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Abstract. This paper presents the performances of the Dai-Liao conjugate gradient algorithm 

subject to different values of the scalar t  in the definition of the conjugate gradient parameter 

.DL
k  Since the Dai-Liao algorithm is a modification of the Hestenes-Stiefel, the comparison 

between these algorithms are presented using a  collection of 800 unconstrained optimization 

test functions.  

 

 

1. Introduction 
For solving the large-scale unconstrained optimization problems 

 

                                                              min{ ( ) : },nf x x                                                          (1) 

 

where : nf   is a continuous differentiable function and n  is enough large the conjugate 

gradient method is recommended as one of the most efficiency. In this method the updating of the 

variables is as 

                                                      1 ,k k k kx x d      0,1, ,k                                                   (2) 

 

the scalar 0k   being the stepsize and kd  the search direction updated as 

 

                                                    1 1 ,k k k kd g d      0,1, ,k                                                (3) 

 

In (2) for 0k   0x  is a known initial point around which the minimum point *x  of function f  is 

sought and in (3) 0 0.d g   Here, ( ),k kg f x   is the gradient of f  evaluated in .kx  

Details on conjugate gradient methods for unconstrained optimization including both their 

convergence and numerical performances are given in [1].  

The conjugate gradient method of Dai and Liao [2] is defined by (2) where the search direction is 

computed as in (3) with 
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                                                           1 1 ,
T T

DL k k k k
k T T

k k k k

y g s g
t

y d y d
                                                       (4) 

 

where 0t   is a scalar. This method was introduced by Dai and Liao using the modified conjgacy 

condition. 1 1( ).T T
k k k ky d t s g    Observe that the parameter DL

k  in the Dai-Liao conjugate 

gradient method is a modification of the Hestenes-Stiefel conjugate gradient parameter  

 

                                                                 1 .
T

HS k k
k T

k k

y g

y d
                                                               (5) 

 

Plenty of methods for selection of the scalar t  in parameter DL
k  are known in literature (see [3-

15]). Selection of the scalar t  in DL
k  is an open problem [3] and until now no optimal value of it 

is known. Therefore, a good idea is to see the performances of the Dai-Liao algorithm subject to 

different values of the scalar t  suggested in literature. Since the Dai-Liao algorithm is a 

modification of the Hestenes-Stiefel one, comparisons among these algorithms are presented for 

solving a collection of 800 unconstrained optimization test problems with the number of variables 

in the range [1000, 10000]. 

 

2. The context of the numerical experiments 
The numerical experiments have bee considered in the following context. All algorithms have 

been coded in double precision Fortran and compiled with f77 (default compiler settings) and run 

on an Intel Pentium 4, 1.8 GHz workstation. The test functions are from the UOP collection [16], 

which includes 80 functions. For each test function ten numerical experiments with the number of 

variables 1000,2000,...,10000n   have been considered, thus obtaining a number of 800 

problems.  

The algorithms compared in these numerical experiments find local solutions. Therefore, the 

comparisons of the algorithms are given in the following context. Let 1ALG

if  and 2ALG

if  be the 

optimal value found by ALG1 and ALG2 for problem 1, ,800,i   respectively. We say that, in 

the particular problem ,i  the performance of ALG1 was better than the performance of ALG2 if 

 

                                                                1 2 310ALG ALG

i if f                                                        (6) 

 

and if the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the 

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient 

evaluations, or the CPU time corresponding to ALG2, respectively.   

The iterations are stopped if the inequality 
610kg 


  is satisfied, where .


 is the maximum 

absolute component of a vector. All algorithms implement the standard Wolfe line search,  

 

                                                   ( ) ( ) ,T
k k k k k k kf x d f x d g     

                                           ( ) ,T T
k k k k k kf x d d d g      

 

where 0.0001   and 0.8.   The maximum number of iterations was limited to 2000. To 

compare the performances of algorithms, the Dolan and Moré [17] performance profiles are used. 

