
 1

Accelerated Scaled Memory-less SR1 method for

Unconstrained Optimization

Neculai Andrei
Center for Advanced Modeling and Optimization,

Academy of Romanian Scientists,

54, Splaiul Independenţei, Sector 5,

Bucharest, ROMANIA

E-mail: neculaiandrei70@gmail.com

Technical Report 5/2021

April 9, 2021

Abstract. The scaled memory-less SR1 updating method is obtained from the SR1 quasi-

Newton method in which the current approximation to the Hessian is replaced by the identity

matrix and the update term is scaled by a parameter. The value of the scaling parameter is

computed by using the sufficient descent condition or by using the conjugacy condition.

Numerical experiments with a set of 800 unconstrained optimization problems proved that

the accelerated scaled memory-less SR1 method is more efficient and more robust than the

preconditioned BFGS algorithm implemented in CONMIN.

Key words: Nonlinear programming, symmetric rank-one update, scaled SR1 memory-

less update, sufficient descent, conjugacy condition, uniform linear independency

1. Introduction

For solving the unconstrained optimization problem

 min (),f x (1)

where nx and : nf  is a continuously differentiable function, bounded from

below we are interested in this paper to use the symmetric rank-one SR1 method. There is

a prejudice that SR1 method is full of drawbacks and is not to be selected for solving (1).

In this paper we present a variant of this method which proves to be more efficient and

more robust than the well known and most appreciated BFGS method.

Many algorithms for solving (1) employ a quadratic model of the function .f The

Newton’s method and the quasi-Newton methods use a second-order Taylor series of the

minimizing function with either an explicit or an approximated Hessian matrix. The

quasi-Newton methods use an approximation to the Hessian, or an approximation to the

inverse Hessian, which are updated at each iteration. These algorithms are efficient and

robust for minimizing functions that satisfy certain assumptions and have a super-linear

rate of local convergence. Currently, many variants of the updating formula for the

approximation to the Hessian (or to the inverse Hessian) are known: symmetric rank-one

mailto:neculaiandrei70@gmail.com

 2

(SR1) [Broyden, 1967; Davidon, 1959, 1968; Fiacco and McCormick, 1968; Wolfe,

1969, 1971] and the rank-two such as the Davidon-Fletcher-Powell (DFP) update

[Davidon, 1991; Fletcher and Powell, 1963], Powell-symmetric-Broyden (PSB) [Powell,

1970] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [Broyden, 1970;

Fletcher, 1970; Goldfarb, 1970; Shanno, 1970]. A unifying framework for many of these

updates, including both rank-one and rank-two updates was given by Huang [1970].

Theoretical studies and intensive numerical experiments proved that among the quasi-

Newton methods the BFGS is the most effective. However on certain problems BFGS

method may require a large number of iterations and function and gradient evaluations.

The sourced of its inefficiency may be caused by a poor initial approximation to the

Hessian, or more importantly, by the ill-conditioning of the Hessian approximations

along the iterations. To improve the efficiency and the robustness of the BFGS and to

overcome the difficulties, some modified versions of it were given. All these modified

BFGS methods can be classified into four classes: the scaling of the BFGS update matrix,

the memory-less BFGS method, the BFGS update with modified secant equation and the

modified BFGS method using different line search conditions for stepsize computation.

Intensive numerical experiments on minimizing functions with different number of

variables and complexities showed that all the modified BFGS methods are more

efficient and more robust than its unmodified version [Contreras and Tapia, 1993; Oren

and Luenberger, 1974; Oren and Spedicato, 1976; Yabe, Martinez and Tapia, 2004;

Biggs, 1971, 1973; Liao, 1997; Nocedal and Yuan, 1993; Andrei, 2018a, 2018b, 2018c,

2020a; Yuan, 1991; Yuan and Byrd, 1995; Al-Baali, 1998; Arzam, Babaie-Kafaki and

Ghanbari, 2017; Yuan, Sheng, Wang, Hu and Li, 2018; Dehmiry, 2019].

Having in view all these developments on the BFGS method it is quite natural to try to

extend them to the SR1 method. In this paper we present only the scaled memory-less

SR1 method which combines both the scaling and the memory-less techniques. Other

modifications involving modified secant equation or different line search for stepsize

computation are postponed for future time. By memory-less techniques the

approximation to the Hessian at a given iteration is computed by updating the unity

matrix. By scaling we mean that the updating term of the SR1 formula is scaled with a

parameter selected in such a way to compensate the lost of information by considering

the unity matrix in updating formula.

The structure of the paper is as follows. Section 2 presents the quasi-Newton SR1 method

insisting on the updating formula and its weakness. Notice that the SR1 updating formula

is very simple, easy to be implemented in computing programs, but it is corrupted by

some drawbacks which dramatically limit its applicability. Section 3 is dedicated to the

scaled memory-less quasi-Newton symmetric rank-one SR1 update. As we said, this

method consists of updating at every iteration the unity matrix and scaling the updating

term with parameter. The scaling parameter is determined in two different ways. In the

first one it is computed by involving the sufficient descent condition. The second one is

based on the conjugacy condition from the conjugate gradient methods. The accelerated

scaled memory-less SR1 algorithm is showed in Section 4. The convergence of the scaled

memory-less SR1 algorithm is presented in Section 5. The last section is dedicated to the

numerical results obtained with an implementation of the suggested algorithm. It is

shown that the accelerated scaled memory-less SR1 algorithm is more efficient and more

 3

robust than the BFGS algorithm implemented in CONMIN developed by Shanno and

Phua (1976) on solving a se of 800 unconstrained optimization test problems with the

number of variables in the range [100, 1000]. Finally the performances of the algorithm

are presented for solving five applications from MINPACK2 collection, each of then

having 40.000 variables.

2. The quasi-Newton SR1 (Symmetric Rank One) Update

Mainly, the structure of a quasi-Newton method with Wolfe line search, in the variant in

which an approximation to the Hessian is used, can be presented as follows:

 General quasi-Newton Algorithm

1) Set 0.k  Consider an initial point 0x and an initial Hessian approximation

0 ,B Select some values for the Wolfe line search conditions  and  with

0 1.    Select a sufficiently small parameter 0  used in the

criterion for stopping the iterations.

