Efficiency and robustness of conjugate gradient
methods subject to the procedures for stepsize
computation

Neculai Andrei
Center for Advanced Modeling and Optimization,
Academy of Romanian Scientists,
54, Splaiul Independentei, Sector 5,
Bucharest, ROMANIA
E-mail: neculaiandrei70@gmail.com

Technical Report 2/2021
January 11, 2021

Abstract. It is known that the conjugate gradient methods are very sensitive to the stepsize
computation. This technical report presents some numerical results of HS (Hestenes-Stiefel),
PRP+ (Polak-Ribi¢re-Polyak) and DY (Dai-Yuan) conjugate gradient methods implemented
with two procedures for stepsize computation. The first one implements the standard Wolfe
line search with cubic interpolation. The second one implements the standard Wolfe line
search with a simple bisection method. Intensive numerical experiments with 800
unconstrained optimization problems, with the number of variables in the range [1000,
10000], show that the performances of conjugate gradient methods are very dependent by the
procedure for stepsize computation. Particularly, all these conjugate gradient methods
equipped with cubic Wolfe line search is way more efficient and more robust.

1. Introduction
For solving the problem

min f (x), 1)

where f:R" —R is a continuously differentiable function lower bounded and xeR", the
conjugate gradient methods are defined by the following algorithm:

Xes1 =X +oqd,, k=01,..., (2)
where d, is the search direction computed as
Ay =9 + Ad,, k=01..., (3)

with d, =-g,. In (3) p, is a scalar known as the conjugate gradient parameter defined by
different formulae involving some elements of the algorithm and g, =Vf(x,). The search
direction d,, assumed to be a descent one, plays the main role in these methods. On the other
hand, the stepsize ¢, guarantees the global convergence in some cases and is crucial in


mailto:neculaiandrei70@gmail.com

efficiency. For nonlinear functions different parameters f, determine conjugate gradient

algorithms with different performances. Details on conjugate gradient methods including their
definition and properties, as well as their performances for solving a large class of unconstrained
optimization problems with different structures and complexities are presented in Andrei (2020).

It is known that in conjugate gradient algorithms, the search directions tend to be poorly scaled
and consequently the line search must perform more function evaluations in order to obtain a

suitable stepsize «,. In conjugate gradient methods, the stepsizes differ from 1 in a very

unpredictable way. They can be larger or smaller than 1, depending on how the problem is scaled.
This is in very sharp contrast to the Newton and the quasi-Newton methods, including the limited
memory quasi-Newton methods, which accept the unit stepsize most of the time along the
iterations and therefore they usually require only few function evaluations per search direction. In
this technical report we are interested to see the performances of the conjugate gradient methods
subject to different procedures for stepsize ¢, computation. In the following we consider two
procedures for computing the stepsize «,. Both of them implement the standard Wolfe line
search:

f(xk+akdk)—f(xk)Spakg[dk, 4)

g;<r+1dk > O'g:dk’ ()

where 0< p<1/2 <o <1. The first Wolfe condition (4) is called the sufficient reduction of the

minimizing function values, which ensures a sufficient reduction of function values. The second
Wolfe condition (5) is the curvature condition, which ensures unacceptable short stepsizes. The
first procedure for computing the stepsize «, implements the Wolfe line search conditions (4)

and (5) with cubic interpolation. The second procedure implements the Wolfe line search
conditions (4) and (5) with a simple bisection method. The following theorem proves that there
exists a value ¢, satisfying both Wolfe line search conditions (4) and (5).

Theorem 1. Suppose that the function f is continuously differentiable. Let d, be a descent
direction at point x, and assume that f is bounded from below along the ray
{x +ad, :a>0}. Then, if 0<p<o<l, there exists an interval of stepsizes o satisfying the
Wolfe conditions.

Proof Let us define ¢(a) = f (%, +ad,). Since ¢(a) is bounded from below for all « >0, the

line I(a) = f(x)+apVf(x)"d, must intersect the graph of ¢ at least once. Let &' >0 be the
smallest intersection value of «, i.e.

f (% +a'dy) = T (%) +apVE (%) dy < F(x)+pVF (%) d,. (6)

Hence, a sufficient decrease holds for all O< a < '.
Now, by the mean value theorem, there exists «" € (0,«') so that

Since p<o and Vf (xk)Tdk <0, from (6) and (7) we get



Vi (% +a'd )" d, = pVE (%) d, > oVF (%) d,. (8)

Therefore, " satisfies the Wolfe line search conditions (4) and (5) and the inequalities are strict.
By smoothness assumption on f, there is an interval around «" for which the Wolfe conditions

hold. ¢

The structure of this technical report is as follows. Section 2 is dedicated to present an
implementation of Wolfe line search with cubic interpolation. Section 3 presents an
implementation of Wolfe line search with bisection method. Section 4 illustrates the
performances of some conjugate gradient methods with these two procedures for stepsize
computation based on the Wolfe line search (4) and (5).

