
 


                                      (5) 

 

Therefore, in the general quasi-Newton algorithm above, instead of solving the linear 

algebraic system k k kB d g   in step 2.b) we can simply set the search direction as 

.k k kd H g   This variant of the algorithm is only applicable in cases in which the inverse 

kH  exists.  

 

Now a comparison between the BFGS and SR1 updates is welcomed. As we know the 

most effective quasi-Newton updating of the approximations to the Hessian is considered 

the BFGS formula [Nocedal, 1992], [Nocedal & Wright, 2006] where 

 

                                                  1

T T
k k k k k k

k k T T
k k k k k

B s s B y y
B B

s B s y s
                                                 (6) 

 

which is a rank-two update that satisfies the secant equation (3). If kH  is the inverse 

approximation to the Hessian at iteration ,k  then by applying the Sherman-Morrison-

Woodbury formula twice the following update to the inverse Hessian for BFGS is 

 

                                1 1
T T T T

k k k k k k k k k k k
k k T T T

k k k k k k

s y H H y s y H y s s
H H

y s y s y s


 
    

 
.                           (7) 

 

The most important properties of BFGS are as follows. If kH  is positive definite, then 

also 1kH   given by (7) is positive definite for any ,k  provided that 0T
k ky s   (which 

always is satisfied when the Wolfe line search (2) are satisfied). Therefore, if 0H  is 
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chosen to be positive definite, then the rest of all the approximations kH  will also be 

positive definite. Also BFGS has the self-correcting property, i.e. if kH  incorrectly 

approximates the curvature of the minimizing function and this estimate slows down the 

iteration, then the inverse Hessian approximation will tend to correct itself in the next few 

iterations. The self-correcting property depends on the quality of the implementation of 

the Wolfe line search. For the Wolfe line search, always the initial value 1   is tried 

and this produce superlinear convergence of the method. All these properties of BFGS 

update make this quasi-Newton method one of the best in this class. However, the things 

are not what they seem to be. 

 

There are great differences between the SR1 update (4) and the BFGS update (6). Firstly, 

observe that SR1 is a rank-one update of the Hessian and BFGS is a rank-two update, 

both of them satisfying the secant equation. Secondly, there are some drawbacks of SR1 

which are not encountered in BFGS. The main drawbacks of SR1 update are as follows. 

1) The denominator ( )T
k k k ky B s s  of the SR1 update term in (4) may vanish, i.e. 

( ) 0T
k k k ky B s s  , cases in which 1kB   is not well-defined.  

2) The step directions computed by using the SR1 updating formula given by (4) may no 

longer be uniform linear independent, thus leading to slow down the convergence or even 

the stalling.  

3) The SR1 Hessian approximation may not be positive definite along the iterations, thus 

resulting a direction that does not produce descent. 

 

To prevent the method from failing due to the first drawback one simple remedy 

is to set 1 .k kB B   However, this will slow down the convergence of the method. Conn, 

Gould and Toint (1991) and Khalfan, Byrd and Schnabel (1993) showed that the 

denominator of (4) vanishes rarely in practice and setting 1k kB B   does not have a 

significant impact on the performances of the SR1 method subject to the number of the 

iterations or runtimes. 

The second drawback is more subtle, being in close connection with the uniform 

linear independence of the search directions generated by the SR1 algorithm. A more 

precise definition of the uniform linear independence was given by Conn, Gould and 

Toint (1991). “A sequence { }ks  is uniformly linearly independent if there exist 0,   0k  

and m n  such that, for each 0,k k  there is n  distinct indices 1 2 nk k k k k m       

for which the minimum singular value of the matrix 1

1

, , n

n

kk

k k

ss
S

s s

 
 
 
 

 is at least . ” 

Conn, Gould and Toint (1991) proved that the sequence of matrices generated by the SR1 

formula converges to the exact Hessian, when the sequence of iterates converges to a 

limit point and the sequence of steps is uniformly linearly independent. Kelley and Sachs 

[1998] provide similar convergence results removing the first of these assumptions. 