2) While ()kf x   do

a. Evaluate the gradient ().k kg f x 

b. Solve the system .k k kB d g 

c. Find the stepsize 0k  which satisfies the standard Wolfe line

search conditions:

 () () ,T
k k k k k k kf x d f x g d    (2.a)

 () () .T T
k k k k k kf x d d f x d     (2.b)

d. Compute: 1k k k kx x d   and set 1.k k 

e. Update 1,kB  according the quasi-Newton formula in use.

3) End while.

Another variant of the above general quasi-Newton algorithm, often implemented for

solving the problem (1), at every iteration uses an approximation to the inverse Hessian

.kH In this variant in step 1) of the algorithm instead of 0B an initial approximation to

the inverse Hessian 0H is selected and in step 2.b) instead of solving the linear algebraic

system ,k k kB d g  the search direction is computed as .k k kd H g  In step 2.e) instead

of updating the approximation to the Hessian 1,kB  a formula for approximation to the

inverse Hessian 1kH  is used. The quasi-Newton algorithms differentiate in step 2.e)

concerning the updating the approximation to the Hessian 1kB  , or to the inverse Hessian

1kH  .

In the quasi-Newton methods the basic requirement for the updating formula to

the Hessian is the so called the secant equation to be satisfied at each iteration, namely

 1k k kB s y  or 1 ,k k kH y s  (3)

where 1k k ks x x  and 1 .k k ky g g 

 4

The symmetric rank-one SR1 update formula, in which we are interested in this paper,

can be derived as solution of the following simple problem. “Given a symmetric matrix

kB and the vectors ks and ,ky finds a new symmetric matrix 1kB  such that 1k kB B  has

rank one and such that the secant equation 1k k kB s y  is satisfied.” It is easy to see that if

() 0,T
k k k ky B s s  then the unique solution of the above problem is

 1

()()
.

()

T
k k k k k k

k k T
k k k k

y B s y B s
B B

y B s s


 
 


 (4)

If k k ky B s then the solution is 1 .k kB B  However, if () 0T
k k k ky B s s  and ,k k ky B s

then there is no solution to the problem. Therefore, to get the SR1 method in step 2.e) of

the general quasi-Newton algorithm the update 1kB  approximation to the Hessian is

computed like in (4).

Let kH be the inverse approximation to the Hessian at iteration .k By using the

Sherman-Morrison-Woodbury formula in (4), the following update to the inverse Hessian

for SR1 is

 1

()()
.

()

T
k k k k k k

k k T
k k k k

s H y s H y
H H

s H y y


 
 


 (5)

Therefore, in the general quasi-Newton algorithm above, instead of solving the linear

algebraic system k k kB d g  in step 2.b) we can simply set the search direction as

.k k kd H g  This variant of the algorithm is only applicable in cases in which the inverse

kH exists.

Now a comparison between the BFGS and SR1 updates is welcomed. As we know the

most effective quasi-Newton updating of the approximations to the Hessian is considered

the BFGS formula [Nocedal, 1992], [Nocedal & Wright, 2006] where

 1

T T
k k k k k k

k k T T
k k k k k

B s s B y y
B B

s B s y s
    (6)

which is a rank-two update that satisfies the secant equation (3). If kH is the inverse

approximation to the Hessian at iteration ,k then by applying the Sherman-Morrison-

Woodbury formula twice the following update to the inverse Hessian for BFGS is

 1 1
T T T T

k k k k k k k k k k k
k k T T T

k k k k k k

s y H H y s y H y s s
H H

y s y s y s


 
    

 
. (7)

The most important properties of BFGS are as follows. If kH is positive definite, then

also 1kH  given by (7) is positive definite for any ,k provided that 0T
k ky s  (which

always is satisfied when the Wolfe line search (2) are satisfied). Therefore, if 0H is

 5

chosen to be positive definite, then the rest of all the approximations kH will also be

positive definite. Also BFGS has the self-correcting property, i.e. if kH incorrectly

approximates the curvature of the minimizing function and this estimate slows down the

iteration, then the inverse Hessian approximation will tend to correct itself in the next few

iterations. The self-correcting property depends on the quality of the implementation of

the Wolfe line search. For the Wolfe line search, always the initial value 1  is tried

and this produce superlinear convergence of the method. All these properties of BFGS

update make this quasi-Newton method one of the best in this class. However, the things

are not what they seem to be.

There are great differences between the SR1 update (4) and the BFGS update (6). Firstly,

observe that SR1 is a rank-one update of the Hessian and BFGS is a rank-two update,

both of them satisfying the secant equation. Secondly, there are some drawbacks of SR1

which are not encountered in BFGS. The main drawbacks of SR1 update are as follows.

1) The denominator ()T
k k k ky B s s of the SR1 update term in (4) may vanish, i.e.

() 0T
k k k ky B s s  , cases in which 1kB  is not well-defined.

2) The step directions computed by using the SR1 updating formula given by (4) may no

longer be uniform linear independent, thus leading to slow down the convergence or even

the stalling.

3) The SR1 Hessian approximation may not be positive definite along the iterations, thus

resulting a direction that does not produce descent.

To prevent the method from failing due to the first drawback one simple remedy

is to set 1 .k kB B  However, this will slow down the convergence of the method. Conn,

Gould and Toint (1991) and Khalfan, Byrd and Schnabel (1993) showed that the

denominator of (4) vanishes rarely in practice and setting 1k kB B  does not have a

significant impact on the performances of the SR1 method subject to the number of the

iterations or runtimes.

