
 1

Efficiency and robustness of conjugate gradient

methods subject to the procedures for stepsize

computation

Neculai Andrei
Center for Advanced Modeling and Optimization,

Academy of Romanian Scientists,

54, Splaiul Independenţei, Sector 5,

Bucharest, ROMANIA

E-mail: neculaiandrei70@gmail.com

Technical Report 2/2021

January 11, 2021

Abstract. It is known that the conjugate gradient methods are very sensitive to the stepsize

computation. This technical report presents some numerical results of HS (Hestenes-Stiefel),

PRP+ (Polak-Ribière-Polyak) and DY (Dai-Yuan) conjugate gradient methods implemented

with two procedures for stepsize computation. The first one implements the standard Wolfe

line search with cubic interpolation. The second one implements the standard Wolfe line

search with a simple bisection method. Intensive numerical experiments with 800

unconstrained optimization problems, with the number of variables in the range [1000,

10000], show that the performances of conjugate gradient methods are very dependent by the

procedure for stepsize computation. Particularly, all these conjugate gradient methods

equipped with cubic Wolfe line search is way more efficient and more robust.

1. Introduction
For solving the problem

 min (),f x (1)

where : nf is a continuously differentiable function lower bounded and nx , the

conjugate gradient methods are defined by the following algorithm:

 1 ,k k k kx x d 0,1, ,k (2)

where kd is the search direction computed as

 1 ,k k k kd g d 0,1, ,k (3)

with 0 0.d g In (3) k is a scalar known as the conjugate gradient parameter defined by

different formulae involving some elements of the algorithm and ().k kg f x The search

direction ,kd assumed to be a descent one, plays the main role in these methods. On the other

hand, the stepsize k guarantees the global convergence in some cases and is crucial in

mailto:neculaiandrei70@gmail.com

 2

efficiency. For nonlinear functions different parameters k determine conjugate gradient

algorithms with different performances. Details on conjugate gradient methods including their

definition and properties, as well as their performances for solving a large class of unconstrained

optimization problems with different structures and complexities are presented in Andrei (2020).

It is known that in conjugate gradient algorithms, the search directions tend to be poorly scaled

and consequently the line search must perform more function evaluations in order to obtain a

suitable stepsize .k In conjugate gradient methods, the stepsizes differ from 1 in a very

unpredictable way. They can be larger or smaller than 1, depending on how the problem is scaled.

This is in very sharp contrast to the Newton and the quasi-Newton methods, including the limited

memory quasi-Newton methods, which accept the unit stepsize most of the time along the

iterations and therefore they usually require only few function evaluations per search direction. In

this technical report we are interested to see the performances of the conjugate gradient methods

subject to different procedures for stepsize k computation. In the following we consider two

procedures for computing the stepsize .k Both of them implement the standard Wolfe line

search:

 () () ,T

k k k k k k kf x d f x g d (4)

 1 ,T T

k k k kg d g d (5)

where 0 1/ 2 1. The first Wolfe condition (4) is called the sufficient reduction of the

minimizing function values, which ensures a sufficient reduction of function values. The second

Wolfe condition (5) is the curvature condition, which ensures unacceptable short stepsizes. The

first procedure for computing the stepsize k implements the Wolfe line search conditions (4)

and (5) with cubic interpolation. The second procedure implements the Wolfe line search

conditions (4) and (5) with a simple bisection method. The following theorem proves that there

exists a value k satisfying both Wolfe line search conditions (4) and (5).

Theorem 1. Suppose that the function f is continuously differentiable. Let kd be a descent

direction at point kx and assume that f is bounded from below along the ray

{ : 0}.k kx d Then, if 0 1, there exists an interval of stepsizes satisfying the

Wolfe conditions.

Proof Let us define () ().k kf x d Since () is bounded from below for all 0, the

line () () ()T
k k kl f x f x d must intersect the graph of at least once. Let 0 be the

smallest intersection value of , i.e.

 () () () () () .T T
k k k k k k k kf x d f x f x d f x f x d (6)

Hence, a sufficient decrease holds for all 0 .

Now, by the mean value theorem, there exists (0,) so that

 () () () .T
k k k k k kf x d f x f x d d (7)

Since and () 0,T
k kf x d from (6) and (7) we get

 3

 () () () .T T T
k k k k k k kf x d d f x d f x d (8)

Therefore, satisfies the Wolfe line search conditions (4) and (5) and the inequalities are strict.