Fiacco and McCormick [1968] showed that if the search directions are linearly 

independent and the denominator of (4) is always non-zero, then the SR1 method without 

line searches minimize a strongly convex quadratic function in at most 1n   steps. In this 

case 1nB   is exactly the Hessian of the quadratic function. Observe that this result is 
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significant since it does not require exact line search, as is the case for the BFGS update. 

Generally, the above condition given by the definition of the uniform linear 

independency is not implemented in practice, it serves only as one of the main 

assumptions of a proof that the SR1 approximations to the Hessian converge to the true 

Hessian as the iterates converge to the solution of (1). 

Subject to the uniform linear independency of the search directions Khalfan, Byrd and 

Schnabel [1993] showed that many problems do not satisfy this requirement, but they 

proved the local convergence of the SR1 method using only the positive definiteness and 

boundedness assumptions for the approximate Hessian. More than this Conn, Gould and 

Toint [1991] proved that if the minimizing function f  is twice continuously 

differentiable and its Hessian is bounded and Lipschitz continuous and the iterates 

generated by the SR1 method converge to a point *x  and in addition for all ,k  

 

                                             ( ) ,T
k k k k k k k ky B s s y B s s                                            (8) 

 

for some (0,1),   and the steps ks  are uniformly linearly independent, then  

 
2 *lim ( ) 0.k

k
B f x


   

 

Often condition (8) is used in implementations of the SR1 method in order to ensure that 

this update is well behaved. If this condition is not satisfied, then the update is skipped. 

Conn, Gould and Toint [1991] and Khalfan, Byrd and Schnabel [1993] provide 

theoretical and computational results, respectively, that if the uniform linear 

independence assumption is satisfied, then the approximations to the Hessian generated 

by the SR1 method are more accurate than those generated by BFGS, and SR1 converge 

faster to the true Hessian than BFGS. Therefore, if all these above drawbacks are 

addressed in a reliable and efficient manner, then SR1 can be used for solving (1) instead 

of the rank-two updates. More details on SR1 method concerning the undefined updates, 

choosing the initial approximate 0B , uniform linear independence of the steps, are found 

in [Benson and Shanno, 2018] and in [Chen, Lam and Chan, 2019].  

 

3. The scaled memory-less quasi-Newton SR1 Update 
Like for scaled memory-less quasi-Newton BFGS update developed by Andrei [2007, 

2018a, 2018b, 2018c, 2020b], in this section let us introduce the scaled memory-less SR1 

update by considering in (5) kH I , i.e. 

 

                                               1

( )( )
,

( )

T
k k k k

k k T
k k k

s y s y
H I t

s y y


 
 


                                           (9) 

 

where kt  is the scaling parameter. After some simple algebraic manipulations the scaled 

memory-less SR1 search direction 1 1 1k k kd H g     is obtained as 
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                                          1
1 1

( )
( ).

( )

T
k k k

k k k k kT
k k k

s y g
d g t s y

s y y


 


   


                                  (10) 

 

The main advantage of the scaled memory-less SR1 update (9) is that for its 

implementation in computer programs only two scalar products 1( )T
k k ks y g   and 

( )T
k k ks y y  must be computed. This is very advantageous for solving large-scale 

problems. Observe that in the scaled memory-less SR1 update the information on the 

Hessian approximation from the previous iteration is not accumulated to the current 

iteration. The scaling parameter kt  in (9) is introduced to compensate this loss of 

information.  

Now, it can be noticed that the scaled memory-less SR1 search direction (10) has three 

terms. The first one is the negative gradient 1kg  , the last two terms involve ks  and ,ky  

both of them being multiplied by the same scalar. To determine a value for the scaling 

parameter kt  two procedures are developed in this paper. The first one is based on the 

sufficient descent condition the second considers the conjugacy condition from the 

conjugate gradient algorithms.  