The second drawback is more subtle, being in close connection with the uniform

linear independence of the search directions generated by the SR1 algorithm. A more

precise definition of the uniform linear independence was given by Conn, Gould and

Toint (1991). “A sequence { }ks is uniformly linearly independent if there exist 0,  0k

and m n such that, for each 0,k k there is n distinct indices 1 2 nk k k k k m     

for which the minimum singular value of the matrix 1

1

, , n

n

kk

k k

ss
S

s s

 
 
 
 

 is at least . ”

Conn, Gould and Toint (1991) proved that the sequence of matrices generated by the SR1

formula converges to the exact Hessian, when the sequence of iterates converges to a

limit point and the sequence of steps is uniformly linearly independent. Kelley and Sachs

[1998] provide similar convergence results removing the first of these assumptions.

Fiacco and McCormick [1968] showed that if the search directions are linearly

independent and the denominator of (4) is always non-zero, then the SR1 method without

line searches minimize a strongly convex quadratic function in at most 1n  steps. In this

case 1nB  is exactly the Hessian of the quadratic function. Observe that this result is

 6

significant since it does not require exact line search, as is the case for the BFGS update.

Generally, the above condition given by the definition of the uniform linear

independency is not implemented in practice, it serves only as one of the main

assumptions of a proof that the SR1 approximations to the Hessian converge to the true

Hessian as the iterates converge to the solution of (1).

Subject to the uniform linear independency of the search directions Khalfan, Byrd and

Schnabel [1993] showed that many problems do not satisfy this requirement, but they

proved the local convergence of the SR1 method using only the positive definiteness and

boundedness assumptions for the approximate Hessian. More than this Conn, Gould and

Toint [1991] proved that if the minimizing function f is twice continuously

differentiable and its Hessian is bounded and Lipschitz continuous and the iterates

generated by the SR1 method converge to a point *x and in addition for all ,k

 () ,T
k k k k k k k ky B s s y B s s   (8)

for some (0,1),  and the steps ks are uniformly linearly independent, then

2 *lim () 0.k

k
B f x


 

Often condition (8) is used in implementations of the SR1 method in order to ensure that

this update is well behaved. If this condition is not satisfied, then the update is skipped.

Conn, Gould and Toint [1991] and Khalfan, Byrd and Schnabel [1993] provide

theoretical and computational results, respectively, that if the uniform linear

independence assumption is satisfied, then the approximations to the Hessian generated

by the SR1 method are more accurate than those generated by BFGS, and SR1 converge

faster to the true Hessian than BFGS. Therefore, if all these above drawbacks are

addressed in a reliable and efficient manner, then SR1 can be used for solving (1) instead

of the rank-two updates. More details on SR1 method concerning the undefined updates,

choosing the initial approximate 0B , uniform linear independence of the steps, are found

in [Benson and Shanno, 2018] and in [Chen, Lam and Chan, 2019].

3. The scaled memory-less quasi-Newton SR1 Update
Like for scaled memory-less quasi-Newton BFGS update developed by Andrei [2007,

2018a, 2018b, 2018c, 2020b], in this section let us introduce the scaled memory-less SR1

update by considering in (5) kH I , i.e.

 1

()()
,

()

T
k k k k

k k T
k k k

s y s y
H I t

s y y


 
 


 (9)

where kt is the scaling parameter. After some simple algebraic manipulations the scaled

memory-less SR1 search direction 1 1 1k k kd H g    is obtained as

 7

 1
1 1

()
().

()

T
k k k

k k k k kT
k k k

s y g
d g t s y

s y y


 


   


 (10)

The main advantage of the scaled memory-less SR1 update (9) is that for its

implementation in computer programs only two scalar products 1()T
k k ks y g  and

()T
k k ks y y must be computed. This is very advantageous for solving large-scale

problems. Observe that in the scaled memory-less SR1 update the information on the

Hessian approximation from the previous iteration is not accumulated to the current

iteration. The scaling parameter kt in (9) is introduced to compensate this loss of

information.

Now, it can be noticed that the scaled memory-less SR1 search direction (10) has three

terms. The first one is the negative gradient 1kg  , the last two terms involve ks and ,ky

both of them being multiplied by the same scalar. To determine a value for the scaling

parameter kt two procedures are developed in this paper. The first one is based on the

sufficient descent condition the second considers the conjugacy condition from the

conjugate gradient algorithms.

3.1. Determine kt from the sufficient descent condition

In the convergence analysis, a key requirement for a line search algorithm is that the

search direction kd is a direction of sufficient descent, which is defined as

 ,
T
k k

k k

g d

g d
  (11)

where 0.  This condition bounds the elements of the sequence { }kd of the search

directions from being arbitrarily close to the orthogonality to the gradient. Often, the line

search methods are so that kd is defined in a way that satisfies the sufficient descent

condition (11), even though an explicit value for 0  is not known.

As we said, a significant difference between SR1 and BFGS updates is that BFGS

guarantees to produce a positive definite 1kB  if kB is positive definite and 0,T
k ky s 

while SR1 does not have this important property. Therefore for BFGS the search

direction 1
1 1 1k k kd B g
    always is a descent direction. On the other hand, in order to get

an efficient scaled memory-less SR1 algorithm we have to impose the sufficient descent

condition. Therefore, by imposing the sufficient descent condition

2

1 1 1 ,T
k k kg d c g    (12)

where 1kd  is given by (10) the following value for the scaling parameter is obtained

2

12
1

()
(1) .

[()]

T
k k k

k kT
k k k

s y y
t c g

s y g





 


 (13)

 8

Observe that in (12) the classical sufficient descent condition (11) is modified with

equality. In (13) c is selected close to 1, but not too close. In our numerical experiments

we selected 7 / 8.c  Therefore, introducing the value for kt given by (13) in (10) the

following scaled memory-less SR1 search direction is obtained

2

1
1 1

1

(1)
().

()

k
k k k kT

k k k

c g
d g s y

s y g


 




   


 (14)

Observe that the iterations are affected if the denominator 1()T
k k ks y g  of the update

term becomes too small. In this case the update term in (14) may start to dominate the

negative gradient and therefore the influence of the negative gradient in the search

direction is lost. In order to accommodate these situations, the rule we apply is that the

updates are skipped whenever the denominator 1()T
k k ks y g  is too small in the sense

 1 1() ,T
k k k k k ks y g s y g    (15)

that is, if (15) is satisfied, then 1 1k kd g   . A typical value for  is 810 .