 

 



 3 

3. Numerical results and comparisons 
1) In the first numerical experiment we compare the performances of the Hestenes-Stiefel 

algorithm versus the performances of the Dai-Liao in which the parameter t  is computed as 

 

                                                                               1t                                                                   (7) 

 

Figure 1 presents the Dolan-Moré performances profiles of these algorithms, where DL1 is the 

Dai-Liao algorithm (4)  with 1t   and HS is the Hestenes-Stiefel algorithm given by (5). 

 

 
Fig. 1. Performances profiles of DL1 (Dai-Liao with 1t  ) versus HS (Hestenes-Stiefel) 

 

 

Observe that this simple modification of the Hestenes-Stiefel algorithm leads us to a conjuagte 

gradient algorithm more efficient. The tables inside the plot show the performances of the 

algorithms subject to the number of iterations (#iter), the number of function and its gradient 

evaluations (#fg) and subject to the CPU time metric (cpu) in seconds. When comparing DL1 

versus HS (see Figure 1) subject to the number of iterations, we see that DL1 was better in 99 

problems (i.e. it achieved the minimum number of iterations in 99 problems). HS was better in 91 

problems and they achieved the same number of iterations in 606 problems, etc. Out of 800 

problems considered in this numerical experiment, only for 796 problems does the criterion (6) 

hold. In the following numerical experiments let us see the performances of Dai-Liao algorithm 

with different values of the scalar .t  

 

2) In the second set of numerical experiments the scalar t  in (4) is computed as 

 

                                                                      
2

.
T
k k

k

y s
t

s
                                                                  (8) 

 

Observe that (8) is exactly the value given by Oren and Luenberger [18]. Besides, it is worth 

mentioning that (8) is obtained by clustering the eigenvalues of the self-scaling BFGS matrix 
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                                (9) 

 

using the determinant of this matrix (see [1], pp. 291). Figure 2 presents the performances of 

these algorithms.  

 

 
Fig. 2. Performances profiles of DL2 (Dai-Liao with t  given by (8)) versus HS (Hestenes-Stiefel) 

 

 

Figure 2 shows that subject to CPU time metric, HS algorithm is more efficient than DL2. On the 

other hand, DL2 is slightly more robust. Anyway, both these algorithms have similar 

performances. From Figure 2 we see that DL2 was fastest in solving 190 problems, but HS was 

fastest in 268 problems.  Out of 800 problem only for 793 does the criterion (6) hold.  

 

3) In the third set of numerical experiments we compare the Dai-Liao algorithm with  

 

                                                                     

2

k

T
k k

y
t

y s
                                                                  (10) 

 

versus the Hestenes-Stiefel algorithm. The value of t  in (10) was suggested by Oren and 

Spedicato [19]. Figure 3 presents the performances of these algorithms. From Figure 3 we see 

that DL3 is more robust than HS.  

 



 5 

 
Fig. 3. Performances profiles of DL3 (Dai-Liao with t  given by (10)) versus HS (Hestenes-Stiefel) 

 

 

4) In the forth set of numerical experiments in the Dai-Liao algorithm consider 

 

                                                               
2

min 1, .
T
k k

k

y s
t

s

  
  

  

                                                         (11) 

 

This value has been suggested by Al-Baali [20]. Figure 4 shows the performances of Dai-Liao 

algorithm with t  given by (11) versus those of Hestenes-Stiefel. 

 

 

 
Fig. 4. Performances profiles of DL4 (Dai-Liao with t  given by (11)) versus HS (Hestenes-Stiefel) 

5) In this set of numerical experiments let us consider 
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                                                        (12) 

 

in the Dai-Liao conjugate gradient parameter (4). This value of t  also has been suggested by 

AlBaali [20]. Figure 5 shows the performances of this algorithm versus Hestenes-Stifel. 

 

 

 
Fig. 5. Performances profiles of DL5 (Dai-Liao with t  given by (12)) versus HS (Hestenes-Stiefel) 

 

 

6) Now, let us consider in (4)  

                                                        

2 2

2 2
2 .

