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a b s t r a c t

A simple three-term conjugate gradient algorithm which satisfies both the descent
condition and the conjugacy condition is presented. This algorithm is a modification of
the Hestenes and Stiefel algorithm (Hestenes and Stiefel, 1952) [10], or that of Hager and
Zhang (Hager and Zhang, 2005) [23] in such a way that the search direction is descent and
it satisfies the conjugacy condition. These properties are independent of the line search.
Also, the algorithm could be considered as a modification of the memoryless BFGS quasi-
Newtonmethod. The new approximation of theminimum is obtained by the generalWolfe
line search, now using a standard acceleration technique developed by Andrei (2009) [27].
For uniformly convex functions, under standard assumptions, the global convergence of
the algorithm is proved. Numerical comparisons of the suggested three-term conjugate
gradient algorithm versus six other three-term conjugate gradient algorithms, using a set
of 750 unconstrained optimization problems, show that all these computational schemes
have similar performances, the suggested one being slightly faster and more robust. The
proposed three-term conjugate gradient algorithm substantially outperforms the well-
known Hestenes and Stiefel conjugate gradient algorithm, as well as the more elaborate
CG_DESCENT algorithm. Using five applications from the MINPACK-2 test problem
collection (Averick et al., 1992) [25], with 106 variables, we show that the suggested three-
term conjugate gradient algorithm is the top performer versus CG_DESCENT.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For solving the nonlinear unconstrained optimization problem

min

f (x) : x ∈ Rn , (1.1)

where f : Rn
→ R is a continuously differentiable function, bounded from below, starting from an initial guess x0 ∈ Rn, the

nonlinear conjugate gradient method generates a sequence {xk} as

xk+1 = xk + αkdk, (1.2)

where αk > 0 is obtained by line search, and the directions dk are generated as

dk+1 = −gk+1 + βksk, d0 = −g0, (1.3)
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for k ≥ 1. In (1.3), βk is known as the conjugate gradient parameter, sk = xk+1 − xk and gk = ∇f (xk). The line search in
conjugate gradient algorithms is often based on the general Wolfe conditions [1,2]:

f (xk + αkdk) − f (xk) ≤ ραkgT
k dk, (1.4)

gT
k+1dk ≥ σgT

k dk, (1.5)

where dk is a descent direction and 0 < ρ ≤ σ < 1. However, for some conjugate gradient algorithms, a stronger version
of the Wolfe line search conditions, given by (1.4) andgT

k+1dk
 ≤ −σgT

k dk, (1.6)

is needed to ensure the convergence and to enhance the stability.
Different conjugate gradient algorithms correspond to different choices for the scalar parameter βk. The parameter βk

in (1.3) is selected so that, when applied to minimize a strongly quadratic convex function, the directions dk and dk+1 are
conjugate subject to the Hessian of the quadratic function. Therefore, minimizing a convex quadratic function in a subspace
spanned by a set of mutually conjugate directions is equivalent to minimizing this function along each conjugate direction
in turn. This is a very good idea, but the performance of these algorithms is dependent on the accuracy of the line search.
However, when applied to general nonlinear functions, often the parameter βk is computed using some other formulae
which do not satisfy the conjugacy condition. For example, considering, as usual, yk = gk+1 − gk, then the well-known
conjugate gradient methods by Fletcher and Reeves [3] (βFR

k = gT
k+1gk+1/gT

k gk), Polak and Ribière [4] and Polyak [5] (βPRP
k =

yTkgk+1/gT
k gk), Liu and Storey [6] (βLS

k = −yTkgk+1/gT
k dk), Dai and Yuan [7] (βDY

k = gT
k+1gk+1/yTk sk), andDai and Liao [8] (βDL

k =

gT
k+1(yk − tsk)/yTk sk, where t > 0 is a parameter) or the conjugate descent method of Fletcher [9] (βCD

k = −gT
k+1gk+1/gT

k+1dk)
do not satisfy the conjugacy condition. By extension we call all these conjugate gradient algorithms. Observe that the
Hestenes and Stiefel [10] (βHS

k = yTkgk+1/yTk sk) conjugate gradient algorithm satisfies the conjugacy condition.
If f is a strongly quadratic convex function, then with an exact line search, at least in theory, all these choices for the

parameter βk in (1.3) are equivalent. For non-quadratic functions, each choice for the parameter βk leads to very different
performances of the corresponding algorithms.

