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1. Variants of the algorithm DESCON 
For solving the unconstrained optimization problems 

 

                                                                  min ( )
nx R

f x


,                                                              (1) 

 

where : nf  is a continuously differentiable function, bounded from below, one of the 

most elegant and probably the most efficient method is the conjugate gradient method 

DESCON [1, 2, 3]. The algorithm is defined as: 

 

                                                               1k k k kx x d   ,                                                      (2) 

 

where 0k   is obtained by the Wolfe line search [4, 5]: 

 

                                                 ( ) ( ) ,T
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where0 1/ 2 1,      and kd  is supposed to be a descent direction, generated as: 
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0 0d g  , where k  and kt  are scalar parameters determined in such a way that both the 

descent and the conjugacy conditions are satisfied: 
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where: 
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In DESCON a small modification of the second Wolfe line search condition (4) is used as: 
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where k  is a sequence of parameters satisfying the condition 0 1,k     for all .k  

Therefore, in DESCON the rate of decrease of f  in the direction kd  at 1kx   is larger than a 

fraction k , which is modified at every iteration, of the rate of decrease of f  in the direction 

kd  at kx . The condition k  , for all 0k  , guarantees that (3) and (13) can be satisfied 

simultaneously. Relations (3) and (13) are known as the modified Wolfe conditions.  

 

The properties and the convergence of the algorithm are presented in [1, 2, 3].  Intensive 

numerical experiments showed that DESCON is more efficient and more robust versus some 

conjugate gradient methods, including here CG_DESCENT [6]. 

 

In this technical report we consider three new variants of DESCON subject to the 

computation of the conjugate gradient parameter k .   

 

1) In the first variant, we call DESCON, the formula for computation the parameter k  is that 

obtained from the sufficient descent and conjugacy conditions. Using (6) and the 

corresponding relations, in this variant the parameter k  is computed as: 
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2) Having in view the PRP+ method introduced by Powell [7] in order to ensure the global 

convergence of the algorithms for general nonlinear function in the second variant of our 

algorithm, we call DESCON-P, the parameter k  is computed as: 
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The global convergence of this variant of DESCON can be proved using the same argument 

as in Dai and Liao [8].  

 

3) In the third variant of our algorithm, we call DESCON-H, a truncation technique is 

introduced as suggested by Hager and Zhang [6]: 
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where k  is given by (14). Observe that in this computational scheme the lower bound on k  

is dynamically adjusted in order to make the lower bound smaller as iterates converge. 

 

Numerical experiments 
In the following we report some numerical results obtained with an implementation of the 

DESCON algorithm. The code is written in Fortran and compiled with f77 (default compiler 

settings) on a Workstation Intel Pentium 4 with 1.8 GHz. DESCON uses the loop unrolling to 

a depth of 5. We selected a number of 100 large-scale unconstrained optimization test 

functions in generalized or extended form [1] (some from CUTE library [9]). For each test 

function we have taken ten numerical experiments with the number of variables increasing as 

1000,2000,...,10000.n   Therefore, all in all there are 1000 numerical experiments. The 

algorithm implements the Wolfe line search conditions with 0.0001,   

2 2

1 1 1/( ),T

k k k kg y g g      and the same stopping criterion gk 

10 6 , where .


is 

the maximum absolute component of a vector. In DESCON we set 7 /8w   and 0.05v  . 

In our numerical experiments k  is not restricted in the interval [0,2 ].w  In all the algorithms 

we considered in this numerical study the maximum number of iterations is limited to 2000. 

The comparisons of algorithms are given in the following context. Let f i

ALG1
and 

f i

ALG2
be the optimal value found by ALG1 and ALG2, for problem 1, ,1000,i   

respectively. We say that, in the particular problem i,  the performance of ALG1 was better 

than the performance of ALG2 if:  

 

                                                          f fi

ALG

i

ALG1 2 310  
                                             (17) 

 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or 

the CPU time of ALG1 was less than the number of iterations, or the number of function-

gradient evaluations, or the CPU time corresponding to ALG2, respectively. 

 

In the first set of numerical experiments we compare DESCON versus DESCON-P. Figure 1 

shows the Dolan and Moré [10] CPU performance profile of DESCON versus DESCON-P. In 

a performance profile plot, the top curve corresponds to the method that solved the most 

problems in a time that was within a factor   of the best time. The percentage of the test 

problems for which a method is the fastest is given on the left axis of the plot. The right side 

of the plot gives the percentage of the test problems that were successfully solved by these 

algorithms, respectively. Mainly, the right side is a measure of the robustness of an algorithm.  

 When comparing DESCON versus DESCON-P subject to CPU time metric we see 

that DESCON-P is top performer. However, from Figure 1 subject to the number of iterations, 

we see that DESCON was better in 19 problems (i.e. it achieved the minimum number of 

iterations in 19 problems). DESCON-P was better in 4 problems and they achieved the same 

number of iterations in 976 problems, etc. Out of 1000 problems, only for 999 problems does 

the criterion (17) hold. Therefore, subject to the CPU time metric, DESCON-P appears to 

generate slightly the best search direction and the best steplength, on average. 
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Fig. 1. Performance profies of DESCON versus DESCON-P 

 

 

 

In the second set of numerical experiments let us compare DESCON versus DESCON-H. 

Figure 2 shows that subject to the CPU time metric DESCON is more efficient versus 

DESCON-H. 

 

 

 
Fig. 2. Performance profiles of DESCON versus DESCON-H 
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In the third set of numerical experiment we compare DESCON-P versus DESCON-H. Figure 

3 shows the performance profiles of these algorithms. 

 

 
Fig. 3. Performance profiles of DESCON-P versus DESCON-H. 

 

 

Figure 4 presents the global performance profiles of all these algorithms. 

 
Fig. 4. Performance profiles of DESCON, DESCON-P and DESCON-H. 
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Conclusion 
The performances of all these variants of DESCON are similar. It seems that simple 

modifications of the conjugate gradient parameter, we considered here, do not influence too 

much the efficiency and robustness of DESCON. However, the truncation of the conjugate 

gradient parameter like in (15) is slightly more benefic, subject to the efficiency of the 

algorithm.   
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