2. Wolfe line search with cubic interpolation

In the following, let us describe a variant of a line search procedure which is simple enough to
generate safeguarded stepsizes satisfying the standard Wolfe conditions (4) and (5) (see Shanno,
1983). Suppose that we are at the iteration k. To have a simple interpretation of the procedure
and a clear description, a Fortran version of it is presented in Figure 1. The inputs of this
procedure are: n the number of variables, x =X, a vector with the current values of variables,

f = f(x,) the value of the minimizing function in x, d=d, the current search direction,
gtd = Vf(x,)"d, the scalar product of the current gradient and the search direction,
dnorm = d, | the 1,-norm of the search direction. The outputs of the procedure are: alpha = ¢
the stepsize satisfying the standard Wolfe line search conditions, xnew=x,,, =X, +d, the
new point, fnew= f(x,,,) the function value in new point, gnew = Vf(x,,,) the gradient of the
minimizing function in the new point, fgcnt the number of function and its gradient calls, Iscnt
indicates that the line search procedure performed a number of iterations, Isflag indicates that the
number of iterations in the line search procedure is greater than a prespecified threshold.

subroutine LineSearch (n,x,f,d,gtd,dnorm,alpha,xnew, fnew,gnew,
+ fgent,lscnt,1sflagqg)

C SCALAR ARGUMENTS
integer n,fgcnt,lscnt,lsflag
double precision f,gtd,dnorm,alpha, fnew

(o] ARRAY ARGUMENTS
double precision x(n) ,d(n) ,xnew(n) ,gnew(n)
(o] LOCAL SCALARS

integer i,lsiter, max$ls
double precision alphap,alphatemp,fp,dp,gtdnew,a,b

common/acca/epsm
1lsflag = 0
* Maximum number of iterations in LineSearch is max$ls (now is 20)
max$1s=20
alphap = 0.0d0
fp = f
dp = gtd

do i=1,n
xnew (i) = x(i) + alpha * d(i)
end do
cl
call evalfg(n,xnew, fnew,gnew)
fgent = fgent + 1



10
+
+
+
+
20
+
c2
+
+
+
+
+
c3

gtdnew = 0.0d0
do i=1,n

gtdnew = gtdnew + gnew(i) * d(i)
end do

lsiter = 0

if (

alpha * dnorm .gt. 1.0d-30 .and. lsiter .lt. max$ls .and.
.not. ( gtdnew .eq. 0.0d0 .and. fnew .1lt. £ ) .and.

( ( fnew .gt. £ + 1.0d-04 * alpha * gtd .or.

dabs ( gtdnew / gtd ) .gt. 0.9d0 ) .or. ( lsiter .eq. O .and.
dabs ( gtdnew / gtd ) .gt. 0.5d0 ) ) ) then

if ( alpha * dnorm .gt. 1.0d-30 .and. fnew .gt. £ .and.
gtdnew .1t. 0.0d0 ) then

alpha = alpha / 3.0d0
doi=1,n

xnew (i) = x(i) + alpha * d(i)
end do

call evalfg(n,xnew, fnew,gnew)
fgent = fgent + 1
gtdnew = 0.0d0
do i =1,n
gtdnew = gtdnew + gnew (i) * d(i)

= 0.0d0
fp = f
= gtd

end if

a dp + gtdnew - 3.0d0 * ( fp - fnew ) / ( alphap - alpha )
b a ** 2 - dp * gtdnew
if ( b .gt. epsm ) then
b = sqrt( b )
else
b = 0.0d0
end if

alphatemp = alpha - ( alpha - alphap ) * ( gtdnew + b - a ) /
( gtdnew - dp + 2.0d0 * b )

