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Abstract. It is known that the conjugate gradient methods are very sensitive to the stepsize 

computation. This technical report presents some numerical results of HS (Hestenes-Stiefel), 

PRP+ (Polak-Ribière-Polyak) and DY (Dai-Yuan) conjugate gradient methods implemented 

with two procedures for stepsize computation. The first one implements the standard Wolfe 

line search with cubic interpolation. The second one implements the standard Wolfe line 

search with a simple bisection method. Intensive numerical experiments with 800 

unconstrained optimization problems, with the number of variables in the range [1000, 

10000], show that the performances of conjugate gradient methods are very dependent by the 

procedure for stepsize computation. Particularly, all these conjugate gradient methods 

equipped with cubic Wolfe line search is way more efficient and more robust.   

 

 

1. Introduction 
For solving the problem 

 

                                                                      min ( ),f x                                                                  (1) 

 

where : nf   is a continuously differentiable function lower bounded and nx , the 

conjugate gradient methods are defined by the following algorithm: 

 

                                                     1 ,k k k kx x d      0,1, ,k                                                    (2) 

 

where kd  is the search direction computed as 

 

                                                     1 ,k k k kd g d      0,1, ,k                                                  (3) 

 

with 0 0.d g   In (3) k  is a scalar known as the conjugate gradient parameter defined by 

different formulae involving some elements of the algorithm and ( ).k kg f x   The search 

direction ,kd  assumed to be a descent one, plays the main role in these methods. On the other 

hand, the stepsize k  guarantees the global convergence in some cases and is crucial in 
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efficiency. For nonlinear functions different parameters k  determine conjugate gradient 

algorithms with different performances. Details on conjugate gradient methods including their 

definition and properties, as well as their performances for solving a large class of unconstrained 

optimization problems with different structures and complexities are presented in Andrei (2020). 

 

It is known that in conjugate gradient algorithms, the search directions tend to be poorly scaled 

and consequently the line search must perform more function evaluations in order to obtain a 

suitable stepsize .k  In conjugate gradient methods, the stepsizes differ from 1 in a very 

unpredictable way. They can be larger or smaller than 1, depending on how the problem is scaled. 

This is in very sharp contrast to the Newton and the quasi-Newton methods, including the limited 

memory quasi-Newton methods, which accept the unit stepsize most of the time along the 

iterations and therefore they usually require only few function evaluations per search direction. In 

this technical report we are interested to see the performances of the conjugate gradient methods 

subject to different procedures for stepsize k  computation. In the following we consider two 

procedures for computing the stepsize .k  Both of them implement the standard Wolfe line 

search: 

                                                 ( ) ( ) ,T

k k k k k k kf x d f x g d                                                (4) 

                                                 1 ,T T

k k k kg d g d                                                                           (5) 

 

where 0 1/ 2 1.      The first Wolfe condition (4) is called the sufficient reduction of the 

minimizing function values, which ensures a sufficient reduction of function values. The second 

Wolfe condition (5) is the curvature condition, which ensures unacceptable short stepsizes. The 

first procedure for computing the stepsize k  implements the Wolfe line search conditions (4) 

and (5) with cubic interpolation. The second procedure implements the Wolfe line search 

conditions (4) and (5) with a simple bisection method. The following theorem proves that there 

exists a value k  satisfying both Wolfe line search conditions (4) and (5).  

 

Theorem 1. Suppose that the function f  is continuously differentiable. Let kd  be a descent 

direction at point kx  and assume that f  is bounded from below along the ray 

{ : 0}.k kx d    Then, if 0 1,     there exists an interval of stepsizes   satisfying the 

Wolfe conditions. 

 

Proof Let us define ( ) ( ).k kf x d     Since ( )   is bounded from below for all 0,   the 

line ( ) ( ) ( )T
k k kl f x f x d     must intersect the graph of   at least once. Let 0   be the 

smallest intersection value of ,  i.e. 

 

                             ( ) ( ) ( ) ( ) ( ) .T T
k k k k k k k kf x d f x f x d f x f x d                                 (6) 

 

Hence, a sufficient decrease holds for all 0 .    