3.2. Determine kt from the conjugacy condition

This procedure for determination of the scaling parameter kt is motivated by the fact that

the scaled memory-less SR1 search direction (10) resembles a three-term conjugate

gradient algorithm. As we know, for the quadratic functions, it is well known that the linear

conjugate gradient methods generate a sequence of search direction ,kd 1,2,k  so that the

following conjugacy condition holds: 0T
i jd Bd  for all ,i j where B is the Hessian of the

objective function. For general nonlinear functions, by the mean value theorem there exists

(0,1)  so that

 2
1 1 1 1 () .T T T

k k k k k k k k k kd g d g d f x d d        (16)

Since 1 ,k k ky g g  the following can be written

 2
1 1 () .T T

k k k k k k k kd y d f x d d     (17)

Therefore, for nonlinear optimization, it is reasonable to replace the conjugacy condition from the

linear case with the following one

 1 0.T
k kd y  (18)

But, for unconstrained optimization methods, the search direction 1kd  can be written as

1 1 1,k k kd H g    where 1kH  is an approximation to the inverse of the Hessian 2
1(),kf x 

symmetric and positive definite, which satisfies the secant equation 1 .k k kH y s 

 Therefore,

 9

1 1 1 1 1 1() () .T T T T

k k k k k k k k k kd y H g y g H y g s          

Hence, the conjugacy condition 1 0T

k kd y  is satisfied if the line search is exact, since in

this case 1 0.T

k kg s  However, in practical situations, the exact line search is not used.

Therefore, it is quite natural to replace the conjugacy condition 1 0T
k kd y  with this one

 1 1 ,T T

k k k kd y hg s   (19)

where 0h  is a scalar. In our numerical experiments we selected 0.5.h 

Therefore, from conjugacy condition (19) where 1kd  is given by (10) the following value

for the scaling parameter kt is obtained

 1

1

()
.

()

T
k k k

k T
k k k

hs y g
t

s y g









 (20)

Now, introducing the value for kt given by (19) in (10) the following scaled memory-less

SR1 search direction is obtained

 1
1 1

()
().

()

T
k k k

k k k kT
k k k

hs y g
d g s y

s y y


 


   


 (21)

Again observe that the iterations are affected if the denominator ()T
k k ks y y of the

update term is too small. In these cases if

 () ,T
k k k k k ks y y s y y   (22)

with 810 ,  then 1 1k kd g   .

Proposition 1 The scaled memory-less SR1 search direction (21) computed from the

conjugacy conditions is a descent direction.

Proof It is easy to see that 0.T T
k k k ks y y y  Therefore, from (21) we have

2 1
1 1 1 1 1

()
()

()

T
T T Tk k k
k k k k k k kT

k k k

hs y g
g d g g s g y

s y y


    


   



2 1

1 1 1()
()

k k k
k k k k kT

k k k

hs y g
g g s g y

s y y


  


   



2 2

1 1 ()
()

k k
k k k kT

k k k

hs y
g g s y

s y y
 


   



2

11 ()
()

k k
k k kT

k k k

hs y
s y g

s y y


 
    

 

 10

2

11 () 0.
()

k k
k k kT

k k k

hs y
s y g

s y y


 
     
 
 

 ♦

4. Accelerated scaled memory-less SR1 algorithm

With these developments, for solving the unconstrained optimization problem (1), the

following accelerated scaled memory-less SR1 algorithm can be presented. The

algorithm is equipped with an acceleration scheme presented in [Andrei, 2006, 2020a].

Basically, the acceleration scheme modifies the stepsize k determined by the Wolfe line

search conditions (2) in a multiplicative way to improve the reduction of the function

values along the iterations. In the accelerated algorithm, instead of computing

1 ,k k k kx x d   the new estimation of the minimum point is computed as

 1k k k k kx x d    , (23)

where

 k
k

k

a

b
   , (24)

,T

k k k ka g d () ,T

k k k z kb g g d   ()zg f z  and k k kz x d  . Hence, if 0,kb  then

the new estimation of the solution is computed as 1k k k k kx x d    , otherwise

1k k k kx x d   . The acceleration scheme is motivated by the fact that since  in the

first Wolfe condition (2.a) is small enough (usually 0.0001 ), the Wolfe line search

leads to very small reductions in the function values along the iterations. In this algorithm

the parameter nmeth is used for selecting the procedure for computation of the scaling

parameter .kt If 1nmeth  then kt is computed as in (13) by using the sufficient descent

condition, while if 2nmeth  then kt is computed as in (20) by using the conjugacy

condition.

Algorithm ASM-SR1

1. Initialization. Consider an initial point 0x . Set 0.k  Select a value for parameter

.nmeth Choose some values for the parameters c and h . Select some values for the

Wolfe line search conditions  and  with 0 1.    Compute 0 0()g f x  and

set 0 0.d g  Select a sufficiently small parameters 0  used in the criterion for

stopping the iterations and 0A  used in acceleration scheme

2. Test a criterion for stopping the iterations: if kg 

 then stop the iterations,

otherwise go to step 3

3. Compute the stepsize k using the standard Wolfe line search conditions

4. Update the variables 1k k k kx x d   and compute 1kf  and 1.kg  Compute

1k k ks x x  and 1k k ky g g 

5. Acceleration scheme:

a) Compute: k k kz x d  , ()zg f z and k k zy g g 

 11

b) Compute: T

k k k ka g d , and T

k k k kb y d 

c) If ,k Ab  then compute /k k ka b   and update the variables as

1k k k k kx x d    . Compute 1kf  and 1.kg  Compute 1k k ky g g  and

1k k ks x x 

6. If 1nmeth  compute the search direction 1kd  as in (14) with (15), otherwise if

2nmeth  compute the search direction as in (21) with (22)

