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Abstract. This paper presents the performances of the Dai-Liao conjugate gradient algorithm
subject to different values of the scalar t in the definition of the conjugate gradient parameter

kDL. Since the Dai-Liao algorithm is a modification of the Hestenes-Stiefel, the comparison

between these algorithms are presented using a collection of 800 unconstrained optimization
test functions.

1. Introduction
For solving the large-scale unconstrained optimization problems

min{f (x):xeR"}, (1)

where f:R" — R is a continuous differentiable function and n is enough large the conjugate

gradient method is recommended as one of the most efficiency. In this method the updating of the
variables is as

X1 =%+ d,, k=01,.., (2)
the scalar ¢, >0 being the stepsize and d, the search direction updated as
Ay = —9a +Adi, k=01..., (3)

In (2) for k=0 x, is a known initial point around which the minimum point x™ of function f is
sought and in (3) d, =—g,. Here, g, =Vf(x,), isthe gradient of f evaluated in Xx,.

Details on conjugate gradient methods for unconstrained optimization including both their
convergence and numerical performances are given in [1].

The conjugate gradient method of Dai and Liao [2] is defined by (2) where the search direction is
computed as in (3) with
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where t >0 is a scalar. This method was introduced by Dai and Liao using the modified conjgacy
condition. y, d,,; =—t(s; g,,,). Observe that the parameter B°- in the Dai-Liao conjugate
gradient method is a modification of the Hestenes-Stiefel conjugate gradient parameter

T
Hs _ Yk Gkn (5)
‘ ylrdk

Plenty of methods for selection of the scalar t in parameter B°- are known in literature (see [3-

15]). Selection of the scalar t in B is an open problem [3] and until now no optimal value of it

is known. Therefore, a good idea is to see the performances of the Dai-Liao algorithm subject to
different values of the scalar t suggested in literature. Since the Dai-Liao algorithm is a
modification of the Hestenes-Stiefel one, comparisons among these algorithms are presented for
solving a collection of 800 unconstrained optimization test problems with the number of variables
in the range [1000, 10000].

2. The context of the numerical experiments

The numerical experiments have bee considered in the following context. All algorithms have
been coded in double precision Fortran and compiled with 77 (default compiler settings) and run
on an Intel Pentium 4, 1.8 GHz workstation. The test functions are from the UOP collection [16],
which includes 80 functions. For each test function ten numerical experiments with the number of
variables n =1000,2000,...,10000 have been considered, thus obtaining a number of 800

problems.
The algorithms compared in these numerical experiments find local solutions. Therefore, the

comparisons of the algorithms are given in the following context. Let f*°* and f"°* be the
optimal value found by ALG1 and ALG2 for problem i=1,...,800, respectively. We say that, in
the particular problem i, the performance of ALG1 was better than the performance of ALG2 if

‘fi ALG1 _ fiALGZ <1073 (6)

and if the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the
CPU time of ALGL1 was less than the number of iterations, or the number of function-gradient
evaluations, or the CPU time corresponding to ALG2, respectively.

The iterations are stopped if the inequality ||g, | <107° is satisfied, where || is the maximum
absolute component of a vector. All algorithms implement the standard Wolfe line search,

f(x +od,) < f(x)+pad, g,
Vi (% +d,)" d, >od] g,,

where p=0.0001 and o=0.8. The maximum number of iterations was limited to 2000. To
compare the performances of algorithms, the Dolan and Moré [17] performance profiles are used.