Now, by the mean value theorem, there exists (0, )    so that 

 

                                            ( ) ( ) ( ) .T
k k k k k kf x d f x f x d d                                            (7) 

 

Since    and ( ) 0,T
k kf x d   from (6) and (7) we get 
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                                         ( ) ( ) ( ) .T T T
k k k k k k kf x d d f x d f x d                                       (8) 

 

Therefore,   satisfies the Wolfe line search conditions (4) and (5) and the inequalities are strict. 

By smoothness assumption on ,f  there is an interval around   for which the Wolfe conditions 

hold.                                                                                                                                                  ♦ 

 

The structure of this technical report is as follows. Section 2 is dedicated to present an 

implementation of Wolfe line search with cubic interpolation. Section 3 presents an 

implementation of Wolfe line search with bisection method. Section 4 illustrates the 

performances of some conjugate gradient methods with these two procedures for stepsize 

computation based on the Wolfe line search (4) and (5). 

 

2. Wolfe line search with cubic interpolation 
In the following, let us describe a variant of a line search procedure which is simple enough to 

generate safeguarded stepsizes satisfying the standard Wolfe conditions (4) and (5) (see Shanno, 

1983). Suppose that we are at the iteration .k  To have a simple interpretation of the procedure 

and a clear description, a Fortran version of it is presented in Figure 1. The inputs of this 

procedure are: n  the number of variables, kx x  a vector with the current values of variables, 

( )kf f x  the value of the minimizing function in ,x  kd d  the current search direction, 

( )T
k kgtd f x d   the scalar product of the current gradient and the search direction, 

kdnorm d  the 2l -norm of the search direction. The outputs of the procedure are: kalpha   

the stepsize satisfying the standard Wolfe line search conditions, 1k k k kxnew x x d    the 

new point, 1( )kfnew f x   the function value in new point, 1( )kgnew f x   the gradient of the 

minimizing function in the new point, fgcnt  the number of function and its gradient calls, lscnt  

indicates that the line search procedure performed a number of iterations, lsflag  indicates that the 

number of iterations in the line search procedure is greater than a prespecified threshold.  

 

 

      subroutine LineSearch (n,x,f,d,gtd,dnorm,alpha,xnew,fnew,gnew, 

     +                       fgcnt,lscnt,lsflag) 

 

C     SCALAR ARGUMENTS 

      integer n,fgcnt,lscnt,lsflag 

      double precision f,gtd,dnorm,alpha,fnew 

C     ARRAY ARGUMENTS 

      double precision x(n),d(n),xnew(n),gnew(n) 

C     LOCAL SCALARS 

      integer i,lsiter, max$ls 

      double precision alphap,alphatemp,fp,dp,gtdnew,a,b 

      common/acca/epsm 

 

      lsflag = 0                    

* Maximum number of iterations in LineSearch is max$ls (now is 20)      

      max$ls=20             

       

      alphap = 0.0d0 

      fp     = f 

      dp     = gtd 

 

      do i = 1,n 

        xnew(i) = x(i) + alpha * d(i) 

      end do 

c1 

      call evalfg(n,xnew,fnew,gnew) 

      fgcnt = fgcnt + 1 
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      gtdnew = 0.0d0 

      do i = 1,n 

        gtdnew = gtdnew + gnew(i) * d(i) 

      end do 

 

      lsiter = 0                                           

 

 10   if ( alpha * dnorm .gt. 1.0d-30 .and. lsiter .lt. max$ls .and. 

     +     .not. ( gtdnew .eq. 0.0d0 .and. fnew .lt. f ) .and. 

     +     ( ( fnew .gt. f + 1.0d-04 * alpha * gtd .or.  

     +     dabs( gtdnew / gtd ) .gt. 0.9d0 ) .or. ( lsiter .eq. 0 .and. 

     +     dabs( gtdnew / gtd ) .gt. 0.5d0 ) ) ) then 

 

 20       if ( alpha * dnorm .gt. 1.0d-30 .and. fnew .gt. f .and. 