In this paper we are particularly interested in three-term conjugate gradient methods. One of the first general three-term
conjugate gradient methods was proposed by Beale [11] as

dk+1 = −gk+1 + βkdk + γkdt , (1.7)

where βk = βHS
k (or βFR

k , βDY
k etc.),

γk =


0, k = t + 1,
gT
k+1yt
dTt yt

, k > t + 1,

and dt is a restart direction. McGuire and Wolfe [12] and Powell [13] made further research into the Beale three-term
conjugate gradient algorithm and established an efficient restart strategy obtaining good numerical results. To make dk+1
satisfy the sufficient descent condition and two consecutive gradients not be far from orthogonal, the following conditions
may be imposed:−gT

k+1dk+1 ≥ ξ ∥gk+1∥ ∥dk+1∥, where ξ is a small positive constant, and the Powell–Beale restart criterion,gT
k gk+1

 < 0.2 ∥gk+1∥
2. Deng and Li [14] and Dai and Yuan [7] studied the general three-term conjugate gradient method

dk+1 = −gk+1 + βkdk + γkdt(p), (1.8)

where t(p) is the number of the p-th restart iteration satisfying t(p) < k ≤ t(p + 1) ≤ +∞, showing that in some mild
conditions the algorithm has global convergence.

Nazareth [15] proposed a conjugate gradient algorithm using a three-term recurrence formula:

dk+1 = −yk +
yTkyk
yTkdk

dk +
yTk−1yk

yTk−1dk−1
dk−1, (1.9)

with d−1 = 0, d0 = 0. If f is a convex quadratic function, then, for any steplength αk, the search directions generated by
(1.9) are conjugate subject to the Hessian of f , even without exact line search. In the same context, Zhang et al. proposed a
descent modified PRP conjugate gradient algorithm with three terms [16] as

dk+1 = −gk+1 +
gT
k+1yk
gT
k gk

dk −
gT
k+1dk
gT
k gk

yk, (1.10)

and a descent modified HS conjugate gradient algorithm with three terms [17] as

dk+1 = −gk+1 +
gT
k+1yk
sTkyk

sk −
gT
k+1sk
sTkyk

yk, (1.11)
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where d0 = −g0. A remarkable property of these methods is that they produce descent directions, i.e. gT
k dk = −∥gk∥ for

any k ≥ 1. The convergence properties of (1.11) for convex optimization are given in [18].
Motivated by this nice descent property, Zhang et al. [19] introduced another three-term conjugate gradient method

based on the Dai–Liao method as

dk+1 = −gk+1 +
gT
k+1(yk − tsk)

yTk sk
sk −

gT
k+1sk
yTk sk

(yk − tsk), (1.12)

where d0 = −g0 and t ≥ 0. Again, it is easy to see that the sufficient descent condition also holds independent of the line
search used, i.e. for this method gT

k dk = −∥gk∥2 for all k. A specialization of this three-term conjugate gradient given by
(1.12) was developed by Al-Bayati and Sharif [20], where the search direction is computed as

dk+1 = −gk+1 + βDL+
k sk −

gT
k+1sk
yTk sk

(yk − tsk), (1.13)

where βDL+
k = max


yTk gk+1

yTk sk
, 0


− t sTk gk+1

yTk sk
and t = 2 ∥yk∥2

yTk sk
. It is easy to see that (1.13) satisfies the sufficient descent con-

dition independent of the line search used. Cheng [21] gave another three-term conjugate gradient algorithm based on a
modification of the Polak–Ribière–Polyak method:

dk+1 = −gk+1 +
gT
k+1yk
∥gk∥2


I −

gk+1gT
k+1

∥gk+1∥
2


dk, (1.14)

proving its global convergence under appropriate line search. Another three-term conjugate gradient algorithm was given
by Narushima et al. [22], where the searching direction is computed as

dk+1 =


−gk+1 if k = 0 or gT

k+1pk = 0,

−gk+1 + βkdk − βk
gT
k+1dk

gT
k+1pk

pk otherwise,
(1.15)

whereβk ∈ R is a parameter and pk ∈ Rn is any vector. This is a general three-term conjugate gradientmethodwhich satisfies
the sufficient descent condition and for which a sufficient condition for its global convergence is proved. In the same paper,
Narushima et al. [22] proposed a specific three-term conjugate gradient algorithm based on the multi-step quasi-Newton
method for which the global convergence property is proved. The numerical experiments showed that the CG_DESCENT al-
gorithmof Hager and Zhang [23] performs better than these three-term conjugate gradient algorithms. Recently, Andrei [24]
suggested another three-term conjugate gradient algorithm:

dk+1 = −
yTk sk
∥gk∥2 gk+1 +

yTkgk+1

∥gk∥2 sk −
sTkgk+1

∥gk∥2 yk, (1.16)

which is a modification of the Polak–Ribière–Polyak conjugate gradient algorithm for which, independent of the line search
at each iteration, both the sufficient descent condition and the conjugacy condition are satisfied. Intensive numerical exper-
iments show that the algorithm given by (1.16) is the top performer versus PRP, DY and the three-term conjugate gradient
algorithm given by (1.10).

In this paper, we present a new simple three-term conjugate gradient algorithm which is obtained by a modification of
the BFGS updating scheme of the inverse approximation of the Hessian of the function f restarted as the identity matrix
at every step. This computational scheme is a modification of the HS [10] or of the CG_DESCENT [23] conjugate gradient
algorithms. Section 2 presents the search direction computation and its properties. It is shown that the direction satisfies
both the descent and the conjugacy conditions. If the line search is exact, then the searching direction reduces to that
corresponding to the Hestenes and Stiefel method. In Section 3, the three-term conjugate gradient, THREECG, endowed
with an acceleration scheme and the Powell restart criterion, is presented. The convergence of the algorithm with Wolfe
line search conditions is proved in Section 4. It is shown that for uniformly convex functions the directions generated by the
algorithm are bounded above. In Section 5, some numerical results and comparisons with some other conjugate gradient
algorithms are presented. It is shown that the performances of this conjugate gradient algorithmwith three terms are similar
to those of some other three-term conjugate gradient algorithms, in some cases THREECG being slightly faster. Compared
with the HS and CG_DESCENT conjugate gradient algorithms, THREECG appears to be way faster and more robust. Finally,
using five applications from the MINPACK-2 test problem collection [25], with 106 variables, we show that THREECG is
significantly better than CG_DESCENT.
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2. A simple three-term conjugate gradient algorithm

In this section, we describe our three-term conjugate gradient algorithm for which, independent of the line search, at
every step both the descent condition and the conjugacy condition are satisfied. The algorithm is given by (1.2), where the
direction dk+1 is computed as

dk+1 = −gk+1 − δksk − ηkyk, (2.1)

where

δk =


1 +

∥yk∥2

yTk sk


sTkgk+1

yTk sk
−

yTkgk+1

yTk sk
, (2.2)

ηk =
sTkgk+1

yTk sk
. (2.3)

Observe that the direction dk+1 from (2.1) can be written as

dk+1 = −Qkgk+1, (2.4)

where the matrix Qk is given by

Qk = I −
skyTk − yksTk

yTk sk
+


1 +

∥yk∥2

yTk sk


sksTk
yTk sk

. (2.5)

As we know, the BFGS updating of the inverse approximation of the Hessian of function f is

Hk+1 = Hk −
skyTkHk + HkyksTk

yTk sk
+


1 +

yTkHkyk
yTk sk


sksTk
yTk sk

. (2.6)

Obviously, thematrix Qk in (2.5) is a modification of the BFGS updating (2.6) in the sense that it is restarted with the identity
matrix at every step (Hk = I), and more importantly the sign in front of yksTk in the second term of (2.5) is modified to get
the descent property, as is proved in the following proposition.

Proposition 2.1. Suppose that the line search satisfies theWolfe conditions (1.4) and (1.5). Then dk+1 given by (2.1) and (2.2)–(2.3)
is a descent direction.

Proof. Since the line search satisfies the Wolfe conditions, it follows that yTk sk > 0. Now, by direct computation, we have

gT
k+1dk+1 = −∥gk+1∥

2
−


1 +

∥yk∥2

yTk sk


(sTkgk+1)

2

yTk sk
≤ 0. �

As we know, Day and Liao [8] extended the classical conjugate condition yTkdk+1 = 0, suggesting the following one: yTkdk+1

= −t(sTkgk+1), where t ≥ 0 is a scalar. The proposition below proves that the direction dk+1 given by (2.1)–(2.3) satisfies
the Dai–Liao conjugacy condition.

Proposition 2.2. Suppose that the line search satisfies theWolfe conditions (1.4) and (1.5). Then dk+1 given by (2.1)–(2.3) satisfies
the conjugacy condition yTkdk+1 = −tk(sTkgk+1), where tk > 0 for all k.