( )

T
k k k k

T
k k k

y s y s
t

y s s

 
  
 
 

                                                   (13) 

 

This value of t  is obtained by clustering the eigenvalues of the self-scaling memoryless BFGS 

matrix (9) using the trace of this matrix (se [1], pp.293). Figure 6 shows the performance profiles 

of these algorithms. 
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Fig. 6. Performances profiles of DL6 (Dai-Liao with t  given by (13)) versus HS (Hestenes-Stiefel) 

 

7) In this set of numerical experiments consider 

 

                                                        

2 2

2

2 1
.

1 1 ( )

k k

T
k k

y sn
t

n n y s


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 
                                                 (14) 

 

This value of t  is obtained by minimizing the measure function 1( )kH   introduced by Byrd and 

Nocedal [21], where 1kH   is given by (9) (see [1], pp.296). Figure 7 presents the performance 

profiles of these algorithms. 

 

 
Fig. 7. Performances profiles of DL7 (Dai-Liao with t  given by (14)) versus HS (Hestenes-Stiefel) 

8) In this set of numerical experiments consider the value of the scalar t  given by Aminifard and 

Babaie-Kafaki (see [8]): 
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Figure 8 shows the performances of Dai-Liao algorithm with t  given by (15) versus the 

Hestenes-Stiefel algorithm. 

 

 

 
Fig. 8. Performances profiles of DL8 (Dai-Liao with t  given by (15)) versus HS (Hestenes-Stiefel) 

 

 

9) Another set of numerical experiments takes the scalar t  as 
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introduced by Babaie-Kafaki & Ghanbari [6]. Figure 9 shows the performance profiles of these 

algorithms. 
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Fig. 9. Performances profiles of DL9 (Dai-Liao with t  given by (16)) versus HS (Hestenes-Stiefel) 

 

 

10) In this set of numerical experiment 

                                                                      ,
k

k

y
t

s
                                                                  (17) 

 

introduced by Babaie-Kafaki & Ghanbari [6]. Figure 10 shows the performance profiles of these 

algorithms. 

 
Fig. 10. Performances profiles of DL10 (Dai-Liao with t  given by (17)) versus HS (Hestenes-Stiefel) 

11) In this set of numerical experiments let us consider 
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which correspond to the CG-DESCENT algorithm by Hager and Zhang [22]. In Figure 11 we 

present the performance profiles of these algorithms. 

 

 
Fig. 11. Performances profiles of DL11 (Dai-Liao with t  given by (18)) versus HS (Hestenes-Stiefel) 

 

 

12) Now, consider  

                                                                     

2

,
k

T
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y
t
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                                                                 (19) 

 

introduced by Dai and Kou [23]. Figure 12 presents the profiles of these algorithms. 

 

 

 
Fig. 12. Performances profiles of DL12 (Dai-Liao with t  given by (19)) versus HS (Hestenes-Stiefel) 
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13) For 0.1t   in (4), Figure 13 shows the performances of these algorithms. 

 

 
Fig. 13. Performances profiles of DL13 (Dai-Liao with 0.1t  ) versus HS (Hestenes-Stiefel) 

 

 

 

 

 

 

14) For 0.5t   in (4), Figure 14 shows the performances of these algorithms 

 

 
Fig. 14. Performances profiles of DL14 (Dai-Liao with 0.5t  ) versus HS (Hestenes-Stiefel) 
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15) For 0.9t   in (4), Figure 15 shows the performances of these algorithms 

 

 

 

 
Fig. 15. Performances profiles of DL15 (Dai-Liao with 0.9t  ) versus HS (Hestenes-Stiefel) 

 

 

 

16) Consider  

                                                                     

2

k

T
k k

s
t

y s
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in (4). Figure 16 shows the performances of these algorithms. 

 

 
Fig. 16. Performances profiles of DL16 (Dai-Liao with t  given by (20)) versus HS (Hestenes-Stiefel) 
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17) Now consider in (4) 
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Figure 17 shows the performance profiles of these algorithms. 

 

 
Fig. 17. Performances profiles of DL17 (Dai-Liao with t  given by (21)) versus HS (Hestenes-Stiefel) 
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