     +         gtdnew .lt. 0.0d0 ) then 

 

              alpha = alpha / 3.0d0 

              do i = 1,n 

                xnew(i) = x(i) + alpha * d(i) 

              end do 

c2 

              call evalfg(n,xnew,fnew,gnew) 

              fgcnt = fgcnt + 1 

              gtdnew = 0.0d0 

              do i = 1,n 

                gtdnew = gtdnew + gnew(i) * d(i) 

              end do 

              alphap = 0.0d0 

              fp     = f 

              dp     = gtd 

              goto 20 

          end if 

                  

          a = dp + gtdnew - 3.0d0 * ( fp - fnew ) / ( alphap - alpha ) 

          b = a ** 2 - dp * gtdnew 

          if ( b .gt. epsm ) then 

              b = sqrt( b ) 

          else 

              b = 0.0d0 

          end if 

 

          alphatemp = alpha - ( alpha - alphap ) * ( gtdnew + b - a ) / 

     +                ( gtdnew - dp + 2.0d0 * b ) 

 

          if ( gtdnew / dp .le. 0.0d0 ) then 

              if ( 0.99d0 * dmax1( alpha, alphap ) .lt. alphatemp .or. 

     +            alphatemp .lt. 1.01d0 * dmin1( alpha, alphap ) ) then 

                  alphatemp = ( alpha + alphap ) / 2.0d0 

              end if 

          else 

              if ( gtdnew .lt. 0.0d0 .and.  

     +            alphatemp .lt. 1.01d0 * dmax1( alpha, alphap ) ) then 

                  alphatemp = 2.0d0 * dmax1( alpha, alphap ) 

              end if 

              if ( ( gtdnew .gt. 0.0d0 .and. 

     +            alphatemp .gt. 0.99d0 * dmin1( alpha, alphap ) ) .or. 

     +            alphatemp .lt. 0.0d0 ) then 

                  alphatemp = dmin1( alpha, alphap ) / 2.0d0 

              end if 

          end if 

 

          alphap = alpha 

          fp     = fnew 

          dp     = gtdnew 

          alpha = alphatemp 

          do i = 1,n 

            xnew(i) = x(i) + alpha * d(i) 

          end do 

c3 

          call evalfg(n,xnew,fnew,gnew) 
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          fgcnt = fgcnt + 1 

          gtdnew = 0.0d0 

          do i = 1,n 

            gtdnew = gtdnew + gnew(i) * d(i) 

          end do 

 

          lsiter = lsiter + 1 

 

      goto 10 

      end if 

 

      if ( lsiter .ge. max$ls ) then 

          lsflag = 1 

      end if 

      if ( lsiter .ne. 0 ) then 

          lscnt = lscnt + 1 

      end if 

 

      return 

      end 

Fig. 1. Subroutine LineSearch which generate safeguarded stepsizes satisfying the standard Wolfe line 

search with cubic interpolation 

 

 

In Figure 1, max$ls is the maximum number of iterations in the line search procedure, epsm is 

the epsilon machine and evalfg(n,xnew,fnew,gnew) is the subroutine implementing the 

algebraic expressions of the minimizing function and its gradient. In input, this subroutine has: n 

as the number of variables and xnew as the new point. In output, it computes: fnew as the value 

of function f in the new point and gnew as the gradient of f  in the new point.  

We see that a line search procedure is complicated and to be reliable it must incorporate a lot of 

features. Firstly, observe that the standard Wolfe conditions are implemented in a complicated 

form, which takes into consideration both the ratio between the rate of decrease of f  in the 

direction kd  at the new point and the rate of decrease in the direction kd  at the current point ,kx  

and also some precautions to avoid too small or too large values of the stepsize. Observe that in 

the selection phase of the procedure, the cubic interpolation is used. Cubic interpolation provides 

a good model for the minimizing function in the searching interval. Suppose we have an interval 

[ , ]a b  containing the desirable stepsize and two previous stepsizes estimates 1i   and i  in this 

interval. The algorithm uses a cubic function to interpolate the values, 1( ),k i    ( ),k i   

1( )k i  
  and ( ),k i   where ( ) ( ).k k kf x d     The minimizer of this cubic function in 

[ , ],a b  that is a new estimation of the stepsize, is either at one of the endpoints or in the interior, 

case in which it is given by  

 

                                         1 1

1

( )
( ) ,

( ) ( ) 2

k i
i i i i

k i k i

b a

b

 
   

   
 



   
    

   
                                   (9) 

where 

                                          1
1

1

( ) ( )
( ) ( ) 3 ,k i k i

k i k i

i i

a
   

   
 







   


                                      (10)       

                                           
1/2

2
1( ) ( ) .k i k ib a    

                                                                (11) 

 

In Figure 1 the new estimate 1i   is computed as alphatemp. The interpolation process can be 

repeated by discarding the data at one of the stepsizes 1i   or i  and replacing it by 1( )k i    and 
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1( ).k i  
  Observe that the interpolation step that determines a new estimation to the stepsize is 

safeguarded in order to ensure that the new stepsize is not too close to the endpoints of the 

interval. Some more details may be found, for example, in (Dennis & Schnabel, 1983), (Shanno, 

1983). 