Proof. By direct computation, we get

yTkdk+1 = −


1 + 2

∥yk∥2

yTk sk


(sTkgk+1) ≡ −tk(sTkgk+1), (2.7)

where tk =


1 + 2 ∥yk∥2

yTk sk


> 0, since yTk sk > 0. �

Observe that, if f is strongly convex or the line search satisfies the Wolfe conditions (1.4) and (1.5), then yTk sk > 0,
and therefore the computational scheme above yields descent. Besides, the direction dk+1 satisfies the Dai–Liao conjugacy
condition (2.7), where tk > 0 at every iteration. On the other hand, if the line search is exact, i.e. sTkgk+1 = 0, then (2.1)
reduces to the Hestenes–Stiefel method.
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3. The THREECG algorithm

In this section, we present the algorithm THREECG, in which the search direction is given by (2.1) and the parameters δk
and ηk are computed as in (2.2) and (2.3), respectively. We know that in conjugate gradient algorithms the search directions
tend to be poorly scaled, and as a consequence the line search must perform more function evaluations in order to obtain a
suitable steplength αk. Besides, in conjugate gradient methods the steplengths computed by means of theWolfe line search
(1.4) and (1.5) may differ from 1 in a very unpredictable manner [26]. They can be larger or smaller than 1 depending on
how the problem is scaled. This is in very sharp contrast to the Newton and quasi-Newton methods, including the limited
memory quasi-Newton methods, which accept the unit steplength most of the time during the iterations, and therefore
usually they require only a few function evaluations per search direction. In this section, we take advantage of this behavior
of conjugate gradient algorithms and consider an acceleration scheme we have presented in [27] (see also [28]).

Basically, the acceleration schememodifies the steplength αk in a multiplicative manner to improve the reduction of the
function values during the iterations. As in [27], in the accelerated algorithm, instead of (1.2), the new estimation of the
minimum point is computed as

xk+1 = xk + ξkαkdk, (3.1)

where

ξk = −
āk
b̄k

, (3.2)

āk = αkgT
k dk, b̄k = −αk(gk −gz)Tdk, gz = ∇f (z) and z = xk +αkdk. Hence, if b̄k > 0, then the new estimation of the solution

is computed as xk+1 = xk + ξkαkdk; otherwise, xk+1 = xk + αkdk. Observe that b̄k = αk(gz − gk)Tdk = αk(dTk∇
2f (x̄k)dk),

where x̄k is a point on the line segment connecting xk and z. Since αk > 0, it follows that for convex functions b̄k ≥ 0. For
uniformly convex functions, we can prove the linear convergence of the acceleration scheme [27].

Therefore, taking into consideration this acceleration scheme and using the definitions of gk, sk and yk, the following
conjugate gradient algorithm can be presented.
The THREECG algorithm

Step 1. Select a starting point x0 ∈ dom f and compute f0 = f (x0) and g0 = ∇f (x0). Select some positive values
for ρ and σ . Set d0 = −g0 and k = 0.

Step 2. Test a criterion for stopping the iterations. If the test is satisfied, then stop; otherwise continue with step 3.
Step 3. Determine the steplength αk by using the Wolfe line search conditions (1.4)–(1.5).
Step 4. Compute z = xk + αkdk, gz = ∇f (z) and yk = gk − gz .
Step 5. Compute āk = αkgT

k dk and b̄k = −αkyTkdk.
Step 6. Acceleration scheme. If b̄k > 0, then compute ξk = −āk/b̄k, and update the variables as

xk+1 = xk + ξkαkdk; otherwise, update the variables as xk+1 = xk + αkdk. Compute fk+1 and gk+1. Compute
yk = gk+1 − gk and sk = xk+1 − xk.

Step 7. Determine δk and ηk as in (2.2) and (2.3), respectively.
Step 8. Compute the search direction as dk+1 = −gk+1 − δksk − ηkyk.
Step 9. Powell restart criterion. If

gT
k+1gk

 > 0.2 ∥gk+1∥
2, then set dk+1 = −gk+1.