7. Consider 1k k  and go to step 2 ♦

If f is bounded along the direction ,kd then there exists a stepsize k satisfying the modified

Wolfe line search conditions (2). The first trial of the stepsize crucially affects the practical

behavior of the algorithm. At every iteration 1,k  the starting guess for the step k in the line

search is computed as 1 1 / .k k kd d  

5. Convergence of the algorithm

In this section the global convergence of the algorithm is established under the following

assumptions:

(1) The level set 0{ : () ()}nx f x f x   is bounded, i.e. there exists a constant

0B  such that for any ,x .x B

(2) The function : nf  is continuously differentiable and its gradient is

Lipschitz continuous in a neighborhood N of , i.e. there exists a constant 0L 

such that () () ,f x f y L x y    for any , .x y N

It is easy to see that under these assumptions, there exists a constant 0  such that

() ,f x   for any .x

Although the search directions 1kd  generated by the algorithm ASM-SR1 are always

descent directions, in order to get the convergence of the algorithm we need to derive a

lower bound for the stepsize .k The following propositions are extracted from [Andrei,

2020a].

Proposition 2 Suppose that the assumption (2) holds and the sequence of the search

direction { }kd is generated by the algorithm ASM-SR1. Then the stepsize k satisfies:

2

(1)
.

T
k k

k

k

g d

L d





 (25)

Under the assumptions (1) and (2), the following result, due to Zoutendijk (1970) and

Wolfe (1971), is essential in proving the global convergence of the unconstrained

optimization algorithms.

 12

Proposition 3 Suppose that f is bounded below in n and that f is continuously

differentiable in a neighborhood N of the level set . Assume also that the gradient is

Lipschitz continuous with constant 0.L  Consider kd is a descent direction and k

satisfies the Wolfe line search conditions (2). Then,

2

2

1

()
.

T
k k

k k

g d

d





  (26)

The following result shows that the sequence of gradient norms { }kg is bounded away

from zero only if
0
1/ kk

d


  .

Proposition 4. Suppose that the assumptions (1) and (2) hold. Consider the algorithm

ASM-SR1 where kd is a descent direction and k is obtained by the Wolfe line search

(2). If

2

0

1
,

k kd

  (27)

then liminf 0.k
k

g




For uniformly convex functions the following global convergence result can be proved.

Theorem 1 Suppose that the assumptions (1) and (2) hold. Let { }kx and { }kd be

generated by the algorithm ASM-SR1. If the minimizing function f is uniformly convex

on , i.e. there exists a constant 0  such that
2

(() ()) () ,Tf x f y x y x y     for

any , ,x y N then lim 0.k kg 

Proof From the assumption (2) it follows that .k ky L s From uniform convexity we

have
2
.T

k k ky s s

It easy to see that

 1 1()T
k k k k ks y g s g  

and

2 2

()T T T
k k k k k k k k ks y y s y y y s y    

2 2 22 2 .k k ks L s L s    

From (14), it follows that

2 2

1 1

11

(1) 1
.

()

k k

T
k k kk k k

c g c g

s g ss y g

 



  
 



 13

Therefore, for the scaled memory-less SR1 search direction (14) obtained from the

sufficient descent condition, we have

2

1
1 1

1

(1)
()

()

k
k k k kT

k k k

c g
d g s y

s y g


 




  



 1() (1) .k k

k

s L s L M
s


       (28)

On the other hand, from (21) it follows that,

11
2 22 2

()()

()

T
k k k k kk k k

T
k k k k k

s y g s yhs y g

s y y L s L s 


  

 
  

2 22

() (1)
.

k k

kk

s L s L

L sL s 

   
 



Therefore, for the scaled memory-less SR1 search direction (21) obtained from the

conjugacy condition, we have

1 1 2

(1)
()k k k k

k

L
d g s y

L s
 

 
  



2

22

(1)
.

L
M

L

 
  


 (29)

From Proposition 4, it follows that (27) holds. Therefore, in both situations in which the

search direction is computed from the sufficient descent condition and from conjugacy

condition we have liminf 0,k
k

g


 which for uniformly convex functions is equivalent to

lim 0.k
k

g


 ♦

6. Numerical experiments
In this section we report some numerical results obtained with an implementation of the

ASM-SR1 algorithm. The code is written in Fortran and compiled with f77 (default

compiler settings) on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number

of 80 large-scale unconstrained optimization test functions in generalized or extended

form we presented in [Andrei, 2020a]. The vast majority of these problems are taken

from CUTE collection [Conn, Gould and Toint, 2018]. For each test function we have

taken ten numerical experiments with the number of variables increasing as

100,200,...,1000.n  The algorithm implements the Wolfe line search conditions (2)

with 0.0001,  0.8  and the same stopping criterion gk 

10 6 , where .


is the

maximum absolute component of a vector. In all the algorithms we considered in this

numerical study the maximum number of iterations is limited to 10000, while the

 14

maximum number of function and its gradient evaluations is limited to 10000. In criteria

for skipping the updates given by (15) and (22) 810  is considered.

 The comparisons of algorithms are given in the following context. Let f i

ALG1 and

f i

ALG2 be the optimal value found by ALG1 and ALG2, for problem 1, ,800,i 

respectively. We say that, in the particular problem i, the performance of ALG1 was

better than the performance of ALG2 if:

 f fi

ALG

i

ALG1 2 310   (30)

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg),

or the CPU time of ALG1 was less than the number of iterations, or the number of

function-gradient evaluations, or the CPU time corresponding to ALG2, respectively.

In the first set of numerical experiments, we compare the performances of the proposed

ASM-SR1 algorithm in which the search direction is given by (14), determined from the

sufficient descent condition we call ASM-S, versus BFGS implemented in CONMIN

[Shanno and Phua, 1980], we call BFGS. Figure 1 presents the Dolan and Moré [2002]

performance profiles, subject to the CPU computing time, of ASM-S, versus BFGS from

CONMIN.