 

3. Wolfe line search with a simple bisection method 
The bisection method is a simple method to find a zero of a continuous function for which two 

values of opposite sign are known. To determine a stepsize k  which satisfies the Wolfe line 

search conditions (4) and (5) the following simple algorithm based on bisection concept may be 

used. 

 

Algorithm WSB. 

Step 1. Choose 0k   and set 0.low high
k k    

Step 2. If k  satisfies (4), then go to Step 4. 

Step 3. Else (if k  do not satisfy (4)), then set: high
k k   and ( ) / 2low high

k k k      

            and go to Step 2.   

Step 4. If k  satisfies (5), then stop. 

Step 5. Otherwise (if k  do not satisfy (5)), then set: low
k k   and  

2 , 0,

( ) / 2, 0,

low high
k k

k low high high
k k k

if

if

 


  

 
 

 

 

             and go to Step 2.   ♦ 

 

For the very beginning let us proof that the above algorithm WSB determines a value for k  

which satisfy both the Wolfe line search conditions (4) and (5) in a finite number of steps. 

 

Theorem 2. Suppose that the function f  is continuously differentiable on n  and bounded 

below on the half-line { : 0}.k kx d    Then, the algorithm WSB terminates in finite time and 

generates a value for k  that satisfies Wolfe conditions (4) and (5). 

 

Proof Let us define ( ) ( )k kf x d     and introduce the following two sets: 

 

1 { 0 :S    (4) holds}, 

                                                           2 { 0 :S    (5) holds}. 

 

Observe that both 1S  and 2S  are closed in .  Moreover, for   sufficiently small, because   

is continuous and 1,   

0 0

( ) (0) ( ) (0) (0) .d d

 

               

 

Therefore, there exists 1 0   such that 1 1[0, ] ,S   i.e. there exists 0   satisfying the first 

Wolfe condition (4). Now, consider the second Wolfe condition (5).  Let 0   and two 

sequences ,[ ]
1{ }low i

k S   and ,[ ]
2{ }high i

k S   be such that  
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                                             ,[ ]low i
k     for any ,i   ,[ ] ,low i

k
i

 

                                       (12) 

                                             ,[ ]high i
k     for any ,i   ,[ ] .high i

k
i

 

                                      (13) 

 

With this let us prove that 2.S  For this assume that 2S  and hence ( ) (0).     Then, 

since   is continuous and ,   there exists a value 2 0   such that for any 2[0, ]   it 

follows that ( ) (0).       Therefore, for all 2[0, ]  , it follows that 

 

( ) ( ) ( ) (0) ( ) (0).d

 



           



        

 

But, since ,[ ]high i
k  converges to   from the right, it follows that there exists an index j  large 

enough so that ,[ ]
2[ , ],high j

k      thus contradicting the assumption that ,[ ]
1.

high j
k S   

Therefore, 2.S  

Now, let us prove that the algorithm terminates in finite time. If the algorithm terminates 

in a finite time, then k  generated by it satisfies both Wolfe line search conditions. For this let us 

define ,[ ],low i
k  ,[ ]high i

k  and [ ]i
k  as the values of ,low

k  high
k  and k  at the beginning of iteration 

i  of the algorithm. The following properties can be observed: 

1) Observe that for all i  it is impossible that ,[ ] 0.low i
k   This is because in this case 

[ ] [0]2 ,i i
k k   and hence [ ]

1[0, ]i
k   and low

k  is updated to [ ] 0i
k   (see Step 5 of the 

algorithm). 