if ( gtdnew / dp .le. 0.0d0 ) then
if ( 0.99d0 * dmaxl( alpha, alphap ) .lt. alphatemp .or.
alphatemp .lt. 1.01d0 * dminl( alpha, alphap ) ) then
alphatemp = ( alpha + alphap ) / 2.0d0
end if
else
if ( gtdnew .1lt. 0.0d0 .and.
alphatemp .lt. 1.01d0 * dmaxl( alpha, alphap ) ) then
alphatemp = 2.0d0 * dmaxl( alpha, alphap )
end if
if ( ( gtdnew .gt. 0.0d0 .and.
alphatemp .gt. 0.99d0 * dminl( alpha, alphap ) ) .or.
alphatemp .1t. 0.0d0 ) then
alphatemp = dminl( alpha, alphap ) / 2.0d0

end if
end if
alphap = alpha
fp = fnew
dp = gtdnew

alpha = alphatemp
doi=1,n

xnew (i) = x(i) + alpha * d(i)
end do

call evalfg(n,xnew, fnew,gnew)



fgent = fgent + 1
gtdnew = 0.0d0
doi=1,n
gtdnew = gtdnew + gnew(i) * d(i)
end do

lsiter = lsiter + 1

goto 10
end if

if ( lsiter .ge. max$ls ) then
lsflag = 1

end if

if ( lsiter .ne. 0 ) then
lscnt = 1lscnt + 1

end if

return
end

Fig. 1. Subroutine LineSearch which generate safeguarded stepsizes satisfying the standard Wolfe line
search with cubic interpolation

In Figure 1, max$1s is the maximum number of iterations in the line search procedure, epsm is
the epsilon machine and evalfg (n,xnew, fnew,gnew) is the subroutine implementing the
algebraic expressions of the minimizing function and its gradient. In input, this subroutine has: n
as the number of variables and xnew as the new point. In output, it computes: £new as the value
of function f in the new point and gnew as the gradient of f in the new point.

We see that a line search procedure is complicated and to be reliable it must incorporate a lot of
features. Firstly, observe that the standard Wolfe conditions are implemented in a complicated
form, which takes into consideration both the ratio between the rate of decrease of f in the
direction d, at the new point and the rate of decrease in the direction d, at the current point x,,

and also some precautions to avoid too small or too large values of the stepsize. Observe that in
the selection phase of the procedure, the cubic interpolation is used. Cubic interpolation provides
a good model for the minimizing function in the searching interval. Suppose we have an interval

[a,b] containing the desirable stepsize and two previous stepsizes estimates a;,, and ¢; in this
interval. The algorithm uses a cubic function to interpolate the values, ¢, (o), @ (),
o (e 4) and ¢ (¢;), where ¢ ()= f(x +ad,). The minimizer of this cubic function in
[a,b], that is a new estimation of the stepsize, is either at one of the endpoints or in the interior,
case in which it is given by

&y =05 — (o _ai—1)|: ; i (ai),+b_a }, 9)
o () - oy (1) +2b
where
a=g(aiq)+ o (Oli)—3¢'< (aiy) - (ai)’ (10)
Qg — G
b=(a® - g ()i (@) an

In Figure 1 the new estimate ¢;,, is computed as alphatemp. The interpolation process can be
repeated by discarding the data at one of the stepsizes «;_; or ¢; and replacing it by ¢, (¢;,;) and



oy (¢r,,). Observe that the interpolation step that determines a new estimation to the stepsize is
safeguarded in order to ensure that the new stepsize is not too close to the endpoints of the
interval. Some more details may be found, for example, in (Dennis & Schnabel, 1983), (Shanno,
1983).

3. Wolfe line search with a simple bisection method

The bisection method is a simple method to find a zero of a continuous function for which two
values of opposite sign are known. To determine a stepsize ¢, which satisfies the Wolfe line
search conditions (4) and (5) the following simple algorithm based on bisection concept may be
used.

Algorithm WSB.

Step 1. Choose ¢, >0 and set o> = """ =0.

Step 2. If ¢, satisfies (4), then go to Step 4.

Step 3. Else (if o, do not satisfy (4)), then set: """ = o and ¢, = (™" + ")/ 2
and go to Step 2.

Step 4. If ¢, satisfies (5), then stop.

Step 5. Otherwise (if ¢, do not satisfy (5)), then set: &, = ¢, and
20", if o' =0,

o, = . .
© @™ a2, if g >0,

and goto Step 2. ¢

For the very beginning let us proof that the above algorithm WSB determines a value for ¢,
which satisfy both the Wolfe line search conditions (4) and (5) in a finite number of steps.