By smoothness assumption on ,f there is an interval around for which the Wolfe conditions

hold. ♦

The structure of this technical report is as follows. Section 2 is dedicated to present an

implementation of Wolfe line search with cubic interpolation. Section 3 presents an

implementation of Wolfe line search with bisection method. Section 4 illustrates the

performances of some conjugate gradient methods with these two procedures for stepsize

computation based on the Wolfe line search (4) and (5).

2. Wolfe line search with cubic interpolation
In the following, let us describe a variant of a line search procedure which is simple enough to

generate safeguarded stepsizes satisfying the standard Wolfe conditions (4) and (5) (see Shanno,

1983). Suppose that we are at the iteration .k To have a simple interpretation of the procedure

and a clear description, a Fortran version of it is presented in Figure 1. The inputs of this

procedure are: n the number of variables, kx x a vector with the current values of variables,

()kf f x the value of the minimizing function in ,x kd d the current search direction,

()T
k kgtd f x d the scalar product of the current gradient and the search direction,

kdnorm d the 2l -norm of the search direction. The outputs of the procedure are: kalpha

the stepsize satisfying the standard Wolfe line search conditions, 1k k k kxnew x x d the

new point, 1()kfnew f x the function value in new point, 1()kgnew f x the gradient of the

minimizing function in the new point, fgcnt the number of function and its gradient calls, lscnt

indicates that the line search procedure performed a number of iterations, lsflag indicates that the

number of iterations in the line search procedure is greater than a prespecified threshold.

 subroutine LineSearch (n,x,f,d,gtd,dnorm,alpha,xnew,fnew,gnew,

 + fgcnt,lscnt,lsflag)

C SCALAR ARGUMENTS

 integer n,fgcnt,lscnt,lsflag

 double precision f,gtd,dnorm,alpha,fnew

C ARRAY ARGUMENTS

 double precision x(n),d(n),xnew(n),gnew(n)

C LOCAL SCALARS

 integer i,lsiter, max$ls

 double precision alphap,alphatemp,fp,dp,gtdnew,a,b

 common/acca/epsm

 lsflag = 0

* Maximum number of iterations in LineSearch is max$ls (now is 20)

 max$ls=20

 alphap = 0.0d0

 fp = f

 dp = gtd

 do i = 1,n

 xnew(i) = x(i) + alpha * d(i)

 end do

c1

 call evalfg(n,xnew,fnew,gnew)

 fgcnt = fgcnt + 1

 4

 gtdnew = 0.0d0

 do i = 1,n

 gtdnew = gtdnew + gnew(i) * d(i)

 end do

 lsiter = 0

 10 if (alpha * dnorm .gt. 1.0d-30 .and. lsiter .lt. max$ls .and.

 + .not. (gtdnew .eq. 0.0d0 .and. fnew .lt. f) .and.

 + ((fnew .gt. f + 1.0d-04 * alpha * gtd .or.

 + dabs(gtdnew / gtd) .gt. 0.9d0) .or. (lsiter .eq. 0 .and.

 + dabs(gtdnew / gtd) .gt. 0.5d0))) then

 20 if (alpha * dnorm .gt. 1.0d-30 .and. fnew .gt. f .and.

 + gtdnew .lt. 0.0d0) then

 alpha = alpha / 3.0d0

 do i = 1,n

 xnew(i) = x(i) + alpha * d(i)

 end do

c2

 call evalfg(n,xnew,fnew,gnew)

 fgcnt = fgcnt + 1

 gtdnew = 0.0d0

 do i = 1,n

 gtdnew = gtdnew + gnew(i) * d(i)

 end do

 alphap = 0.0d0

 fp = f

 dp = gtd

 goto 20

 end if

 a = dp + gtdnew - 3.0d0 * (fp - fnew) / (alphap - alpha)

 b = a ** 2 - dp * gtdnew

 if (b .gt. epsm) then

 b = sqrt(b)

 else

 b = 0.0d0

 end if

 alphatemp = alpha - (alpha - alphap) * (gtdnew + b - a) /

 + (gtdnew - dp + 2.0d0 * b)

 if (gtdnew / dp .le. 0.0d0) then

 if (0.99d0 * dmax1(alpha, alphap) .lt. alphatemp .or.