2) The sequence ,[ ]{ }low i
k  is an increasing one in 1S  such that for all ,i  ,[ ] [ ].low i i

k k   low
k  can 

only be updated in Step 5 of the algorithm WSB. It will be increased to the strictly larger value 
,[ 1] [ ]low i i

k k    and as we can see in Step 5 of the algorithm [ 1]i
k
  takes on a strictly larger value 

than [ ]i
k . 

3) Initially, for a few iterations ,[ ] 0.high i
k   But, once it takes on a value 0[ ]

0
i

k   at some 

iteration 0 ,i  then this can only happen in Step 3 of the algorithm WSB. Starting with the iteration 

0i , the elements of the sequence ,[ ]high i
k  with 0i i  decrease in 1,S  because high

k  is only updated 

in Step 3 of the algorithm to a value of k  that is strictly smaller than ,high
k  and k  is itself 

updated to a strictly smaller value. 

4) All in all only two possibilities can appear: Either ,[ ] 0high i
k   for all ,i  and then 

,[ ] 1 [0]2low i i
k k   for all ,i  in which case the algorithm WSB finds that the function f  is 

unbounded. However, this case must be excluded since in the assumptions of theorem f  is 

bounded. Or, there exists an index 0i   such that 0,[ ]
0,

high i
k   and therefore 

[ ] ,[ ] ,[ ]( ) / 2,i low i high i
k k k     the sequence ,[ ]{ }low i

k  is increasing, the sequence ,[ ]{ }high i
k  is 

decreasing and the interval ,[ ] ,[ ][ , ]low i high i
k k   is halved in length in every iteration. Therefore, it 

follows that ,[ ]low i
k  converges to a point k  from 1S  and ,[ ]high i

k  converges to the same point in 

1.S  In conclusion 1 2.k S S    Therefore, ,[ ]
1 2

low i
k S S    for i  sufficiently large, proving that 

the algorithm terminates with this value.                                                                                          ♦ 
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Observe that this is a very simple procedure for computing a value of k  which satisfies the 

standard Wolfe line search conditions (4) and (5) without any safeguarding to the too large or too 

small values of .k  A Fortran implementation of this algorithm is presented in Figure 2. 

 
 subroutine LSbis(n,x,f,d,gtd,alpha,xnew,fnew,gnew,fgcnt, nexp) 

 

 parameter(ia=50000) 

 double precision x(n), d(n), xnew(n), gnew(n) 

 double precision xtemp(ia), ftemp, gtemp(ia) 

 double precision f, fnew, gtd, gtd1 

 double precision alpha, alphalow, alphahigh 

 integer fgcnt, nexp, ils 

 

c alpha     = 1.d0 

 alphalow  = 0.d0 

 alphahigh = 0.d0 

 

c Parameters in Wolfe line search (cw1=rho, cw2=sigma) 

 cw1 = 0.0001d0 

 cw2 = 0.8d0 

 

c ils is the number of iterations in this procedure. 

C It is limited to 20. 

 ils = 0 

 

10 continue 

 ils = ils + 1 

 if(ils .gt. 20) return 

 

 do i=1,n 

   xtemp(i) = x(i) + alpha*d(i) 

 end do 

 call evalfg(n,xtemp,ftemp,gtemp, nexp) 

 fgcnt = fgcnt + 1 

 

c Test the first Wolfe line search 

 if(ftemp .le. f + cw1*alpha*gtd) then 

   go to 50 

 

 else 

 

   alphahigh = alpha 

   alpha = (alphalow + alphahigh)/2.d0 

   go to 10 

 end if 

 

50 continue 

 

 gtd1 = 0.d0 

 do i=1,n 

   gtd1 = gtd1 + gtemp(i)*d(i) 

 end do 

 

c Test the second Wolfe line search 

 if(gtd1 .ge. cw2*gtd) then 

   go to 100 

 else 

   alphalow = alpha 

   if(alphahigh .eq. 0.d0) alpha = 2.d0*alphalow 

   if(alphahigh .gt. 0.d0) alpha = (alphalow+alphahigh)/2.d0 

 end if 

 

 go to 10 

 

100 continue 

 

C Compute: xnew, fnew and gnew as the outputs of the subroutine 

 do i=1,n 
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   xnew(i) = x(i) + alpha*d(i) 

 end do 

 call evalfg(n,xnew,fnew,gnew, nexp) 

 fgcnt = fgcnt + 1 

  

 return 

 end 

Fig. 2. Subroutine LSbis which generate stepsizes satisfying the standard Wolfe line  

search with a simple bisection method. 