Theorem 2. Suppose that the function f is continuously differentiable on R" and bounded
below on the half-line {x, + ad, : @ >0}. Then, the algorithm WSB terminates in finite time and
generates a value for ¢, that satisfies Wolfe conditions (4) and (5).

Proof Let us define ¢(a) = f (X, +ad,) and introduce the following two sets:

S, ={a>0: (4) holds},
S, ={a>0: (5) holds}.

Observe that both S, and S, are closed in R,. Moreover, for « sufficiently small, because ¢’
is continuous and p <1,

p(@) = p(0)+ [ ¢/(x)dz < (0) + [ pp'(O)dz.
0 0
Therefore, there exists 8, >0 such that [0,6,]< S;, i.e. there exists « >0 satisfying the first

Wolfe condition (4). Now, consider the second Wolfe condition (5). Let >0 and two
sequences {o>""}, 'S, and {1}, = S, be such that



o™ <q foranyieN, o - q, (12)
|—00
o> o forany ieN, afigh’[i] — . (13)
|—00

With this let us prove that « € S,. For this assume that « ¢ S, and hence ¢'(a) < o¢’(0). Then,
since ¢’ is continuous and p <o, there exists a value &, >0 such that for any 6<[0,5,] it
follows that ¢'(a +6) < o¢'(0). Therefore, for all & €[0,5,], it follows that

a+0

p(a+0)=p(a)+ I ¢'(r)dz < p(0) + (a + ) o' (0).

But, since """ converges to « from the right, it follows that there exists an index j large

enough so that o' e[a,a+6,], thus contradicting the assumption that of'""tles .
Therefore, o €S,.

Now, let us prove that the algorithm terminates in finite time. If the algorithm terminates
in a finite time, then ¢, generated by it satisfies both Wolfe line search conditions. For this let us
define ™1, o' and ol as the values of o, o' and «, at the beginning of iteration
i of the algorithm. The following properties can be observed:

1) Observe that for all i it is impossible that ¢®11=0. This is because in this case
al=2"a[, and hence of'e[0,5] and o is updated to o' >0 (see Step 5 of the
algorithm).

2) The sequence {>*!"},, is an increasing one in S, such that for all i, o™ <ol " can
only be updated in Step 5 of the algorithm WSB. It will be increased to the strictly larger value
a1 = ol and as we can see in Step 5 of the algorithm o' takes on a strictly larger value
than ol

3) Initially, for a few iterations ¢"*"'! =0. But, once it takes on a value o[l >0 at some
iteration iy, then this can only happen in Step 3 of the algorithm WSB. Starting with the iteration

i, , the elements of the sequence o' with i > i, decrease in S,, because ;" is only updated

in Step 3 of the algorithm to a value of ¢, that is strictly smaller than ", and e, is itself
updated to a strictly smaller value.

4) All in all only two possibilities can appear: Either o' =0 for all i, and then

a1 =27 for all i, in which case the algorithm WSB finds that the function f is
unbounded. However, this case must be excluded since in the assumptions of theorem f is

bounded. Or, there exists an index i,eN such that ¢9"!>0, and therefore
ol = ("M 4 o'y 12, the sequence {1}, is increasing, the sequence {11}, is

low,[i]

decreasing and the interval [0, "] is halved in length in every iteration. Therefore, it

follows that ¢, converges to a point «, from S, and o' converges to the same point in

low,[i]

S;. In conclusion ¢ €S, NS,. Therefore, """ €S, NS, for i sufficiently large, proving that
the algorithm terminates with this value. .



Observe that this is a very simple procedure for computing a value of ¢, which satisfies the
standard Wolfe line search conditions (4) and (5) without any safeguarding to the too large or too
small values of ¢, . A Fortran implementation of this algorithm is presented in Figure 2.

subroutine LSbis(n,x,f,d,gtd,alpha, xnew, fnew,gnew, fgcnt, nexp)

parameter (1a=50000)

double precision x(n), d(n), xnew(n), gnew(n)
double precision xtemp(ia), ftemp, gtemp (ia)
double precision £, fnew, gtd, gtdl

double precision alpha, alphalow, alphahigh
integer fgcnt, nexp, ils

c alpha = 1.d0
alphalow = 0.d0
alphahigh = 0.d0
c Parameters in Wolfe line search (cwl=rho, cw2=sigma)
cwl = 0.0001d0
cw2 = 0.8d0
c ils is the number of iterations in this procedure.
C It is limited to 20.
ils = 0
10 continue