 + alphatemp .lt. 1.01d0 * dmin1(alpha, alphap)) then

 alphatemp = (alpha + alphap) / 2.0d0

 end if

 else

 if (gtdnew .lt. 0.0d0 .and.

 + alphatemp .lt. 1.01d0 * dmax1(alpha, alphap)) then

 alphatemp = 2.0d0 * dmax1(alpha, alphap)

 end if

 if ((gtdnew .gt. 0.0d0 .and.

 + alphatemp .gt. 0.99d0 * dmin1(alpha, alphap)) .or.

 + alphatemp .lt. 0.0d0) then

 alphatemp = dmin1(alpha, alphap) / 2.0d0

 end if

 end if

 alphap = alpha

 fp = fnew

 dp = gtdnew

 alpha = alphatemp

 do i = 1,n

 xnew(i) = x(i) + alpha * d(i)

 end do

c3

 call evalfg(n,xnew,fnew,gnew)

 5

 fgcnt = fgcnt + 1

 gtdnew = 0.0d0

 do i = 1,n

 gtdnew = gtdnew + gnew(i) * d(i)

 end do

 lsiter = lsiter + 1

 goto 10

 end if

 if (lsiter .ge. max$ls) then

 lsflag = 1

 end if

 if (lsiter .ne. 0) then

 lscnt = lscnt + 1

 end if

 return

 end

Fig. 1. Subroutine LineSearch which generate safeguarded stepsizes satisfying the standard Wolfe line

search with cubic interpolation

In Figure 1, max$ls is the maximum number of iterations in the line search procedure, epsm is

the epsilon machine and evalfg(n,xnew,fnew,gnew) is the subroutine implementing the

algebraic expressions of the minimizing function and its gradient. In input, this subroutine has: n

as the number of variables and xnew as the new point. In output, it computes: fnew as the value

of function f in the new point and gnew as the gradient of f in the new point.

We see that a line search procedure is complicated and to be reliable it must incorporate a lot of

features. Firstly, observe that the standard Wolfe conditions are implemented in a complicated

form, which takes into consideration both the ratio between the rate of decrease of f in the

direction kd at the new point and the rate of decrease in the direction kd at the current point ,kx

and also some precautions to avoid too small or too large values of the stepsize. Observe that in

the selection phase of the procedure, the cubic interpolation is used. Cubic interpolation provides

a good model for the minimizing function in the searching interval. Suppose we have an interval

[,]a b containing the desirable stepsize and two previous stepsizes estimates 1i and i in this

interval. The algorithm uses a cubic function to interpolate the values, 1(),k i (),k i

1()k i
 and (),k i where () ().k k kf x d The minimizer of this cubic function in

[,],a b that is a new estimation of the stepsize, is either at one of the endpoints or in the interior,

case in which it is given by

 1 1

1

()
() ,

() () 2

k i
i i i i

k i k i

b a

b

 (9)

where

 1
1

1

() ()
() () 3 ,k i k i

k i k i

i i

a

 (10)

1/2

2
1() () .k i k ib a

 (11)

In Figure 1 the new estimate 1i is computed as alphatemp. The interpolation process can be

repeated by discarding the data at one of the stepsizes 1i or i and replacing it by 1()k i and

 6

1().k i
 Observe that the interpolation step that determines a new estimation to the stepsize is

safeguarded in order to ensure that the new stepsize is not too close to the endpoints of the

interval. Some more details may be found, for example, in (Dennis & Schnabel, 1983), (Shanno,

1983).

3. Wolfe line search with a simple bisection method
The bisection method is a simple method to find a zero of a continuous function for which two

values of opposite sign are known. To determine a stepsize k which satisfies the Wolfe line

search conditions (4) and (5) the following simple algorithm based on bisection concept may be

used.

Algorithm WSB.

Step 1. Choose 0k and set 0.low high
k k

Step 2. If k satisfies (4), then go to Step 4.

Step 3. Else (if k do not satisfy (4)), then set: high
k k and () / 2low high

k k k

 and go to Step 2.

Step 4. If k satisfies (5), then stop.