 

3.1. Determine kt  from the sufficient descent condition 

In the convergence analysis, a key requirement for a line search algorithm is that the 

search direction kd  is a direction of sufficient descent, which is defined as  

 

                                                             ,
T
k k

k k

g d

g d
                                                       (11) 

 

where 0.   This condition bounds the elements of the sequence { }kd  of the search 

directions from being arbitrarily close to the orthogonality to the gradient. Often, the line 

search methods are so that kd  is defined in a way that satisfies the sufficient descent 

condition (11), even though an explicit value for 0   is not known.  

As we said, a significant difference between SR1 and BFGS updates is that BFGS 

guarantees to produce a positive definite 1kB   if kB  is positive definite and 0,T
k ky s   

while SR1 does not have this important property. Therefore for BFGS the search 

direction 1
1 1 1k k kd B g
     always is a descent direction. On the other hand, in order to get 

an efficient scaled memory-less SR1 algorithm we have to impose the sufficient descent 

condition. Therefore, by imposing the sufficient descent condition  

 

                                                        
2

1 1 1 ,T
k k kg d c g                                                     (12) 

 

where 1kd   is given by (10) the following value for the scaling parameter is obtained 

 

                                             
2

12
1

( )
( 1) .

[( ) ]

T
k k k

k kT
k k k

s y y
t c g

s y g





 


                                       (13) 
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Observe that in (12) the classical sufficient descent condition (11) is modified with 

equality. In (13) c  is selected close to 1, but not too close. In our numerical experiments 

we selected 7 / 8.c   Therefore, introducing the value for kt  given by (13) in (10) the 

following scaled memory-less SR1 search direction is obtained 

 

                                           

2

1
1 1

1

( 1)
( ).

( )

k
k k k kT

k k k

c g
d g s y

s y g


 




   


                                    (14) 

 

Observe that the iterations are affected if the denominator 1( )T
k k ks y g   of the update 

term becomes too small. In this case the update term in (14) may start to dominate the 

negative gradient and therefore the influence of the negative gradient in the search 

direction is lost. In order to accommodate these situations, the rule we apply is that the 

updates are skipped whenever the denominator 1( )T
k k ks y g   is too small in the sense 

 

                                              1 1( ) ,T
k k k k k ks y g s y g                                            (15) 

 

that is, if (15) is satisfied, then 1 1k kd g   . A typical value for   is 810 .  

 

3.2. Determine kt  from the conjugacy condition 

This procedure for determination of the scaling parameter kt  is motivated by the fact that 

the scaled memory-less SR1 search direction (10) resembles a three-term conjugate 

gradient algorithm. As we know, for the quadratic functions, it is well known that the linear 

conjugate gradient methods generate a sequence of search direction ,kd  1,2,k   so that the 

following conjugacy condition holds: 0T
i jd Bd   for all ,i j  where B  is the Hessian of the 

objective function. For general nonlinear functions, by the mean value theorem there exists 

(0,1)   so that 

                                         2
1 1 1 1 ( ) .T T T

k k k k k k k k k kd g d g d f x d d                                          (16) 

 

Since 1 ,k k ky g g   the following can be written 

 

                                                  2
1 1 ( ) .T T

k k k k k k k kd y d f x d d                                               (17) 

 

Therefore, for nonlinear optimization, it is reasonable to replace the conjugacy condition from the 

linear case with the following one 

                                                                     1 0.T
k kd y                                                                (18) 

 

But, for unconstrained optimization methods, the search direction 1kd   can be written as 

1 1 1,k k kd H g     where 1kH   is an approximation to the inverse of the Hessian 2
1( ),kf x   

symmetric and positive definite, which satisfies the secant equation 1 .k k kH y s   

 Therefore,  
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1 1 1 1 1 1( ) ( ) .T T T T

k k k k k k k k k kd y H g y g H y g s            

 

Hence, the conjugacy condition 1 0T

k kd y   is satisfied if the line search is exact, since in 

this case 1 0.T

k kg s   However, in practical situations, the exact line search is not used. 