ils = ils + 1
if(ils .gt. 20) return

do i=1,n
xtemp (i) = x(i) + alpha*d(i)
end do
call evalfg(n,xtemp, ftemp,gtemp, nexp)
fgent = fgent + 1

c Test the first Wolfe line search
if(ftemp .le. f + cwl*alpha*gtd) then
go to 50

else

alphahigh = alpha
alpha = (alphalow + alphahigh)/2.d0
go to 10

end if

50 continue

gtdl = 0.d0
do i=1,n

gtdl = gtdl + gtemp (i) *d (i)
end do

c Test the second Wolfe line search
if (gtdl .ge. cw2*gtd) then
go to 100
else
alphalow = alpha
if (alphahigh .eq. 0.d0) alpha
if (alphahigh .gt. 0.d0) alpha
end if

2.d0*alphalow
(alphalow+alphahigh) /2.d0

go to 10
100 continue

C Compute: xnew, fnew and gnew as the outputs of the subroutine
do i=1,n



xnew (i) = x(i) + alpha*d(i)
end do
call evalfg(n,xnew, fnew,gnew, nexp)
fgent = fgent + 1

return
end

Fig. 2. Subroutine LShis which generate stepsizes satisfying the standard Wolfe line
search with a simple bisection method.

For calling this subroutine a value for alpha must be given in its input. A possibility is to
consider alpha=1. (Observe that this line is under comment.) In our numerical experiment we

considered alpha = alpha * dnormprev / dnorm, where dnormprev = ||dk—1||2

and dnorm = ||d|.

4. Numerical experiments

In this section, let us report some numerical results obtained with a Fortran implementation of the
accelerated conjugate gradient algorithms in which the stepsize is computed by using the standard
Wolfe line search with cubic interpolation (see Figure 1) or by using the standard Wolfe line
search with a simple bisection method (see Figure 2).

All algorithms have been coded in double precision Fortran and compiled with 77 (default
compiler settings) and run on an Intel Pentium 4, 1.8 GHz workstation. The test functions are
from the UOP collection (Andrei, 2018), which includes 80 functions. For each test function ten
numerical experiments with the number of variables n=1000,2000,...,10000 have been

considered, thus obtaining a number of 800 problems.
The algorithms compared in these numerical experiments find local solutions. Therefore, the

comparisons of the algorithms are given in the following context. Let f*°* and f"°* be the
optimal value found by ALG1 and ALG2 for problem i=1,...,800, respectively. We say that, in
the particular problem i, the performance of ALG1 was better than the performance of ALG2 if

‘ fi ALG1 _ fiALGZ <1073 (14)

and if the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the
CPU time of ALGL1 was less than the number of iterations, or the number of function-gradient
evaluations, or the CPU time corresponding to ALG2, respectively.

The iterations are stopped if the inequality ||g, | <107 is satisfied, where || is the maximum

absolute component of a vector. All algorithms implement the standard Wolfe line search (4) and
(5), where p=0.0001 and o =0.8. The maximum number of iterations was limited to 2000.

In the first set of numerical experiments the Hestenes-Stiefel (Hestenes & Stiefel, 1952)
conjugate gradient algorithm, in which the conjugate gradient parameter is computed as

kHS = 9:+1Yk / yldk, (15)

is considered, where vy, =g,,, —0,. For this set of numerical experiments the total number of
iterations, the total number of function and its gradient evaluations and the total CPU computing



time for solving this set of 800 unconstrained optimization problems using HS algorithm with
these line search procedures are as in Table 1.

Table 1
HS with Cubic Wolfe Line Search (HSCLYS)

Grand Total iterations = 291234
Grand Total FG evaluations = 705103
Grand Total time (seconds) = 460.74

HS with Simple Bisection Wolfe Line Search (HSSBLS)

Grand Total iterations = 359027
Grand Total FG evaluations = 3100101
Grand Total time (seconds) = 1666.81

To compare the performances of algorithms, the Dolan and Mor¢é (2002) performance profiles are
used. Figure 3 presents these performance profiles subject to the CPU time metric.

1 T T T I I I I
HS with cubic Wolfe Line search (HSCLS)

09r -
/"’ HS with simple bisection Wolfe
el Line search (HSSBLS)
08F ! -
¥
¥
’I
o 07r  F HSCLS HSSBLS = -
! #iter 449 102 221
! #fg 713 58 1
06 1 cpu 450 109 213 T

CPU time metric, 772 problems

i
)
i
I
05}/ .
!
)
0
r

04 | | | | 1 1 |
2 4 6 8 10 12 14 16

T

Fig. 3. Performance profiles of HS with cubic Wolfe line search versus
HS with simple bisection Wolfe line search.