Step 10. Consider k = k + 1 and go to step 2. �

If f is bounded along the direction dk, then there exists a stepsize αk satisfying theWolfe line search conditions (1.4) and
(1.5). In our algorithm, when the Powell restart condition is satisfied, we restart the algorithm with the negative gradient
−gk+1. More sophisticated reasons for restarting the algorithms have been proposed in the literature [29], but we are
interested in the performance of a conjugate gradient algorithm that uses this restart criterion associated to a direction
satisfying both the descent and the conjugacy conditions. Under reasonable assumptions, the Wolfe line search conditions
and the Powell restart criterion are sufficient to prove the global convergence of the algorithm. The first trial of the steplength
crucially affects the practical behavior of the algorithm. At every iteration k ≥ 1 the starting guess for the step αk in the line
search is computed as αk−1 ∥dk−1∥ / ∥dk∥. This selection was used for the first time by Shanno and Phua in CONMIN [30] and
in SCALCG by Andrei [31].

4. Convergence analysis

Assume the following.

(i) The level set S = {x ∈ Rn
: f (x) ≤ f (x0)} is bounded, i.e. there exists positive constant B > 0 such that, for all x ∈ S, ∥x∥ ≤ B.

(ii) In a neighborhood N of S the function f is continuously differentiable and its gradient is Lipschitz continuous, i.e. there exists
a constant L > 0 such that ∥∇f (x) − ∇f (y)∥ ≤ L ∥x − y∥, for all x, y ∈ N.
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Under these assumptions on f , there exists a constant Γ ≥ 0 such that ∥∇f (x)∥ ≤ Γ , for all x ∈ S. Observe that the
assumption that the function f is bounded below is weaker than the usual assumption that the level set is bounded.

Although the search directions generated by (2.1)–(2.3) are always descent directions, to ensure convergence of the
algorithm we need to constrain the choice of the steplength αk. The following proposition shows that the Wolfe line search
always gives a lower bound for the steplength αk.

Proposition 4.1. Suppose that dk is a descent direction and that the gradient ∇f satisfies the Lipschitz condition

∥∇f (x) − ∇f (xk)∥ ≤ L ∥x − xk∥

for all x on the line segment connecting xk and xk+1, where L is a positive constant. If the line search satisfies the Wolfe
conditions (1.4) and (1.5), then

αk ≥
(1 − σ)

gT
k dk


L ∥dk∥2 . (4.1)

Proof. Subtracting gT
k dk from both sides of (1.5), and using Lipschitz continuity, we get

(σ − 1)gT
k dk ≤ (gk+1 − gk)Tdk = yTkdk ≤ ∥yk∥ ∥dk∥ ≤ αkL ∥dk∥2 .

Since dk is a descent direction and σ < 1, (4.1) follows immediately. �

Toprove the global convergence of nonlinear conjugate gradient algorithms, often the Zoutendijk condition is used. Under
the Wolfe line search this condition was given byWolfe [1,2] and Zoutendijk [32]. The following proposition proves that, in
the above three-term conjugate gradient method, the Zoutendijk condition holds under the general Wolfe line search (1.4)
and (1.5).

Proposition 4.2. Suppose that assumptions (i) and (ii) hold. Consider the algorithm (1.2) and (2.1)–(2.3), where dk is a descent
direction and αk is computed by the general Wolfe line search (1.4) and (1.5). Then

∞
k=0

(gT
k dk)

2

∥dk∥2 < +∞. (4.2)

Proof. From (1.4) and Proposition 4.1, we get

fk − fk+1 ≥ −ραkgT
k dk ≥ ρ

(1 − σ)(gT
k dk)

2

L ∥dk∥2 .

Therefore, from assumption (i), we get the Zoutendijk condition (4.2). �

In conjugate gradient algorithms, the iteration can fail, in the sense that ∥gk∥ ≥ γ > 0 for all k, only if ∥dk∥ → ∞

sufficiently rapidly [13]. More exactly, the sequence of gradient norms ∥gk∥ can be bounded away from zero only if


k≥0 1/
∥dk∥ < ∞. For any conjugate gradient method with strong Wolfe line search (1.4) and (1.6), the following general result
holds [26].

Proposition 4.3. Suppose that assumptions (i) and (ii) hold, and consider any conjugate gradient algorithm (1.2), where dk is a
descent direction and αk is obtained by the strong Wolfe line search (1.4) and (1.6). If

k≥1

1
∥dk∥2 = ∞, (4.3)

then

lim inf
k→∞

∥gk∥ = 0. (4.4)

For uniformly convex functions, we can prove that the norm of the direction dk+1 generated by (2.1)–(2.3) is bounded above.
Therefore, by Proposition 4.3, we can prove the following result.