Therefore, it is quite natural to replace the conjugacy condition 1 0T
k kd y   with this one 

 

                                                            1 1 ,T T

k k k kd y hg s                                                   (19) 

 

where 0h   is a scalar. In our numerical experiments we selected 0.5.h   

Therefore, from conjugacy condition (19) where 1kd   is given by (10) the following value 

for the scaling parameter kt  is obtained 

 

                                                        1

1

( )
.

( )

T
k k k

k T
k k k

hs y g
t

s y g









                                                 (20) 

 

Now, introducing the value for kt  given by (19) in (10) the following scaled memory-less 

SR1 search direction is obtained 

 

                                          1
1 1

( )
( ).

( )

T
k k k

k k k kT
k k k

hs y g
d g s y

s y y


 


   


                                   (21) 

 

Again observe that the iterations are affected if the denominator ( )T
k k ks y y  of the 

update term is too small. In these cases if 

 

                                                 ( ) ,T
k k k k k ks y y s y y                                            (22) 

with 810 ,   then 1 1k kd g   . 

 

Proposition 1 The scaled memory-less SR1 search direction (21) computed from the 

conjugacy conditions is a descent direction. 

 

Proof  It is easy to see that 0.T T
k k k ks y y y   Therefore, from (21) we have 

 

2 1
1 1 1 1 1

( )
( )

( )

T
T T Tk k k
k k k k k k kT

k k k

hs y g
g d g g s g y

s y y


    


   


 

                                            
2 1

1 1 1( )
( )

k k k
k k k k kT

k k k

hs y g
g g s g y

s y y


  


   


 

                                            
2 2

1 1 ( )
( )

k k
k k k kT

k k k

hs y
g g s y

s y y
 


   


 

                                            
2

11 ( )
( )

k k
k k kT

k k k

hs y
s y g

s y y


 
    

 
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2

11 ( ) 0.
( )

k k
k k kT

k k k

hs y
s y g

s y y


 
     
 
 

                             ♦ 

 

 

4. Accelerated scaled memory-less SR1 algorithm 

With these developments, for solving the unconstrained optimization problem (1), the 

following accelerated scaled memory-less SR1 algorithm can be presented. The 

algorithm is equipped with an acceleration scheme presented in [Andrei, 2006, 2020a]. 

Basically, the acceleration scheme modifies the stepsize k  determined by the Wolfe line 

search conditions (2) in a multiplicative way to improve the reduction of the function 

values along the iterations. In the accelerated algorithm, instead of computing 

1 ,k k k kx x d    the new estimation of the minimum point is computed as  

 

                                                              1k k k k kx x d    ,                                                       (23) 

where  

                                                                     k
k

k

a

b
   ,                                                              (24) 

 

,T

k k k ka g d  ( ) ,T

k k k z kb g g d   ( )zg f z   and k k kz x d  . Hence, if 0,kb   then 

the new estimation of the solution is computed as 1k k k k kx x d    , otherwise 

1k k k kx x d   . The acceleration scheme is motivated by the fact that since   in the 

first Wolfe condition (2.a) is small enough (usually 0.0001  ), the Wolfe line search 

leads to very small reductions in the function values along the iterations. In this algorithm 

the parameter nmeth  is used for selecting the procedure for computation of the scaling 

parameter .kt  If 1nmeth   then kt  is computed as in (13) by using the sufficient descent 

condition, while if 2nmeth   then kt  is computed as in (20) by using the conjugacy 

condition.   

 

Algorithm ASM-SR1 

1. Initialization. Consider an initial point 0x . Set 0.k   Select a value for parameter 

.nmeth  Choose some values for the parameters c  and h . Select some values for the 