Comparing HSCLS versus HSSBLS (see Figure 3) subject to the number of iterations, we see that
HSCLS was better in 449 problems (i.e. it achieved the minimum number of iterations in 449
problems), while HSSBLS was better only in 102 problems. Out of 800 problems considered in
this set of numerical experiments, only for 772 problems did the criterion (14) hold. At the same
time observe that HSCLS was faster for solving 450 problems. On the other hand, HSSBLS was
faster only for solving 109 problems.

10



In the second set of numerical experiments let us consider the PRP+ conjugate gradient (Polak &
Ribicre, 1969), (Polyak, 1969), where the conjugate gradient parameter is computed as

In this case the total number of iterations, the total number of function and its gradient
evaluations and the total CPU computing time for solving this set of 800 unconstrained

ﬁkPRm = max{0, ngYk /g-krgk}'

(16)

optimization problems using PRP+ algorithm with these line search procedures are as in Table 2.

Table 2
PRP+ with Cubic Wolfe Line Search (PRPCLYS)
Grand Total iterations 408895
Grand Total FG evaluations 721314
Grand Total time (seconds) 609.68

PRP+ with Simple Bisection Wolfe Line Search (PRPSBLS)

362910
3128826
2053.80

Grand Total iterations
Grand Total FG evaluations
Grand Total time (seconds)

Figure 4 presents the Dolan and Mor¢é performance profiles of these algorithms subject to the
CPU time metric.

16

ﬁRP+ with cubic Wolfe Line search (PRPCLS) _|
09 """ PRP+ with simple Bisection Wolfe
H Line search (PRPSBLS)
08t i .
FJ
I
I
07t :
0 H PRPCLS PRPSBLS =
06 H #iter 413 72 198
S #fg 631 50 2 |
H cpu 410 67 206
05] .
]
i
F
04 r a
CPU time metric, 683 problems
2 y 5 5 10 12 14

T

Fig. 4. Performance profiles of PRP+ with cubic Wolfe line search versus
PRP+ with simple bisection Wolfe line search.

Comparing PRPCLS versus PRPSBLS (see Figure 4) subject to the number of iterations, we see
that PRPCLS was better in 413 problems, while PRPSBLS was better in 72 problems, etc. Out of

11



800 problems considered in this set of numerical experiments, only for 683 problems did the
criterion (14) hold. Observe that PRPCLS was faster for solving 410 problems, but PRPSBLS
was faster only for solving 67 problems. Obviously, a more advanced line search procedure for
computing the stepsize in conjugate gradient algorithms is more benefic.

In the third set of numerical experiments the DY conjugate gradient method is considered (Dai &
Yuan, 1999), where the conjugate gradient parameter is computed as

kDY = 9I+1gk+1/y|1dk- (17)

Table 3 presents the global performances of DY for solving this set of problems.

Table 3
DY with Cubic Wolfe Line Search (DYCLYS)

Grand Total iterations = 288388
Grand Total FG evaluations = 713280
Grand Total time (seconds) = 415.74

DY with Simple Bisection Wolfe Line Search (DYSBLS)

Grand Total iterations = 374945
Grand Total FG evaluations = 3289585
Grand Total time (seconds) = 1916.05

Figure 5 presents the Dolan and Moré performance profiles of these algorithms.

1 T T T I I I I
/_’Wwith cubic Wolfe Line search (DYCLS) ___
09! T :
/,- DY with simple Bisection Wolfe
i Line search (DYSBLS)
081 F; ]
!J'
’!
07} ': _
o H DYCLS DYSBLS =
06l 1 #iter 441 100 224 4
! #fg 700 64 1
H cpu 486 70 209
05F+f _
!
I
04l i
CPU time metric, 765 problems
2 4 6 8 10 12 14 16

T

Fig. 5. Performance profiles of DY with cubic Wolfe line search versus
DY with simple bisection Wolfe line search.