Step 5. Otherwise (if k do not satisfy (5)), then set: low
k k and

2 , 0,

() / 2, 0,

low high
k k

k low high high
k k k

if

if

 and go to Step 2. ♦

For the very beginning let us proof that the above algorithm WSB determines a value for k

which satisfy both the Wolfe line search conditions (4) and (5) in a finite number of steps.

Theorem 2. Suppose that the function f is continuously differentiable on n and bounded

below on the half-line { : 0}.k kx d Then, the algorithm WSB terminates in finite time and

generates a value for k that satisfies Wolfe conditions (4) and (5).

Proof Let us define () ()k kf x d and introduce the following two sets:

1 { 0 :S (4) holds},

 2 { 0 :S (5) holds}.

Observe that both 1S and 2S are closed in . Moreover, for sufficiently small, because

is continuous and 1,

0 0

() (0) () (0) (0) .d d

Therefore, there exists 1 0 such that 1 1[0,] ,S i.e. there exists 0 satisfying the first

Wolfe condition (4). Now, consider the second Wolfe condition (5). Let 0 and two

sequences ,[]
1{ }low i

k S and ,[]
2{ }high i

k S be such that

 7

 ,[]low i
k for any ,i ,[] ,low i

k
i

 (12)

 ,[]high i
k for any ,i ,[] .high i

k
i

 (13)

With this let us prove that 2.S For this assume that 2S and hence () (0). Then,

since is continuous and , there exists a value 2 0 such that for any 2[0,] it

follows that () (0). Therefore, for all 2[0,] , it follows that

() () () (0) () (0).d

But, since ,[]high i
k converges to from the right, it follows that there exists an index j large

enough so that ,[]
2[,],high j

k thus contradicting the assumption that ,[]
1.

high j
k S

Therefore, 2.S

Now, let us prove that the algorithm terminates in finite time. If the algorithm terminates

in a finite time, then k generated by it satisfies both Wolfe line search conditions. For this let us

define ,[],low i
k ,[]high i

k and []i
k as the values of ,low

k high
k and k at the beginning of iteration

i of the algorithm. The following properties can be observed:

1) Observe that for all i it is impossible that ,[] 0.low i
k This is because in this case

[] [0]2 ,i i
k k and hence []

1[0,]i
k and low

k is updated to [] 0i
k (see Step 5 of the

algorithm).

2) The sequence ,[]{ }low i
k is an increasing one in 1S such that for all ,i ,[] [].low i i

k k low
k can

only be updated in Step 5 of the algorithm WSB. It will be increased to the strictly larger value
,[1] []low i i

k k and as we can see in Step 5 of the algorithm [1]i
k
 takes on a strictly larger value

than []i
k .

3) Initially, for a few iterations ,[] 0.high i
k But, once it takes on a value 0[]

0
i

k at some

iteration 0 ,i then this can only happen in Step 3 of the algorithm WSB. Starting with the iteration

0i , the elements of the sequence ,[]high i
k with 0i i decrease in 1,S because high

k is only updated

in Step 3 of the algorithm to a value of k that is strictly smaller than ,high
k and k is itself

updated to a strictly smaller value.

4) All in all only two possibilities can appear: Either ,[] 0high i
k for all ,i and then

,[] 1 [0]2low i i
k k for all ,i in which case the algorithm WSB finds that the function f is

unbounded. However, this case must be excluded since in the assumptions of theorem f is

bounded. Or, there exists an index 0i such that 0,[]
0,

high i
k and therefore

[] ,[] ,[]() / 2,i low i high i
k k k the sequence ,[]{ }low i

k is increasing, the sequence ,[]{ }high i
k is

decreasing and the interval ,[] ,[][,]low i high i
k k is halved in length in every iteration. Therefore, it

follows that ,[]low i
k converges to a point k from 1S and ,[]high i

k converges to the same point in

1.S In conclusion 1 2.k S S Therefore, ,[]
1 2

low i
k S S for i sufficiently large, proving that

the algorithm terminates with this value. ♦

 8

Observe that this is a very simple procedure for computing a value of k which satisfies the

standard Wolfe line search conditions (4) and (5) without any safeguarding to the too large or too

small values of .k A Fortran implementation of this algorithm is presented in Figure 2.