Wolfe line search conditions   and   with 0 1.     Compute 0 0( )g f x   and 

set 0 0.d g  Select a sufficiently small parameters 0   used in the criterion for 

stopping the iterations and 0A   used in acceleration scheme 

2. Test a criterion for stopping the iterations: if kg 

  then stop the iterations, 

otherwise go to step 3 

3. Compute the stepsize k  using the standard Wolfe line search conditions 

4. Update the variables 1k k k kx x d    and compute 1kf   and 1.kg   Compute 

1k k ks x x   and 1k k ky g g   

5. Acceleration scheme: 

a) Compute: k k kz x d  , ( )zg f z  and k k zy g g   
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b) Compute: T

k k k ka g d , and T

k k k kb y d   

c) If ,k Ab   then compute /k k ka b    and update the variables as 

1k k k k kx x d    . Compute 1kf   and 1.kg   Compute 1k k ky g g   and 

1k k ks x x   

6. If 1nmeth   compute the search direction 1kd   as in (14) with (15), otherwise if 

2nmeth   compute the search direction as in (21) with (22) 

7. Consider 1k k   and go to step 2                                                                               ♦ 

 

If f  is bounded along the direction ,kd  then there exists a stepsize k  satisfying the modified 

Wolfe line search conditions (2). The first trial of the stepsize crucially affects the practical 

behavior of the algorithm. At every iteration 1,k   the starting guess for the step k  in the line 

search is computed as 1 1 / .k k kd d     

 

5. Convergence of the algorithm 

In this section the global convergence of the algorithm is established under the following 

assumptions: 

(1) The level set 0{ : ( ) ( )}nx f x f x    is bounded, i.e. there exists a constant 

0B   such that for any ,x  .x B  

(2) The function : nf   is continuously differentiable and its gradient is 

Lipschitz continuous in a neighborhood N  of ,  i.e. there exists a constant 0L   

such that ( ) ( ) ,f x f y L x y     for any , .x y N  

 

It is easy to see that under these assumptions, there exists a constant 0   such that 

( ) ,f x    for any .x  

Although the search directions 1kd   generated by the algorithm ASM-SR1 are always 

descent directions, in order to get the convergence of the algorithm we need to derive a 

lower bound for the stepsize .k  The following propositions are extracted from [Andrei, 

2020a]. 

 

Proposition 2 Suppose that the assumption (2) holds and the sequence of the search 

direction { }kd  is generated by the algorithm ASM-SR1. Then the stepsize k  satisfies: 

 

                                                       
2

(1 )
.

T
k k

k

k

g d

L d





                                                      (25) 

 

Under the assumptions (1) and (2), the following result, due to Zoutendijk (1970) and 

Wolfe (1971), is essential in proving the global convergence of the unconstrained 

optimization algorithms. 
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Proposition 3 Suppose that f  is bounded below in n  and that f  is continuously 

differentiable in a neighborhood N  of the level set .  Assume also that the gradient is 

Lipschitz continuous with constant 0.L   Consider kd  is a descent direction and k  

satisfies the Wolfe line search conditions (2). Then, 

 

                                                                
2

2

1

( )
.

T
k k

k k

g d

d





                                                            (26) 

 

The following result shows that the sequence of gradient norms { }kg  is bounded away 

from zero only if 
0
1/ kk

d


  . 

 

Proposition 4. Suppose that the assumptions (1) and (2) hold. Consider the algorithm 

ASM-SR1 where kd  is a descent direction and k  is obtained by the Wolfe line search 

(2). If  

                                                             
2

0

1
,

k kd

                                                       (27) 

then liminf 0.k
k

g


  

 

For uniformly convex functions the following global convergence result can be proved. 

 

Theorem 1 Suppose that the assumptions (1) and (2) hold. Let { }kx  and { }kd  be 

generated by the algorithm ASM-SR1. If the minimizing function f  is uniformly convex 

on ,  i.e. there exists a constant 0   such that 
2

( ( ) ( )) ( ) ,Tf x f y x y x y      for 

any , ,x y N  then lim 0.k kg   

 

Proof From the assumption (2) it follows that .k ky L s  From uniform convexity we 

have 
2
.T

k k ky s s  

It easy to see that  

                                      1 1( )T
k k k k ks y g s g    

and 

                                      
2 2

( )T T T
k k k k k k k k ks y y s y y y s y      

                                                          
2 2 22 2 .k k ks L s L s      

From (14), it follows that 

 
2 2

1 1

11

( 1) 1
.