Fig. 1. Performance profile of ASM-S versus BFGS from CONMIN

In a performance profile plot, the top curve corresponds to the method that solved the

most problems in a time that was within a given factor of the best time. The percentage of

the test problems for which a method is the fastest is given on the left axis of the plot.

The right side of the plot gives the percentage of the test problems that were successfully

solved by these algorithms, respectively. Mainly the left side of the plot is a measure of

 15

the efficiency of an algorithm, while the right side is a measure of the robustness of an

algorithm.

Comparing ASM-S versus BFGS from CONMIN, (see Fig. 1) subject to the number of

iterations, we see that ASM-S was better in 204 problems (i.e. it achieved the minimum

number of iterations in 204 problems). BFGS was better in 509 problems and they

achieved the same number of iterations in solving 48 problems, etc. Out of 800 problems

considered in this numerical experiment, only for 761 problems does the criterion (30)

hold. Observe that the differences are significant. Subject to the CPU time metric, ASM-

S was better in 571 problems, while BFGS from CONMIN was better only in 80. Both

ASM-S and BFGS use the same implementation of the standard Wolfe line search (2)

based on cubic interpolation. Therefore, in comparison with BFGS, ASM-S appears to

generate the best search direction, on average.

In the second set of numerical experiments we compare the performances of the proposed

algorithm ASM-SR1 algorithm in which the search direction is given by (21), determined

from the conjugacy condition, we call ASM-C, versus BFGS implemented in CONMIN.

Figure 2 presents the Dolan and Moré performance profiles, subject to the CPU

computing time, of ASM-C, versus BFGS from CONMIN.

Fig. 2. Performance profile of ASM-C versus BFGS from CONMIN

From Figure 2 we see that subject to the CPU computing time the ASM-C algorithm

based on conjugacy condition is way more efficient and more robust than the BFGS in

implementation of CONMIN. From Figure 2 we see that, subject CPU time metric, ASM-

C was better in solving 540 problems, while BFGS was better only in 38 problems.

Observe the difference between the performance profiles presented in Figure 1 and in

Figure 2, respectively. The performances of ASM-C versus BFGS are significantly better

than those of ASM-S versus BFGS.

 16

Table 1 presents the number of iterations (#iter) and the CPU computing time (cpu) in

seconds for solving 9 problems from our collection, each of them having 1000n 

variables.

Table 1. Performances of ASM-C, ASM-S and BFGS for solving 9 problems,

each of them with 1000n  variables

 ASM-C ASM-S BFGS

Problem’s name #iter cpu #iter cpu #iter cpu

Generalized Rosenbrock 4749 1.98 3951 2.17 3492 128.39

Extended trigonometric 3659 3.42 4682 3.40 1925 49.94

DIXMAANL 4960 8.93 4947 10.55 4465 147.91

NONDQAR 4000 0.71 4624 2.66 5577 154.22

DIXON3DQ 4993 0.56 3839 0.50 1329 36.20

CUBE 4029 1.71 3942 3.44 3780 119.78

Perturbed quadratic PQ2 3350 0.46 3724 1.73 3074 83.88

BIGGSB1 4993 0.54 4035 1.76 685 18.66

QUARTICM 30 0.0 54 0.01 620 22.59

Total 34763 18.31 33798 26.22 24947 761.37

From Table 1 we see that subject to the number of iterations BFGS is more efficient

versus both ASM-C and ASM-S. However, subject to the CPU computing time, both

ASM-C and ASM-S are way more efficient. For example, ASM-C is approximately 41

times faster than BFGS, while ASM-S is 29 times faster than BFGS.

In the third set of numerical experiments let us compare ASM-S versus ASM-C. Figure 3

presents the performances of these algorithms for solving 800 unconstrained optimization

problems from our collection with the number of variable in the range [100, 1000].

Fig. 3. Performance profiles of ASM-C versus ASM-S. [100,1000]n

 17

Figure 3 shows that ASM-C is more efficient and more robust than ASM-S. For example,

subject to the CPU computing time, ASM-C was faster in 240 problems, while ASM-S

was faster only in 89 problems. In Proposition 1 we proved that the search direction

generated by the ASM-C algorithm is a descent direction. Additionally, it satisfies the

conjugacy condition which proves to be an important property subject to its efficiency

and robusteness. It is worth mentioning that in our numerical experiments we noticed that

the condition (22) is very rare fulfilled, i.e. the search direction given by the negative

gradient very rare is used. In contrast, in ASM-S the negative gradient is more often used.

Figure 4 presents the performances of ASM-C versus ASM-S for solving our set of 800

problems in which the number of variables is in the range [1000, 10000]. Observe that

ASM-C is more efficient and more robust than ASM-S and the differences are

significant.

Observe that the search directions corresponding to ASM-S and ASM-C are descent.

Besides, the coefficients multiplying ()k ks y in both search directions (14)-(15) of

ASM-S and (21)-(22) of ASM-C are positive. However, the search direction of ASM-C

satisfies the conjugacy condition. The conjugacy condition is important in the economy

of unconstrained optimization algorithms. The main reason for using conjugate directions

is that to minimize a convex quadratic function in a subspace spanned by a set of

mutually conjugate directions is equivalent to minimize the function along each

conjugate direction in turn. This is the reason why the ASM-C is more efficient and more

robust versus ASM-S. Of course, the performances of algorithms satisfying the

conjugacy condition are strongly dependent on the accuracy of the line search. In our

numerical experiments we used the Wolfe line search (2) in implementation of Shanno

(1983) (see also Andrei (2020a), Chapter 5).

Fig. 4. Performance profiles of ASM-C versus ASM-S [1000,10000]n

 18

In the last set of numerical experiments let us present comparisons between ASM-C and

ASM-S algorithms for solving some applications from the MINPACK-2 test problem

collection [Averick, Carter, Moré, & Xue, 1992]. The minimizing function of all these

applications is quadratic. In Table 2, we present these applications, as well as the values

of their parameters. The infinite-dimensional version of these problems is transformed

into a finite element approximation by triangulation. Thus a finite-dimensional

minimization problem is obtained whose variables are the values of the piecewise linear

function at the vertices of the triangulation. The discretization steps are 200nx  and

200ny  , thus obtaining minimization problems with 40.000 variables.