Theorem 4.1. Suppose that assumptions (i) and (ii) hold, and consider the algorithm (1.2) and (2.1)–(2.3), where dk is a descent
direction and αk is computed by the strong Wolfe line search (1.4) and (1.6). Suppose that f is a uniformly convex function on S,
i.e. there exists a constant µ > 0 such that

(∇f (x) − ∇f (y))T (x − y) ≥ µ ∥x − y∥2 (4.5)
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for all x, y ∈ N; then

lim
k→∞

∥gk∥ = 0. (4.6)

Proof. From Lipschitz continuity, we have ∥yk∥ ≤ L ∥sk∥. On the other hand, from uniform convexity, yTk sk ≥ µ ∥sk∥2. Using
the Cauchy inequality, assumptions (i) and (ii) and the above inequalities, we have

|δk| ≤

sTkgk+1
yTk sk +

∥yk∥2
sTkgk+1

yTk sk2 +

yTkgk+1
yTk sk ≤

Γ

µ ∥sk∥
+

L2Γ
µ2 ∥sk∥

+
LΓ

µ ∥sk∥

=
Γ

µ


1 + L +

L2

µ


1

∥sk∥
. (4.7)

At the same time,

|ηk| =

sTkgk+1
yTk sk ≤

∥sk∥ ∥gk+1∥

µ ∥sk∥2 ≤
Γ

µ ∥sk∥
. (4.8)

Therefore, using (4.7) and (4.8) in (2.1), we get

∥dk+1∥ ≤ ∥gk+1∥ + |δk| ∥sk∥ + |ηk| ∥yk∥ ≤ Γ +
Γ

µ


2 + L +

L2

µ


, (4.9)

showing that (4.3) is true. By Proposition 4.3, it follows that (4.4) is true, which for uniformly convex functions is equivalent
to (4.6). �

5. Numerical results and comparisons

In this section, we report some numerical results obtained with an implementation of the THREECG algorithm. The code
is written in Fortran and compiled with f77 (default compiler settings) on a Workstation Intel Pentium 4 with 1.8 GHz.
THREECG, like all codes of algorithms considered in this numerical study, uses loop unrolling to a depth of 5. We selected 75
large-scale unconstrained optimization test functions in the generalized or extended formwepresented in [33]. For each test
function, we undertook ten numerical experiments with the number of variables increasing as n = 1000, 2000, . . . , 10000.
The algorithm implements the Wolfe line search conditions with ρ = 0.0001, σ = 0.8 and the same stopping criterion
∥gk∥∞ ≤ 10−6, where ∥·∥∞ is the maximum absolute component of a vector. In all the algorithms we considered in this
numerical study the maximum number of iterations is limited to 10,000.

The comparisons of algorithms are given in the following context. Let f ALG1i and f ALG2i be the optimal values found by
ALG1 and ALG2, for problem i = 1, . . . , 750, respectively. We say that, in the particular problem i, the performance of ALG1
was better than the performance of ALG2 iff ALG1i − f ALG2i

 < 10−3 (5.1)

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the CPU time of ALG1 was
less than the number of iterations, or the number of function-gradient evaluations, or the CPU time corresponding to ALG2,
respectively.

In the first set of numerical experiments we compare THREECG versus ZZL-PRP (1.10) [16], ZZL-HS (1.11) [17], ZXW
(1.12) [19], ABS (1.13) [20], CHENG (1.14) [21] and PRP-DC (1.16) [24]. Fig. 1 shows the Dolan and Moré CPU performance
profile of THREECG versus all these three-term conjugate gradient algorithms.

In a performance profile plot, the top curve corresponds to the method that solved the most problems in a time that was
within a given factor of the best time. The percentage of the test problems for which a method is the fastest is given on the
left axis of the plot. The right side of the plot gives the percentage of the test problems that were successfully solved by these
algorithms, respectively. The right side is a measure of the robustness of an algorithm.

When comparing THREECG with the ZZL-PRP three-term conjugate gradient algorithm subject to CPU time metric, for
example, we see that THREECG is the top performer. The three-term accelerated conjugate gradient algorithm THREECG
is more successful and more robust than the three-term ZZL-PRP conjugate gradient algorithm. Comparing THREECG (see
Fig. 1), subject to the number of iterations, we see that THREECG was better in 341 problems (i.e. it achieved the minimum
number of iterations in 341 problems). ZZL-PRP was better in 101 problems, and they had the same number of iterations
in 296 problems. Out of 750 problems, only for 738 problems does the criterion (5.1) hold. Therefore, in comparison with
ZZL-PRP, THREECG appears to generate the best search direction and the best steplength, on average.