 

 

For calling this subroutine a value for alpha must be given in its input. A possibility is to 

consider alpha=1. (Observe that this line is under comment.) In our numerical experiment we 

considered alpha = alpha * dnormprev / dnorm, where dnormprev = 1 2kd   

and dnorm = .kd  

 

4. Numerical experiments 
In this section, let us report some numerical results obtained with a Fortran implementation of the 

accelerated conjugate gradient algorithms in which the stepsize is computed by using the standard 

Wolfe line search with cubic interpolation (see Figure 1) or by using the standard Wolfe line 

search with a simple bisection method (see Figure 2).  

 

All algorithms have been coded in double precision Fortran and compiled with f77 (default 

compiler settings) and run on an Intel Pentium 4, 1.8 GHz workstation. The test functions are 

from the UOP collection (Andrei, 2018), which includes 80 functions. For each test function ten 

numerical experiments with the number of variables 1000,2000,...,10000n   have been 

considered, thus obtaining a number of 800 problems.  

The algorithms compared in these numerical experiments find local solutions. Therefore, the 

comparisons of the algorithms are given in the following context. Let 1ALG

if  and 2ALG

if  be the 

optimal value found by ALG1 and ALG2 for problem 1, ,800,i   respectively. We say that, in 

the particular problem ,i  the performance of ALG1 was better than the performance of ALG2 if 

 

                                                                1 2 310ALG ALG

i if f                                                      (14) 

 

and if the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the 

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient 

evaluations, or the CPU time corresponding to ALG2, respectively.   

The iterations are stopped if the inequality 
610kg 


  is satisfied, where .


 is the maximum 

absolute component of a vector. All algorithms implement the standard Wolfe line search (4) and 

(5), where 0.0001   and 0.8.   The maximum number of iterations was limited to 2000. 

 

In the first set of numerical experiments the Hestenes-Stiefel (Hestenes & Stiefel, 1952) 

conjugate gradient algorithm, in which the conjugate gradient parameter is computed as  

 

                                                              1 / ,HS T T
k k k k kg y y d                                                       (15) 

 

is considered, where 1 .k k ky g g   For this set of numerical experiments the total number of 

iterations, the total number of function and its gradient evaluations and the total CPU computing 
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time for solving this set of 800 unconstrained optimization problems using HS algorithm with 

these line search procedures are as in Table 1. 

 
Table 1 

HS with Cubic Wolfe Line Search (HSCLS) 
      Grand Total iterations     =   291234 

      Grand Total FG evaluations =   705103 

     Grand Total time (seconds) =   460.74 

 

HS with Simple Bisection Wolfe Line Search (HSSBLS) 
      Grand Total iterations     =   359027 

      Grand Total FG evaluations =  3100101 

      Grand Total time (seconds) =  1666.81 

 

 

To compare the performances of algorithms, the Dolan and Moré (2002) performance profiles are 

used. Figure 3 presents these performance profiles subject to the CPU time metric.  

 

 
Fig. 3. Performance profiles of HS with cubic Wolfe line search versus  

HS with simple bisection Wolfe line search. 

 

 

Comparing HSCLS versus HSSBLS (see Figure 3) subject to the number of iterations, we see that 

HSCLS was better in 449 problems (i.e. it achieved the minimum number of iterations in 449 

problems), while HSSBLS was better only in 102 problems. Out of 800 problems considered in 

this set of numerical experiments, only for 772 problems did the criterion (14) hold. At the same 

time observe that HSCLS was faster for solving 450 problems. On the other hand, HSSBLS was 

faster only for solving 109 problems. 
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In the second set of numerical experiments let us consider the PRP+ conjugate gradient (Polak & 

Ribière, 1969), (Polyak, 1969), where the conjugate gradient parameter is computed as  

 

                                                     1max{0, / }.PRP T T
k k k k kg y g g 

                                               (16) 

 

In this case the total number of iterations, the total number of function and its gradient 

evaluations and the total CPU computing time for solving this set of 800 unconstrained 

optimization problems using PRP+ algorithm with these line search procedures are as in Table 2. 