12



The percentage of problems for which an algorithm is the best is given on the left side of the plot.
On the other hand, the right side of the plot gives the percentage of the problems that are
successfully solved. In other words, for a given algorithm, the plot for =1, represents the
fraction of problems for which the algorithm was the most efficient over all algorithms. The plot
for 7 =0 represents the fraction of problems solved by the algorithm irrespective of the required
effort. Therefore, the plot for =1 is associated to the efficiency of the algorithm, while the plot
for =00 is associated to the robustness of the algorithm. Observe that the conjugate gradient
algorithms with standard Wolfe line search using the cubic interpolation are more efficient and
more robust than the same algorithms using a simple bisection Wolfe line search.

5. Conclusion
Conjugate gradient methods are very sensitive to the procedure for computing the stepsize ¢, .

More advanced procedures for stepsize computation in conjugate gradient methods, more
efficient and more robust algorithms. In conjugate gradient methods computing the search
direction d, is very simple, the difficulty is determination of the stepsize ¢,. In this technical

report we compared two implementations of the standard Wolfe line search in the frame of
conjugate gradient methods. One, very sophisticated, using cubic interpolation with safeguarding
the values of ¢,, and another one very simple based on the bisection method. The convergence

of the Wolfe line search with simple bisection algorithm (see Theorem 2) is only linear. Its
efficiency is very modest.

It is remarkable to notice that even if the conjugate gradient methods are implemented using the
acceleration scheme (see Andrei (2020), chapter 5) which modifies the stepsize determined by the
Wolfe line search conditions in a multiplicative manner, this does not eliminate the efforts to
compute a stepsize as accurate as possible to get efficient and robust algorithms. The procedure
for stepsize computation is a critical point in conjugate gradient methods.

The determination of the stepsize continue to be a very intensive research activity. Some other
algorithms for stepsize determination are described by Hager and Zhang (2005), Dai and Kou
(2013), Zhang and Hager (2004), Gu and Mo (2008), Ou and Liu (2017). No comparisons among
these line search algorithms are known.

References

1. Andrei, N., (2020). Nonlinear Conjugate Gradient Methods for Unconstrained Optimization.
Springer Optimization and Its Applications, vol. 158, Springer.

2. Shanno, D.F., (1983). CONMIN — A Fortran subroutine for minimizing an unconstrained
nonlinear scalar valued function of a vector variable x either by the BFGS variable metric
algorithm or by a Beale restarted conjugate gradient algorithm. Private communication,
October 17, 1983.

3. Dennis, J.E., & Schnabel, R.B., (1983). Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall, Englewoods Cliffs, New Jersey. [Reprinted as
Classics in Applied Mathematics 16, SIAM, Philadelphia, USA, 1996.]

. Andrei, N., (2018). UOP - A collection of 80 unconstrained optimization test problems.
(Technical Report No. 7/2018, November 17, Research Institute for Informatics, Bucharest,
Romania).

5. Hestenes, M.R., & Stiefel, E., (1952). Methods of conjugate gradients for solving linear

systems. Journal of Research of the National Bureau of Standards, 49, 409-436.

6. Dolan, E.D., & Moré, J.J., (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming, 91, 201-213.

7. Polak, E., & Ribiére, G., (1969). Note sur la convergence de méthods de direction conjugées.

Revue Francaise d’Informatique et de Recherche Opérationnelle, 16, 35-43.

o

13



8. Polyak, B.T., (1969). The conjugate gradient method in extremal problems. USSR
Computational Mathematics and Mathematical Physics, 9, 94-112.
9. Dai, Y.H., & Yuan, Y., (1999). A nonlinear conjugate gradient method with strong global
convergence property. SIAM Journal on Optimization, 10, 177-182.
10. Hager, W.W., & Zhang, H., (2005). A new conjugate gradient method with guaranteed
descent and an efficient line search. SIAM Journal on Optimization, 16, 170-192.
11. Dai, Y.H., & Kou, C.X., (2013). A nonlinear conjugate gradient algorithm with an optimal
property and an improved Wolfe line search. SIAM Journal on Optimization, 23(1) 296-
320.
12. Zhang, H., & Hager, W.W., (2004). A nonmonotone line search technique and its application
to unconstrained optimization. SIAM Journal on Optimization, 14, 1043-1056.
13. Gu, N.Z. & Mo, J.T., (2008). Incorporating nonmonotone strategies into the trust region
method for unconstrained optimization, Computers and Mathematics with Applications,
55, 2158-2172.
14. Ou, Y., & Liu, Y., (2017). A memory gradient method based on the honmonotone technique.
Journal of Industrial and Management Optimization, 13(2), 857-872.

14