Table 2

Applications from the MINPACK-2 collection.

A1 Elastic–plastic torsion [Glowinski, 1984, pp. 41–55], c = 5

A2 Pressure distribution in a journal bearing [Cimatti, 1977], b = 10, ε = 0.1

A3 Optimal design with composite materials [Goodman, Kohn, & Reyna, 1986], λ = 0.008

A4 Steady-state combustion [Aris, 1975, pp. 292–299], [Bebernes, & Eberly, 1989], λ = 5

A5 Minimal surfaces with Enneper conditions [Nitsche, 1989, pp. 80–85]

The performances of ASM-C versus ASM-S are given in Table 3, where #iter is the

number of iterations, #fg is the number of function and its gradient evaluations and cpu is

the CPU time computing.

Table 3

Performances of ASM-C versus ASM-S (40.000 variables, CPU seconds)

 ASM-C ASM-S

 #iter #fg cpu #iter #fg cpu

A1 13138 26297 273.64 1197 3061 32.19

A2 66922 133876 1608.61 9691 20279 228.76

A3 89559 179187 3430.25 6665 16587 295.33

A4 49631 99287 3815.94 1715 4394 172.60

A5 11374 22784 300.46 718 1831 20.83

TOTAL 230624 461431 9428.90 19986 46152 749.71

 Observe that both these algorithms are able to solve large-scale unconstrained

optimization problems, but subject to CPU computing time ASM-S is more efficient than

ASM-C. For solving these applications the search direction given by the negative

gradient (see criteria (15) and (22)) very rare is used. For example, for solving the

application A3, ASM-C needs 89559 iterations, out of which only in 2130 iterations the

negative gradient is used.

7. Conclusion

This paper presents a new variant of the symmetric rank-one SR1 updating known as the

scaled memory-less SR1 method in which the updating formula is applied to the unity

 19

matrix and the updating term is scaled with a parameter determined by sufficient descent

condition or by the conjugacy condition. Convergence results and numerical tests show

that the scaled memory-less SR1 method is both globally convergent and faster than a

variant of the preconditioned BFGS method implemented in CONMIN.

References

Al-Baali, M., (1998). Numerical experience with a class of self-scaling quasi-Newton

algorithms, Journal of Optimization Theory and Applications, 96, 533-553.

Andrei, N., (2006). An acceleration of gradient descent algorithm with backtracking for

unconstrained optimization. Numerical Algorithms, 42(1), 63-73.

Andrei, N., (2007). Scaled memoryless BFGS preconditioned conjugate gradient

algorithm for unconstrained optimization. Optimization Methods and Software,

22(4), 561-571.

Andrei, N., (2018a). A double parameter scaled BFGS method for unconstrained

optimization. Journal of Computational and Applied Mathematics, 332, 26-44.

Andrei, N., (2018b). A double-parameter scaling Broyden–Fletcher–Goldfarb–Shanno

method based on minimizing the measure function of Byrd and Nocedal for

unconstrained optimization. Journal of Optimization Theory and Applications 178,

191-218.

Andrei, N., (2018c). An adaptive scaled BFGS method for unconstrained optimization.

Numerical Algorithms 77, 413-432.

Andrei, N., (2020a). Nonlinear conjugate gradient methods for unconstrained

optimization. Springer Optimization and Its Applications 158.

Andrei, N., (2020b). New conjugate gradient algorithms based on self‑scaling

memoryless Broyden–Fletcher–Goldfarb–Shanno method. CALCOLO Article

number 17 (2020), 57-17.

Aris, R., (1975). The Mathematical Theory of Diffusion and Reaction in Permeable

Catalysts, Oxford.

Arzam, M.R., Babaie-Kafaki, S., & Ghanbari, R., (2017). An extended Dai-Liao

conjugate gradient method with global convergence for nonconvex functions.

Glasnik Matematicki, 52(72), 361-375.

Averick, B.M., Carter, R.G., Moré, J.J. & Xue, G.L., (1992). The MINPACK-2 test

problem collection, Mathematics and Computer Science Division, Argonne National

Laboratory, Preprint MCS-P153-0692.

Bebernes, J., & Eberly, D., (1989). Mahematical Problems from Combustion Theory, in:

Applied Mathematical Sciences, vol. 83, Springer-Verlag.

Benson, H.Y., & Shanno, D.F., (2018). Cubic regularization in symmetric rank-1 quasi-

Newton methods. Math. Progr. Comput. 10, 457-486.

Biggs, M.C., (1971). Minimization algorithms making use of non-quadratic properties of

the objective function. Journal of the Institute of Mathematics and Its Applications,

8, 315-327.

Biggs, M.C., (1973). A note on minimization algorithms making use of non-quadratic

properties of the objective function. Journal of the Institute of Mathematics and Its

Applications, 12, 337-338.

https://www.tandfonline.com/doi/abs/10.1080/10556780600822260
https://www.tandfonline.com/doi/abs/10.1080/10556780600822260

 20

Broyden, C.G., (1967) Quasi-newton methods and their applications to function

minimization. Mathematics of Computation 21(99), 368-381.

Broyden, C.G., (1970). The convergence of a class of double-rank minimization

algorithms. I. General considerations. Journal of the Institute of Mathematics and Its

Applications, 6, 76-90.

Chen, H., Lam, W.H., & Chan, S.C., (2019). On the convergence analysis of cubic

regularized symmetric rank-1 quasi-Newton method and the incremental version in

the application of large-scale problems. IEEE Access, volume 7, 114042-114059.

Cimatti, G., (1977). On a problem of the theory of lubrication governed by a variational

inequality, Applied Mathematics and Optimization 3, 227–242.

Conn, A.R., Gould, N.I.M., & Toint, Ph.L., (1991). Convergence of quasi-newton

matrices generated by the symmetric rank one update. Mathematical Programming

50(1-3), 177-195.