( )

k k

T
k k kk k k

c g c g

s g ss y g

 



  
 


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Therefore, for the scaled memory-less SR1 search direction (14) obtained from the 

sufficient descent condition, we have 

 
2

1
1 1

1

( 1)
( )

( )

k
k k k kT

k k k

c g
d g s y

s y g


 




  


 

                                                 1( ) (1 ) .k k

k

s L s L M
s


                              (28) 

 

On the other hand, from (21) it follows that, 

 

11
2 22 2

( )( )

( )

T
k k k k kk k k

T
k k k k k

s y g s yhs y g

s y y L s L s 


  

 
  

 

                                                             
2 22

( ) (1 )
.

k k

kk

s L s L

L sL s 

   
 


 

 

Therefore, for the scaled memory-less SR1 search direction (21) obtained from the 

conjugacy condition, we have 

 

1 1 2

(1 )
( )k k k k

k

L
d g s y

L s
 

 
  


 

                                                   
2

22

(1 )
.

L
M

L

 
  


                                                     (29) 

 

From Proposition 4, it follows that (27) holds. Therefore, in both situations in which the 

search direction is computed from the sufficient descent condition and from conjugacy 

condition we have liminf 0,k
k

g


  which for uniformly convex functions is equivalent to 

lim 0.k
k

g


                                                                                                                           ♦ 

 

6. Numerical experiments 
In this section we report some numerical results obtained with an implementation of the 

ASM-SR1 algorithm. The code is written in Fortran and compiled with f77 (default 

compiler settings) on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number 

of 80 large-scale unconstrained optimization test functions in generalized or extended 

form we presented in [Andrei, 2020a]. The vast majority of these problems are taken 

from CUTE collection [Conn, Gould and Toint, 2018]. For each test function we have 

taken ten numerical experiments with the number of variables increasing as 

100,200,...,1000.n   The algorithm implements the Wolfe line search conditions (2) 

with 0.0001,   0.8   and the same stopping criterion gk 

10 6 , where .


is the 

maximum absolute component of a vector. In all the algorithms we considered in this 

numerical study the maximum number of iterations is limited to 10000, while the 
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maximum number of function and its gradient evaluations is limited to 10000. In criteria 

for skipping the updates given by (15) and (22) 810   is considered. 

 The comparisons of algorithms are given in the following context. Let f i

ALG1 and 

f i

ALG2 be the optimal value found by ALG1 and ALG2, for problem 1, ,800,i   

respectively. We say that, in the particular problem i,  the performance of ALG1 was 

better than the performance of ALG2 if:  

 

                                                        f fi

ALG

i

ALG1 2 310                                               (30) 

 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), 

or the CPU time of ALG1 was less than the number of iterations, or the number of 

function-gradient evaluations, or the CPU time corresponding to ALG2, respectively. 

 

In the first set of numerical experiments, we compare the performances of the proposed 

ASM-SR1 algorithm in which the search direction is given by (14), determined from the 

sufficient descent condition we call ASM-S, versus BFGS implemented in CONMIN 

[Shanno and Phua, 1980], we call BFGS. Figure 1 presents the Dolan and Moré [2002] 

performance profiles, subject to the CPU computing time, of ASM-S, versus BFGS from 

CONMIN. 

 

 
Fig. 1. Performance profile of ASM-S versus BFGS from CONMIN 

 

In a performance profile plot, the top curve corresponds to the method that solved the 

most problems in a time that was within a given factor of the best time. The percentage of 

the test problems for which a method is the fastest is given on the left axis of the plot. 

The right side of the plot gives the percentage of the test problems that were successfully 

solved by these algorithms, respectively. Mainly the left side of the plot is a measure of 
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the efficiency of an algorithm, while the right side is a measure of the robustness of an 

algorithm. 