However, things are notwhat they seem to be. From Fig. 1, we see that for solving large-scale unconstrained optimization
problems the three-term conjugate gradient algorithms have similar performances. A close analysis of three-term conjugate
gradient algorithms shows that the search direction dk+1 is obtained as a linear combination of gk+1, dk and yk, where
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Fig. 1. THREECG versus ZZL-PRP, ZZL-HS, ZXW, ABS, CHENG and PRP-DC.

the coefficients in these linear combinations are computed using the same elements as ∥yk∥2 , ∥gk∥2 , ∥gk+1∥
2 , sTkgk+1 and

yTkgk+1 in similar computational formulae, in order to satisfy the descent property. Therefore their numerical performances
are similar.

Having in view that, when the line search is exact, (2.1) reduces to the Hestenes–Stiefel method, in the second set
of numerical experiments we compare our three-term conjugate gradient algorithm THREECG versus the HS method.
Fig. 2 shows the Dolan and Moré CPU performance profile corresponding to these algorithms. Clearly, THREECG is the top
performer in this case.

The HS method has the property that the conjugacy condition yTkdk+1 = 0 always holds, independent of the line search.
Also, the HS algorithm is not susceptible to jamming, which is a very important property. Using an exact line search,
βHS
k = βPRP

k . Therefore, the convergence properties of the HS algorithm should be similar to the convergence properties of
the PRP algorithm. But, for general nonlinear functions the convergence of the PRPmethod is uncertain. The classical Powell
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Fig. 2. THREECG versus HS.

Fig. 3. THREECG versus CG_DESCENT.

example shows that, when the function is not strongly convex, the PRP algorithm may not converge, even with an exact
line search [13]. Therefore, the HS algorithm with an exact line search may not converge for general nonlinear functions.
However, althoughHS (and PRP)may not converge in general, they often perform better than some other conjugate gradient
algorithms like FR, DY and CD.

On the other hand, observe that the THREECG algorithm is amodification of the HS algorithm. Indeed, the direction given
by (2.1)–(2.3) can be written as

dk+1 = −gk+1 +
yTkgk+1

yTk sk
sk −


1 +

∥yk∥2

yTk sk


1

yTk sk
sk −

1
yTk sk

yk

 
sTkgk+1


. (5.2)

However, sTkgk+1 tends to zero during the iterations. Apparently, this contribution to the HS direction, which tends to zero
during the iterations, determines a better direction for minimizing the function f . It is worth saying that, with a standard
Wolfe line search, yTk sk > 0 when gk ≠ 0. Hence, when the iterates jam, yk becomes tiny, while ∥gk∥ is bounded away from
zero. Consequently, when the iterates jam, the expression (∥yk∥2 (sTkgk+1))/(yTk sk)

2 in the above formulation of the direction
becomes negligible. This is the reason why THREECG is faster and more robust than HS.

In the third set of numerical experiments, we compare THREECG versus CG_DESCENT with Wolfe line search [23]. Fig. 3
presents the Dolan and Moré CPU performance profile corresponding to these algorithms.

CG_DESCENT was devised in order to ensure sufficient descent, independent of the accuracy of the line search. In
CG_DESCENT the search direction dk+1 = −gk+1 + βksk, where

βHZ
k =


yk − 2

∥yk∥2

yTk sk
sk

T
gk+1

yTk sk
, (5.3)

satisfies the sufficient descent condition gT
k dk ≤ −(7/8) ∥gk∥2. If the function f is a quadratic and the line search is exact,

then CG_DESCENT reduces to HS. In fact, CG_DESCENT is a modification of the HS algorithm. However, in CG_DESCENT the
search directions do not satisfy the conjugacy condition. Again, when iterates jam, the expression (∥yk∥2 (sTkgk+1))/(yTk sk)

2

in the above formulation of βHZ
k becomes negligible. This modification of the HS schememakes CG_DESCENT perform better

than HS [23].
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Table 1
Applications from the MINPACK-2 collection.

A1 Elastic–plastic torsion [34, pp. 41–55], c = 5
A2 Pressure distribution in a journal bearing [35], b = 10, ε = 0.1
A3 Optimal design with composite materials [36], λ = 0.008
A4 Steady-state combustion [37, pp. 292–299], [38], λ = 5
A5 Minimal surfaces with enneper conditions [39, pp. 80–85]

Table 2
Performance of THREECG versus CG_DESCENT 1,000,000 variables. CPU seconds.