Conn, A.R., Gould, N.I.M., & Toint, Ph.L., (2018). Constrained and unconstrained

testing environment. http://www.cuter.rl.ac.uk/Problems/mastsif.shtml.

Contreras, M., & Tapia, R.A., (1993). Sizing the BFGS and DFP updates: A numerical

study. Journal of Optimization Theory and Applications, 78, 93-108.

Davidon, W.C., (1959). Variable metric method for minimization. (Research and

Development Report ANL-5990. Argonne National Laboratories.)

Davidon, W.C., (1968). Variance algorithm for minimization. Computer Journal 10(4),

406-410.

Davidon, W.C., (1991). Variable metric method for minimization. SIAM J. Optim. 1(1),

1-17.

Dehmiry, A.H., (2019). The global convergence of the BFGS method under a modified

Yuan-Wei-Lu line search technique. Numerical Algorithms.

DOI.org/10.1007/s11075-019-00779-7

Dolan, E.D., & Moré, J.J., (2002). Benchmarking optimization software with

performance profiles. Mathematical Programming, 91, 201-213.

Fiacco, A.V., & McCormick, G.P., (1968). Nonlinear programming: sequential

unconstrained minimization techniques. Research Analysis Corporation, McLean

Virginia. Republished in 1990 by SIAM, Philadelphia.

Fletcher, R., & Powell, M.J.D., (1963). A rapidly convergent descent method for

minimization, Computer Journal, 163–168.

Fletcher, R., (1970). A new approach to variable metric algorithms. The Computer

Journal, 13, 317-322.

Glowinski, R., (1984). Numerical Methods for Nonlinear Variational Problems,

Springer-Verlag, Berlin.

Goldfarb, D., (1970). A family of variable metric method derived by variation mean.

Mathematics of Computation, 23, 23-26.

Goodman, J., Kohn, R., & Reyna, L., (1986). Numerical study of a relaxed variational

problem from optimal design, Computer Methods in Applied Mechanics and

Engineering 57, 107–127.

Huang, H.Y., (1970). Unified approach to quadratically convergent algorithms for

functions minimization. Journal of Optimization Theory and Applications 5(6),

405-423.

http://www.cuter.rl.ac.uk/Problems/mastsif.shtml

 21

Kelley, C.T., & Sachs, E.W., (1998). Local convergence of the symmetric rank one

iteration. Computational Optimization and Applications, 9, 43–63.

Khalfan, H.F., Byrd, R.H., & Schnabel, R.B., (1993). A theoretical and experimental

study of the symmetric rank-one update. SIAM J. Optimization 3(1), 1-24.

Liao, A., (1997). Modifying BFGS method. Operations Research Letters, 20, 171-177.

Nitsche, J.C.C., (1989). Lectures on Minimal Surfaces, Vol. 1, Cambridge University

Press.

Nocedal, J., (1992). Theory of algorithms for unconstrained optimization. Acta Numerica,

1, 199-242.

Nocedal, J., & Wright, S.J., (2006). Numerical optimization. Springer Series in

Operations Research. Springer Science+Business Media, New York, Second

edition, 2006.

Nocedal, J., & Yuan, Y.X., (1993). Analysis of self-scaling quasi-Newton method.

Mathematical Programming, 61, 19-37.

Oren, S.S., & Luenberger, D.G., (1974). Self-scaling variable metric (SSVM) algorithms,

part I: criteria and sufficient conditions for scaling a class of algorithms.

Management Science, 20, 845-862.

Oren, S.S., & Spedicato, E., (1976). Optimal conditioning of self-scaling variable metric

algorithm. Mathematical Programming, 10, 70-90.

Powell, M.J.D., (1970). A new algorithm for unconstrained optimization. In: J.B. Rosen,

O.L. Mangasarian & K. Ritter (Eds.) Nonlinear Programming. Academic Press,

New York, 31-66.

Shanno, D.F., (1970). Conditioning of quasi-Newton methods for function minimization.

Mathematics of Computation, 24, 647-656.

Shanno, D.F., (1978a). Conjugate gradient methods with inexact searches, Mathematics

of Operations Research, 3, 244-256.

Shanno, D.F., (1978b). On the convergence of a new conjugate gradient algorithm, SIAM

Journal on Numerical Analysis, 15, 1247-1257.

Shanno, D.F., (1983). CONMIN – A Fortran subroutine for minimizing an unconstrained

nonlinear scalar valued function of a vector variable x either by the BFGS

variable metric algorithm or by a Beale restarted conjugate gradient algorithm.

Private communication, October 17, 1983.

Shanno, D.F., & Phua, K.H., (1976). Algorithm 500. Minimization of unconstrained

multivariable functions. ACM Transactions on Mathematical Software, 2, 87-94.

Wolfe, P., (1969). Convergence conditions for ascent methods. SIAM Review, 11, 226-

235.

Wolfe, P., (1971). Convergence conditions for ascent methods. II: Some corrections.

SIAM Review, 13, 185-188.

Yabe, H., Martínez, H.J., & Tapia, R.A., (2004). On sizing and shifting the BFGS update

within the sized Broyden family of secant updates. SIAM Journal on Optimization,

15(1), 139-160.

Yuan, Y.X., (1991). A modified BFGS algorithm for unconstrained optimization. IMA

Journal of Numerical Analysis, 11, 325-332.

Yuan, Y.X., & Byrd. R., (1995). Non-quasi-Newton updates for unconstrained

optimization. Journal of Computational Mathematics, 13(2), 95-107.

 22

Yuan, G., Sheng, Z., Wang, B., Hu, W., & Li, C., (2018). The global convergence of a

modified BFGS method for nonconvex functions. Journal of Computational and

Applied Mathematics, 327, 274-294.
Zoutendijk, G., (1970). Nonlinear programming, computational methods. In J. Abadie (Ed.)

Integer and Nonlinear Programming. North-Holland, Amsterdam, 38-86.

-----oooooOooooo-----