 subroutine LSbis(n,x,f,d,gtd,alpha,xnew,fnew,gnew,fgcnt, nexp)

 parameter(ia=50000)

 double precision x(n), d(n), xnew(n), gnew(n)

 double precision xtemp(ia), ftemp, gtemp(ia)

 double precision f, fnew, gtd, gtd1

 double precision alpha, alphalow, alphahigh

 integer fgcnt, nexp, ils

c alpha = 1.d0

 alphalow = 0.d0

 alphahigh = 0.d0

c Parameters in Wolfe line search (cw1=rho, cw2=sigma)

 cw1 = 0.0001d0

 cw2 = 0.8d0

c ils is the number of iterations in this procedure.

C It is limited to 20.

 ils = 0

10 continue

 ils = ils + 1

 if(ils .gt. 20) return

 do i=1,n

 xtemp(i) = x(i) + alpha*d(i)

 end do

 call evalfg(n,xtemp,ftemp,gtemp, nexp)

 fgcnt = fgcnt + 1

c Test the first Wolfe line search

 if(ftemp .le. f + cw1*alpha*gtd) then

 go to 50

 else

 alphahigh = alpha

 alpha = (alphalow + alphahigh)/2.d0

 go to 10

 end if

50 continue

 gtd1 = 0.d0

 do i=1,n

 gtd1 = gtd1 + gtemp(i)*d(i)

 end do

c Test the second Wolfe line search

 if(gtd1 .ge. cw2*gtd) then

 go to 100

 else

 alphalow = alpha

 if(alphahigh .eq. 0.d0) alpha = 2.d0*alphalow

 if(alphahigh .gt. 0.d0) alpha = (alphalow+alphahigh)/2.d0

 end if

 go to 10

100 continue

C Compute: xnew, fnew and gnew as the outputs of the subroutine

 do i=1,n

 9

 xnew(i) = x(i) + alpha*d(i)

 end do

 call evalfg(n,xnew,fnew,gnew, nexp)

 fgcnt = fgcnt + 1

 return

 end

Fig. 2. Subroutine LSbis which generate stepsizes satisfying the standard Wolfe line

search with a simple bisection method.

For calling this subroutine a value for alpha must be given in its input. A possibility is to

consider alpha=1. (Observe that this line is under comment.) In our numerical experiment we

considered alpha = alpha * dnormprev / dnorm, where dnormprev = 1 2kd

and dnorm = .kd

4. Numerical experiments
In this section, let us report some numerical results obtained with a Fortran implementation of the

accelerated conjugate gradient algorithms in which the stepsize is computed by using the standard

Wolfe line search with cubic interpolation (see Figure 1) or by using the standard Wolfe line

search with a simple bisection method (see Figure 2).

All algorithms have been coded in double precision Fortran and compiled with f77 (default

compiler settings) and run on an Intel Pentium 4, 1.8 GHz workstation. The test functions are

from the UOP collection (Andrei, 2018), which includes 80 functions. For each test function ten

numerical experiments with the number of variables 1000,2000,...,10000n have been

considered, thus obtaining a number of 800 problems.

The algorithms compared in these numerical experiments find local solutions. Therefore, the

comparisons of the algorithms are given in the following context. Let 1ALG

if and 2ALG

if be the

optimal value found by ALG1 and ALG2 for problem 1, ,800,i respectively. We say that, in

the particular problem ,i the performance of ALG1 was better than the performance of ALG2 if

 1 2 310ALG ALG

i if f (14)

and if the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient

evaluations, or the CPU time corresponding to ALG2, respectively.

The iterations are stopped if the inequality
610kg

 is satisfied, where .

 is the maximum

absolute component of a vector. All algorithms implement the standard Wolfe line search (4) and

(5), where 0.0001 and 0.8. The maximum number of iterations was limited to 2000.

In the first set of numerical experiments the Hestenes-Stiefel (Hestenes & Stiefel, 1952)

conjugate gradient algorithm, in which the conjugate gradient parameter is computed as

 1 / ,HS T T
k k k k kg y y d (15)

is considered, where 1 .k k ky g g For this set of numerical experiments the total number of

iterations, the total number of function and its gradient evaluations and the total CPU computing

 10

time for solving this set of 800 unconstrained optimization problems using HS algorithm with

these line search procedures are as in Table 1.