THREECG CG_DESCENT
#iter #fg CPU #iter #fg CPU

A1 1,111 2,253 306.04 1,145 2,291 436.05
A2 2,837 5,702 979.27 3,368 6,737 1571.53
A3 4,507 9,104 1904.79 4,841 9,684 2904.12
A4 1,413 2,864 1128.70 1,806 3,613 2093.79
A5 1,333 2,689 546.20 1,226 2,453 713.89

TOTAL 11,201 22,612 4865.00 12,386 24,778 7719.38

On the other hand, in the THREECG algorithm the search direction is a descent one, and it satisfies the conjugacy condition
yTkdk+1 = −tk(sTkgk+1), where tk is a positive parameter which is changed at every step independent of the line search.
Besides, excepting the omission of the factor 2 in the term ((∥yk∥2 (sTkgk+1))/(yTk sk)

2)sk from the direction dk+1 in (5.2),
THREECG represents a modification of CG_DESCENT. Again, the best performance, relative to the CPU time metric, was
obtained by THREECG, the top curve in Fig. 3.

6. Solving MINPACK-2 applications

We now present comparisons between THREECG and CG_DESCENT conjugate gradient algorithms for solving some
applications from theMINPACK-2 test problem collection [25]. In Table 1,we present these applications, aswell as the values
of their parameters. The infinite-dimensional version of these problems is transformed into a finite element approximation
by triangulation. Thus a finite-dimensionalminimizationproblem is obtainedwhose variables are the values of the piecewise
linear function at the vertices of the triangulation. The discretization steps are nx = 1000 and ny = 1000, thus obtaining
minimization problems with 1,000,000 variables.

A comparison between THREECG (Powell restart criterion, ∥∇f (xk)∥∞ ≤ 10−6, ρ = 0.0001, σ = 0.8) and CG_DESCENT
(Wolfe line search, default settings, ∥∇f (xk)∥∞ ≤ 10−6) for solving these applications is given in Table 2.

Form Table 2, we see that, subject to the CPU time metric, the THREECG algorithm is the top performer again, and the
difference is significant, about 2854.38 s for solving all these five applications.

The THREECG and CG_DESCENT algorithms (and codes) are different in many respects. Since both of them use the
Wolfe line search (however, implemented in different manners), these codes mainly differ in their choice of the search
direction. THREECG appears to generate a better search direction, on average. The direction dk+1 given by (2.1)–(2.3) used in
THREECG ismore elaborate: it satisfies both the descent condition and the conjugacy condition in a restart environment. The
three-term conjugate gradient THREECG computational scheme proved to be more efficient and more robust in numerical
experiments and applications.

7. Conclusions

Three-term conjugate gradient methods represent an interesting computational innovation which produce efficient
conjugate gradient algorithms. Plenty of three-term conjugate gradient algorithms can be generated, and we can suggest
the following project in this respect. The search direction of these algorithms belonging to this project is computed like

dk+1 = −gk+1 − aksk − bkyk,

as modifications of the classical conjugate gradient algorithms FR, PRP, LS, DY, DL, CD, etc., where the scalar parameters ak
and bk are determined in such a way that the descent condition or/and the conjugacy condition is to be satisfied. Of course
some other conditions on dk+1 may be introduced. Using this idea a lot of three-term conjugate gradient algorithms can be
developed.

In this paper, a new three-term conjugate gradient algorithm, as amodification of HS or as amodification of CG_DESCENT
based on a modification of the memoryless BFGS quasi-Newton updating, for which both the descent condition and the
conjugacy condition are satisfied, has been presented. The convergence of this algorithm, for uniformly convex functions,
was proved using classical assumptions. Intensive numerical experiments using 750 unconstrained optimization test
problems of different characteristics proved that the suggested algorithm is the top performer in its class of three-
term conjugate gradient algorithms, and is faster and more robust versus HS and CG_DESCENT algorithms. Using five
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applications from the MINPACK-2 test problem collection, with 106 variables, we showed that THREECG is obviously
better than CG_DESCENT. From the above numerical experiments with 750 test problems and five real applications,
we have computational evidence that the three-term conjugate gradient algorithm THREECG represents a distinct new
computational scheme that is easy to understand and implement in efficient codes.
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