3. Numerical results and comparisons
1) In the first numerical experiment we compare the performances of the Hestenes-Stiefel
algorithm versus the performances of the Dai-Liao in which the parameter t is computed as

t=1 (7)

Figure 1 presents the Dolan-Mor¢ performances profiles of these algorithms, where DLI is the
Dai-Liao algorithm (4) with t =1 and HS is the Hestenes-Stiefel algorithm given by (5).
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Fig. 1. Performances profiles of DL1 (Dai-Liao with t =1) versus HS (Hestenes-Stiefel)

Observe that this simple modification of the Hestenes-Stiefel algorithm leads us to a conjuagte
gradient algorithm more efficient. The tables inside the plot show the performances of the
algorithms subject to the number of iterations (#iter), the number of function and its gradient
evaluations (#fg) and subject to the CPU time metric (cpu) in seconds. When comparing DL1
versus HS (see Figure 1) subject to the number of iterations, we see that DL1 was better in 99
problems (i.e. it achieved the minimum number of iterations in 99 problems). HS was better in 91
problems and they achieved the same number of iterations in 606 problems, etc. Out of 800
problems considered in this numerical experiment, only for 796 problems does the criterion (6)
hold. In the following numerical experiments let us see the performances of Dai-Liao algorithm

with different values of the scalar t.

2) In the second set of numerical experiments the scalar t in (4) is computed as

(8)

_ Yie e
.
s

Observe that (8) is exactly the value given by Oren and Luenberger [18]. Besides, it is worth
mentioning that (8) is obtained by clustering the eigenvalues of the self-scaling BFGS matrix
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using the determinant of this matrix (see [1], pp. 291). Figure 2 presents the performances of
these algorithms.
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Fig. 2. Performances profiles of DL2 (Dai-Liao with t given by (8)) versus HS (Hestenes-Stiefel)

Figure 2 shows that subject to CPU time metric, HS algorithm is more efficient than DL2. On the
other hand, DL2 is slightly more robust. Anyway, both these algorithms have similar
performances. From Figure 2 we see that DL2 was fastest in solving 190 problems, but HS was
fastest in 268 problems. Out of 800 problem only for 793 does the criterion (6) hold.

3) In the third set of numerical experiments we compare the Dai-Liao algorithm with
[yl
t="71 (10)
Y Sk
versus the Hestenes-Stiefel algorithm. The value of t in (10) was suggested by Oren and

Spedicato [19]. Figure 3 presents the performances of these algorithms. From Figure 3 we see
that DL3 is more robust than HS.
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Fig. 3. Performances profiles of DL3 (Dai-Liao with t given by (10)) versus HS (Hestenes-Stiefel)

4) In the forth set of numerical experiments in the Dai-Liao algorithm consider

.
Yi Sk

t=min<1, )
Isi |’

(11)

This value has been suggested by Al-Baali [20]. Figure 4 shows the performances of Dai-Liao
algorithm with t given by (11) versus those of Hestenes-Stiefel.
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Fig. 4. Performances profiles of DL4 (Dai-Liao with t given by (11)) versus HS (Hestenes-Stiefel)
5) In this set of numerical experiments let us consider




(12)

A

t=min{l, =
{ ygsk}

in the Dai-Liao conjugate gradient parameter (4). This value of t also has been suggested by
AlBaali [20]. Figure 5 shows the performances of this algorithm versus Hestenes-Stifel.

g — ]
095+ ]
4
i
oot |/ 1
T
/
0.85 —', ]
0.8 ¢ DL5 HS = |
o #iter 106 90 599
075+ #fg 155 127 513 ]
cpu 162 333 300
0Tt ]
0.65H ]
06 CPU time metric, 795 problems :
‘ :‘l é 8 10 1|2 1|4 16
T

055
2
Fig. 5. Performances profiles of DL5 (Dai-Liao with t given by (12)) versus HS (Hestenes-Stiefel)

(13)

6) Now, let us consider in (4)
[ I lsd | vise
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This value of t is obtained by clustering the eigenvalues of the self-scaling memoryless BFGS
matrix (9) using the trace of this matrix (se [1], pp.293). Figure 6 shows the performance profiles

of these algorithms.
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Fig. 6. Performances profiles of DL6 (Dai-Liao with t given by (13)) versus HS (Hestenes-Stiefel)

7) In this set of numerical experiments consider

2 2
_n-2 1 vl fsd

t .
n-1 n-1 (yis)’

(14)

This value of t is obtained by minimizing the measure function ¢(H,,;) introduced by Byrd and
Nocedal [21], where H,,, is given by (9) (see [1], pp.296). Figure 7 presents the performance
profiles of these algorithms.