Comparing ASM-S versus BFGS from CONMIN, (see Fig. 1) subject to the number of 

iterations, we see that ASM-S was better in 204 problems (i.e. it achieved the minimum 

number of iterations in 204 problems). BFGS was better in 509 problems and they 

achieved the same number of iterations in solving 48 problems, etc. Out of 800 problems 

considered in this numerical experiment, only for 761 problems does the criterion (30) 

hold. Observe that the differences are significant. Subject to the CPU time metric, ASM-

S was better in 571 problems, while BFGS from CONMIN was better only in 80. Both 

ASM-S and BFGS use the same implementation of the standard Wolfe line search (2) 

based on cubic interpolation. Therefore, in comparison with BFGS, ASM-S appears to 

generate the best search direction, on average.  

 

In the second set of numerical experiments we compare the performances of the proposed 

algorithm ASM-SR1 algorithm in which the search direction is given by (21), determined 

from the conjugacy condition, we call ASM-C, versus BFGS implemented in CONMIN. 

Figure 2 presents the Dolan and Moré performance profiles, subject to the CPU 

computing time, of ASM-C, versus BFGS from CONMIN. 

 

 
Fig. 2. Performance profile of ASM-C versus BFGS from CONMIN 

 

 

From Figure 2 we see that subject to the CPU computing time the ASM-C algorithm 

based on conjugacy condition is way more efficient and more robust than the BFGS in 

implementation of CONMIN. From Figure 2 we see that, subject CPU time metric, ASM-

C was better in solving 540 problems, while BFGS was better only in 38 problems. 

Observe the difference between the performance profiles presented in Figure 1 and in 

Figure 2, respectively. The performances of ASM-C versus BFGS are significantly better 

than those of ASM-S versus BFGS.  
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Table 1 presents the number of iterations (#iter) and the CPU computing time (cpu) in 

seconds for solving 9 problems from our collection, each of them having 1000n   

variables. 

 
Table 1. Performances of ASM-C, ASM-S and BFGS for solving 9 problems,  

each of them with 1000n   variables 

 ASM-C ASM-S BFGS 

Problem’s name #iter cpu #iter cpu #iter cpu 

Generalized Rosenbrock 4749 1.98 3951 2.17 3492 128.39 

Extended trigonometric 3659 3.42 4682 3.40 1925 49.94 

DIXMAANL 4960 8.93 4947 10.55 4465 147.91 

NONDQAR 4000 0.71 4624 2.66 5577 154.22 

DIXON3DQ 4993 0.56 3839 0.50 1329 36.20 

CUBE 4029 1.71 3942 3.44 3780 119.78 

Perturbed quadratic PQ2 3350 0.46 3724 1.73 3074 83.88 

BIGGSB1 4993 0.54 4035 1.76 685 18.66 

QUARTICM 30 0.0 54 0.01 620 22.59 

Total 34763 18.31 33798 26.22 24947 761.37 

 

 

From Table 1 we see that subject to the number of iterations BFGS is more efficient 

versus both ASM-C and ASM-S. However, subject to the CPU computing time, both 

ASM-C and ASM-S are way more efficient. For example, ASM-C is approximately 41 

times faster than BFGS, while ASM-S is 29 times faster than BFGS.  

 

In the third set of numerical experiments let us compare ASM-S versus ASM-C. Figure 3 

presents the performances of these algorithms for solving 800 unconstrained optimization 

problems from our collection with the number of variable in the range [100, 1000]. 

 

 
Fig. 3. Performance profiles of ASM-C versus ASM-S. [100,1000]n   
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Figure 3 shows that ASM-C is more efficient and more robust than ASM-S. For example, 

subject to the CPU computing time, ASM-C was faster in 240 problems, while ASM-S 

was faster only in 89 problems. In Proposition 1 we proved that the search direction 

generated by the ASM-C algorithm is a descent direction. Additionally, it satisfies the 

conjugacy condition which proves to be an important property subject to its efficiency 

and robusteness. It is worth mentioning that in our numerical experiments we noticed that 

the condition (22) is very rare fulfilled, i.e. the search direction given by the negative 

gradient very rare is used. In contrast, in ASM-S the negative gradient is more often used.  