Table 1

HS with Cubic Wolfe Line Search (HSCLS)
 Grand Total iterations = 291234

 Grand Total FG evaluations = 705103

 Grand Total time (seconds) = 460.74

HS with Simple Bisection Wolfe Line Search (HSSBLS)
 Grand Total iterations = 359027

 Grand Total FG evaluations = 3100101

 Grand Total time (seconds) = 1666.81

To compare the performances of algorithms, the Dolan and Moré (2002) performance profiles are

used. Figure 3 presents these performance profiles subject to the CPU time metric.

Fig. 3. Performance profiles of HS with cubic Wolfe line search versus

HS with simple bisection Wolfe line search.

Comparing HSCLS versus HSSBLS (see Figure 3) subject to the number of iterations, we see that

HSCLS was better in 449 problems (i.e. it achieved the minimum number of iterations in 449

problems), while HSSBLS was better only in 102 problems. Out of 800 problems considered in

this set of numerical experiments, only for 772 problems did the criterion (14) hold. At the same

time observe that HSCLS was faster for solving 450 problems. On the other hand, HSSBLS was

faster only for solving 109 problems.

 11

In the second set of numerical experiments let us consider the PRP+ conjugate gradient (Polak &

Ribière, 1969), (Polyak, 1969), where the conjugate gradient parameter is computed as

 1max{0, / }.PRP T T
k k k k kg y g g

 (16)

In this case the total number of iterations, the total number of function and its gradient

evaluations and the total CPU computing time for solving this set of 800 unconstrained

optimization problems using PRP+ algorithm with these line search procedures are as in Table 2.

Table 2

PRP+ with Cubic Wolfe Line Search (PRPCLS)
 Grand Total iterations = 408895

 Grand Total FG evaluations = 721314

 Grand Total time (seconds) = 609.68

PRP+ with Simple Bisection Wolfe Line Search (PRPSBLS)
 Grand Total iterations = 362910

 Grand Total FG evaluations = 3128826

 Grand Total time (seconds) = 2053.80

Figure 4 presents the Dolan and Moré performance profiles of these algorithms subject to the

CPU time metric.

Fig. 4. Performance profiles of PRP+ with cubic Wolfe line search versus

PRP+ with simple bisection Wolfe line search.

Comparing PRPCLS versus PRPSBLS (see Figure 4) subject to the number of iterations, we see

that PRPCLS was better in 413 problems, while PRPSBLS was better in 72 problems, etc. Out of

 12

800 problems considered in this set of numerical experiments, only for 683 problems did the

criterion (14) hold. Observe that PRPCLS was faster for solving 410 problems, but PRPSBLS

was faster only for solving 67 problems. Obviously, a more advanced line search procedure for

computing the stepsize in conjugate gradient algorithms is more benefic.

In the third set of numerical experiments the DY conjugate gradient method is considered (Dai &

Yuan, 1999), where the conjugate gradient parameter is computed as

 1 1 / .DY T T
k k k k kg g y d (17)

Table 3 presents the global performances of DY for solving this set of problems.

Table 3

DY with Cubic Wolfe Line Search (DYCLS)
Grand Total iterations = 288388

Grand Total FG evaluations = 713280

Grand Total time (seconds) = 415.74

DY with Simple Bisection Wolfe Line Search (DYSBLS)
Grand Total iterations = 374945

Grand Total FG evaluations = 3289585

Grand Total time (seconds) = 1916.05

Figure 5 presents the Dolan and Moré performance profiles of these algorithms.

Fig. 5. Performance profiles of DY with cubic Wolfe line search versus

DY with simple bisection Wolfe line search.

 13

The percentage of problems for which an algorithm is the best is given on the left side of the plot.

On the other hand, the right side of the plot gives the percentage of the problems that are

successfully solved. In other words, for a given algorithm, the plot for 1 , represents the

fraction of problems for which the algorithm was the most efficient over all algorithms. The plot

for represents the fraction of problems solved by the algorithm irrespective of the required

effort. Therefore, the plot for 1 is associated to the efficiency of the algorithm, while the plot

for is associated to the robustness of the algorithm. Observe that the conjugate gradient

algorithms with standard Wolfe line search using the cubic interpolation are more efficient and

more robust than the same algorithms using a simple bisection Wolfe line search.