—y
T

HS
095+ B
09+ B
DL7 HS =
085r | #iter 107 90 599 1
o ;' #fg 152 137 507
0.8 H cpu 196 263 337 1

0.75

0.7
CPU time metric, 796 problems

065 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16

T
Fig. 7. Performances profiles of DL7 (Dai-Liao with t given by (14)) versus HS (Hestenes-Stiefel)
8) In this set of numerical experiments consider the value of the scalar t given by Aminifard and
Babaie-Kafaki (see [8]):
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Figure 8 shows the performances of Dai-Liao algorithm with t given by (15) versus the
Hestenes-Stiefel algorithm.
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Fig. 8. Performances profiles of DL8 (Dai-Liao with t given by (15)) versus HS (Hestenes-Stiefel)

9) Another set of numerical experiments takes the scalar t as

_ y; Sy ”yk ” (16)

sl s

introduced by Babaie-Kafaki & Ghanbari [6]. Figure 9 shows the performance profiles of these
algorithms.
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Fig. 9. Performances profiles of DL9 (Dai-Liao with t given by (16)) versus HS (Hestenes-Stiefel)

10) In this set of numerical experiment
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introduced by Babaie-Kafaki & Ghanbari [6]. Figure 10 shows the performance profiles of these
algorithms.
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Fig. 10. Performances profiles of DL10 (Dai-Liao with t given by (17)) versus HS (Hestenes-Stiefel)
11) In this set of numerical experiments let us consider
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which correspond to the CG-DESCENT algorithm by Hager and Zhang [22]. In Figure 11 we
present the performance profiles of these algorithms.

DL11 HS =
#iter 144 175 470 1
#fg 185 223 381
cpu 136 367 286

CPU time metric, 789 problems g

0_5 1 | 1 1 1 1 1
2 4 6 8 10 12 14 16

T

Fig. 11. Performances profiles of DL11 (Dai-Liao with t given by (18)) versus HS (Hestenes-Stiefel)

12) Now, consider

2
Il o
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introduced by Dai and Kou [23]. Figure 12 presents the profiles of these algorithms.
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Fig. 12. Performances profiles of DL12 (Dai-Liao with t given by (19)) versus HS (Hestenes-Stiefel)
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13) For t=0.1 in (4), Figure 13 shows the performances of these algorithms.
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Fig. 13. Performances profiles of DL13 (Dai-Liao with t =0.1) versus HS (Hestenes-Stiefel)

14) For t=0.5 in (4), Figure 14 shows the performances of these algorithms

#iter
#tg
cpu

CPU time metric, 795 problems

DL14

103
149

158

HS
72
113
304

2 4 6 8 10 12 14 16
T

Fig. 14. Performances profiles of DL14 (Dai-Liao with t =0.5) versus HS (Hestenes-Stiefel)

11



15) For t=0.9 in (4), Figure 15 shows the performances of these algorithms

iy

095

09

DL15 HS =
#iter 102 95 508
#fg 144 130 521
cpu 217 204 374

0 pa8s

0.8

CPU time metric, 795 problems

O_? 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16

T

Fig. 15. Performances profiles of DL15 (Dai-Liao with t =0.9) versus HS (Hestenes-Stiefel)

16) Consider

2
t:% 20)

in (4). Figure 16 shows the performances of these algorithms.
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17) Now consider in (4)

)
t= _3;9;+1 . (21)
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Figure 17 shows the performance profiles of these algorithms.

DL17 e
0.95 B
09t B
DL17 HS =
o 085l #iter 82 63 653 |

#fg 117 97 584
cpu 178 234 386
0.8

CPU time metric, 798 problems

O_? 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16

Fig. 17. Performances profiles of DL17 (Dai-Liao with t given by (21)) versus HS (Hestenes-Stiefel)
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