 

Figure 4 presents the performances of ASM-C versus ASM-S for solving our set of 800 

problems in which the number of variables is in the range [1000, 10000]. Observe that 

ASM-C is more efficient and more robust than ASM-S and the differences are 

significant.  

Observe that the search directions corresponding to ASM-S and ASM-C are descent. 

Besides, the coefficients multiplying ( )k ks y  in both search directions (14)-(15) of 

ASM-S and (21)-(22) of ASM-C are positive. However, the search direction of ASM-C 

satisfies the conjugacy condition. The conjugacy condition is important in the economy 

of unconstrained optimization algorithms. The main reason for using conjugate directions 

is that to minimize a convex quadratic function in a subspace spanned by a set of 

mutually conjugate directions is equivalent to minimize the function along each 

conjugate direction in turn. This is the reason why the ASM-C is more efficient and more 

robust versus ASM-S. Of course, the performances of algorithms satisfying the 

conjugacy condition are strongly dependent on the accuracy of the line search. In our 

numerical experiments we used the Wolfe line search (2) in implementation of Shanno 

(1983) (see also Andrei (2020a), Chapter 5). 

 

 
Fig. 4. Performance profiles of ASM-C versus ASM-S [1000,10000]n  
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In the last set of numerical experiments let us present comparisons between ASM-C and 

ASM-S algorithms for solving some applications from the MINPACK-2 test problem 

collection [Averick, Carter, Moré, & Xue, 1992]. The minimizing function of all these 

applications is quadratic. In Table 2, we present these applications, as well as the values 

of their parameters. The infinite-dimensional version of these problems is transformed 

into a finite element approximation by triangulation. Thus a finite-dimensional 

minimization problem is obtained whose variables are the values of the piecewise linear 

function at the vertices of the triangulation. The discretization steps are 200nx   and 

200ny  , thus obtaining minimization problems with 40.000  variables. 

 

 
Table 2 

Applications from the MINPACK-2 collection. 

A1 Elastic–plastic torsion [Glowinski, 1984, pp. 41–55], c = 5 

A2 Pressure distribution in a journal bearing [Cimatti, 1977], b = 10, ε = 0.1 

A3 Optimal design with composite materials [Goodman, Kohn, & Reyna, 1986], λ = 0.008 

A4 Steady-state combustion [Aris, 1975, pp. 292–299], [Bebernes, & Eberly, 1989], λ = 5 

A5 Minimal surfaces with Enneper conditions [Nitsche, 1989, pp. 80–85] 

 

 

The performances of ASM-C versus ASM-S are given in Table 3, where #iter is the 

number of iterations, #fg is the number of function and its gradient evaluations and cpu is 

the CPU time computing.  

 

 
Table 3 

Performances of ASM-C versus ASM-S (40.000 variables, CPU seconds) 

 ASM-C ASM-S 

 #iter #fg cpu #iter #fg cpu 

A1 13138 26297 273.64 1197 3061 32.19 

A2 66922 133876 1608.61 9691 20279 228.76 

A3 89559 179187 3430.25 6665 16587 295.33 

A4 49631 99287 3815.94 1715 4394 172.60 

A5 11374 22784 300.46 718 1831 20.83 

TOTAL 230624 461431 9428.90 19986 46152 749.71 

 

 

 Observe that both these algorithms are able to solve large-scale unconstrained 

optimization problems, but subject to CPU computing time ASM-S is more efficient than 

ASM-C. For solving these applications the search direction given by the negative 

gradient (see criteria (15) and (22)) very rare is used. For example, for solving the 

application A3, ASM-C needs 89559 iterations, out of which only in 2130 iterations the 

negative gradient is used. 

 

 

7. Conclusion 

This paper presents a new variant of the symmetric rank-one SR1 updating known as the 

scaled memory-less SR1 method in which the updating formula is applied to the unity 
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matrix and the updating term is scaled with a parameter determined by sufficient descent 

condition or by the conjugacy condition. Convergence results and numerical tests show 

that the scaled memory-less SR1 method is both globally convergent and faster than a 

variant of the preconditioned BFGS method implemented in CONMIN. 
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