5. Conclusion

Conjugate gradient methods are very sensitive to the procedure for computing the stepsize .k

More advanced procedures for stepsize computation in conjugate gradient methods, more

efficient and more robust algorithms. In conjugate gradient methods computing the search

direction kd is very simple, the difficulty is determination of the stepsize .k In this technical

report we compared two implementations of the standard Wolfe line search in the frame of

conjugate gradient methods. One, very sophisticated, using cubic interpolation with safeguarding

the values of ,k and another one very simple based on the bisection method. The convergence

of the Wolfe line search with simple bisection algorithm (see Theorem 2) is only linear. Its

efficiency is very modest.

It is remarkable to notice that even if the conjugate gradient methods are implemented using the

acceleration scheme (see Andrei (2020), chapter 5) which modifies the stepsize determined by the

Wolfe line search conditions in a multiplicative manner, this does not eliminate the efforts to

compute a stepsize as accurate as possible to get efficient and robust algorithms. The procedure

for stepsize computation is a critical point in conjugate gradient methods.

The determination of the stepsize continue to be a very intensive research activity. Some other

algorithms for stepsize determination are described by Hager and Zhang (2005), Dai and Kou

(2013), Zhang and Hager (2004), Gu and Mo (2008), Ou and Liu (2017). No comparisons among

these line search algorithms are known.

References

1. Andrei, N., (2020). Nonlinear Conjugate Gradient Methods for Unconstrained Optimization.

Springer Optimization and Its Applications, vol. 158, Springer.

2. Shanno, D.F., (1983). CONMIN – A Fortran subroutine for minimizing an unconstrained

nonlinear scalar valued function of a vector variable x either by the BFGS variable metric

algorithm or by a Beale restarted conjugate gradient algorithm. Private communication,

October 17, 1983.

3. Dennis, J.E., & Schnabel, R.B., (1983). Numerical Methods for Unconstrained Optimization

and Nonlinear Equations. Prentice-Hall, Englewoods Cliffs, New Jersey. [Reprinted as

Classics in Applied Mathematics 16, SIAM, Philadelphia, USA, 1996.]

4. Andrei, N., (2018). UOP - A collection of 80 unconstrained optimization test problems.

(Technical Report No. 7/2018, November 17, Research Institute for Informatics, Bucharest,

Romania).

5. Hestenes, M.R., & Stiefel, E., (1952). Methods of conjugate gradients for solving linear

systems. Journal of Research of the National Bureau of Standards, 49, 409-436.

6. Dolan, E.D., & Moré, J.J., (2002). Benchmarking optimization software with performance

profiles. Mathematical Programming, 91, 201-213.

7. Polak, E., & Ribiére, G., (1969). Note sur la convergence de méthods de direction conjugées.

Revue Francaise d’Informatique et de Recherche Opérationnelle, 16, 35-43.

 14

8. Polyak, B.T., (1969). The conjugate gradient method in extremal problems. USSR

Computational Mathematics and Mathematical Physics, 9, 94-112.

9. Dai, Y.H., & Yuan, Y., (1999). A nonlinear conjugate gradient method with strong global

convergence property. SIAM Journal on Optimization, 10, 177-182.

10. Hager, W.W., & Zhang, H., (2005). A new conjugate gradient method with guaranteed

descent and an efficient line search. SIAM Journal on Optimization, 16, 170-192.

11. Dai, Y.H., & Kou, C.X., (2013). A nonlinear conjugate gradient algorithm with an optimal

property and an improved Wolfe line search. SIAM Journal on Optimization, 23(1) 296-

320.

12. Zhang, H., & Hager, W.W., (2004). A nonmonotone line search technique and its application

to unconstrained optimization. SIAM Journal on Optimization, 14, 1043-1056.

13. Gu, N.Z. & Mo, J.T., (2008). Incorporating nonmonotone strategies into the trust region

method for unconstrained optimization, Computers and Mathematics with Applications,

55, 2158-2172.

14. Ou, Y., & Liu, Y., (2017). A memory gradient method based on the nonmonotone technique.

Journal of Industrial and Management Optimization, 13(2), 857-872.

-----oooooOooooo-----