 
Table 2 

PRP+ with Cubic Wolfe Line Search (PRPCLS) 
     Grand Total iterations     =   408895 

     Grand Total FG evaluations =   721314 

     Grand Total time (seconds) =   609.68 

 

PRP+ with Simple Bisection Wolfe Line Search (PRPSBLS) 
     Grand Total iterations     =   362910 

     Grand Total FG evaluations =  3128826 

     Grand Total time (seconds) =  2053.80 

 

Figure 4 presents the Dolan and Moré performance profiles of these algorithms subject to the 

CPU time metric. 

 
Fig. 4. Performance profiles of PRP+ with cubic Wolfe line search versus  

PRP+ with simple bisection Wolfe line search. 

 

 

Comparing PRPCLS versus PRPSBLS (see Figure 4) subject to the number of iterations, we see 

that PRPCLS was better in 413 problems, while PRPSBLS was better in 72 problems, etc. Out of 
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800 problems considered in this set of numerical experiments, only for 683 problems did the 

criterion (14) hold. Observe that PRPCLS was faster for solving 410 problems, but PRPSBLS 

was faster only for solving 67 problems. Obviously, a more advanced line search procedure for 

computing the stepsize in conjugate gradient algorithms is more benefic. 

In the third set of numerical experiments the DY conjugate gradient method is considered (Dai & 

Yuan, 1999), where the conjugate gradient parameter is computed as 

 

                                                            1 1 / .DY T T
k k k k kg g y d                                                        (17) 

 

Table 3 presents the global performances of DY for solving this set of problems. 

 
Table 3 

DY with Cubic Wolfe Line Search (DYCLS) 
Grand Total iterations     =   288388 

Grand Total FG evaluations =   713280 

Grand Total time (seconds) =   415.74 

 

DY with Simple Bisection Wolfe Line Search (DYSBLS) 
Grand Total iterations     =   374945 

Grand Total FG evaluations =  3289585 

Grand Total time (seconds) =  1916.05 

 

Figure 5 presents the Dolan and Moré performance profiles of these algorithms. 

 
Fig. 5. Performance profiles of DY with cubic Wolfe line search versus  

DY with simple bisection Wolfe line search. 
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The percentage of problems for which an algorithm is the best is given on the left side of the plot. 

On the other hand, the right side of the plot gives the percentage of the problems that are 

successfully solved. In other words, for a given algorithm, the plot for 1  , represents the 

fraction of problems for which the algorithm was the most efficient over all algorithms. The plot 

for     represents the fraction of problems solved by the algorithm irrespective of the required 

effort. Therefore, the plot for 1   is associated to the efficiency of the algorithm, while the plot 

for     is associated to the robustness of the algorithm.  Observe that the conjugate gradient 

algorithms with standard Wolfe line search using the cubic interpolation are more efficient and 

more robust than the same algorithms using a simple bisection Wolfe line search. 

 

5. Conclusion 

Conjugate gradient methods are very sensitive to the procedure for computing the stepsize .k  

More advanced procedures for stepsize computation in conjugate gradient methods, more 

efficient and more robust algorithms. In conjugate gradient methods computing the search 

direction kd  is very simple, the difficulty is determination of the stepsize .k  In this technical 

report we compared two implementations of the standard Wolfe line search in the frame of 

conjugate gradient methods. One, very sophisticated, using cubic interpolation with safeguarding 

the values of ,k  and another one very simple based on the bisection method. The convergence 

of the Wolfe line search with simple bisection algorithm (see Theorem 2) is only linear. Its 

efficiency is very modest.  

It is remarkable to notice that even if the conjugate gradient methods are implemented using the 

acceleration scheme (see Andrei (2020), chapter 5) which modifies the stepsize determined by the 

Wolfe line search conditions in a multiplicative manner, this does not eliminate the efforts to 

compute a stepsize as accurate as possible to get efficient and robust algorithms. The procedure 

for stepsize computation is a critical point in conjugate gradient methods. 

The determination of the stepsize continue to be a very intensive research activity. Some other 

algorithms for stepsize determination are described by Hager and Zhang (2005), Dai and Kou 

(2013), Zhang and Hager (2004), Gu and Mo (2008), Ou and Liu (2017). No comparisons among 

these line search algorithms are known. 
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