

Solving Linear Equation Systems

Neculai Andrei
1

Research Institute for Informatics,

Center for Advanced Modeling and Optimization,

8-10 Averescu Avenue, Sector 1, Bucharest, Romania

June 18, 2016

This appendix concentrates on methods for solving systems of linear equations

,Ax b

where n nA  and .nb This is a basic problem that arises in many

optimization algorithms and is crucial in the efficiency of the algorithms. Assume

that A is nonsingular, so the solution is unique for all vectors b and is given by
1 .x A b The matrix A is often called the coefficient matrix and the vector b is

called the right-hand side term. Firstly we present some cases for which Ax b

can be easily solved. In these cases the coefficient matrix has some special

structures. Further on we will focus on general systems where A has no structure

[Meyer, 2000], [Golub and Van Loan, 1996], [Demmel, 1997], [Higham, 1996]

and [Trefethen and Bau, 1997].

1. Systems with diagonal matrices

Suppose that n nA  is a diagonal and nonsingular matrix, i.e. for all ,i 0.iia 

In this case the set of linear equations Ax b can be written as ,ii i ia x b

1, , .i n Therefore, the solution is simply given by / ,i i iix b a 1, , .i n

2. Systems with upper triangular matrices. (Back substitution)

Consider the system ,Ux b where the coefficient matrix n nU  is an upper

triangular matrix in which 0,iiu  1, , ,i n i.e. there are no zero pivots.

1
 Academy of Romanian Scientists, 54 Splaiul Independenţei, Sector 5, Bucharest,

Romania.

 2

11 12 1 1 1

22 2 2 20
.

0 0

n

n

nn n n

u u u x b

u u x b

u x b

     
     
     
     
     
     

For solving this system the general back substitution is as follows:

1. Firstly compute / .n n nnx b u

2. Determine ,ix 1, 2, ,1,i n n   recursively as:

, 1 1 , 2 2 ,

1

1 1
() .

n

i i i i i i i i i n n i ik k

ii ii k i

x b u x u x u x b u x
u u

   

 

 
       

 


3. Systems with lower triangular matrices. (Forward substitution)

Consider the system ,Lx b where the coefficient matrix n nL  is a unit lower

triangular matrix, that is

1 1

21 2 2

1 2

1 0 0

1 0
.

1n n n n

x b

l x b

l l x b

     
     
     
     
     
     

For solving this system the general forward substitution is as follows:

1. Firstly compute 1 1.x b

2. Determine ,ix 2,3, ,i n recursively as:

1

,1 1 ,2 2 , 1 1

1

() .
i

i i i i i i i i ik k

k

x b l x l x l x b l x


 



      

4. Systems with orthogonal matrices

A matrix n nA  is orthogonal if ,TA A I i.e. 1 .TA A  In this case the

solution of the system Ax b can be computed by a simple matrix-vector product

.Tx A b

5. Systems with permutation matrices

Let 1 2(, , ,)n    be a permutation of (1,2, ,).n A permutation matrix is a

square matrix obtained from the identity matrix by a permutation of its rows. Every

row and column of a permutation matrix have a single 1 with 0s everywhere else. If

A is a permutation matrix, then solving Ax b is very simple: x is obtained by

permuting the entries of b by 1. 

 3

6. Gaussian Elimination (LU Factorization)

Gaussian elimination (Gauss method) is a direct method for solving linear systems

of equations ,Ax b where n nA  is a real matrix. Let A be a nonsingular

matrix, then the end result of applying the Gaussian elimination to A is an upper

triangular matrix with nonzero elements on the main diagonal, i.e.

A Gaussian elimination

* * *

0 * *
.

0 0 *

 
 
 
 
 
 

Gaussian elimination for a general small example

Let us illustrate the Gaussian elimination by means of a general small example:

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

.

a a a x b

a a a x b

a a a x b

     
     
     
          

The Gaussian elimination transforms this system to triangular form as follows.

Suppose that 11 0.a  Multiplying the first row by 21 11/a a and subtracting it from

the second row leads to the equivalent system

11 12 13 11

(2) (2) (2)
22 23 2 2

31 32 33 3 3

0 ,

a a a bx

a a x b

a a a x b

    
         
        

where
(2)
22 22 21 11 12(/) ,a a a a a 

 (2)
23 23 21 11 13(/)a a a a a 

and

 (2)
2 2 21 11 1(/) .b b a a b 

Now, multiplying the first row by 31 11/a a and subtracting it from the third row

leads to the equivalent system

11 12 13 11

(2) (2) (2)
22 23 2 2

(2) (2) (2)
332 33 3

0 ,

0

a a a bx

a a x b

xa a b

    
         
        

where
(2)
32 32 31 11 12(/) ,a a a a a 

 (2)
33 33 31 11 13(/)a a a a a 

 4

and

 (2)
3 3 31 11 1(/) .b b a a b 

Finally, assuming that (2)
22 0,a  multiplying the new second row by (2) (2)

32 22(/)a a

and subtracting it from the third row leads to the system

11 12 13 11

(2) (2) (2)
22 23 2 2

(3) (3)
333 3

0 ,

0 0

a a a bx

a a x b

xa b

    
         
        

where
(3) (2) (2) (2) (2)
33 33 32 22 23(/)a a a a a 

and

 (3) (2) (2) (2) (2)
3 3 32 22 2(/) .b b a a b 

Observe that the system obtained at the end of this process has the upper triangular

form ,Ux c where

11 12 13

(2) (2)
22 23

(3)
33

0

0 0

a a a

U a a

a

 
 

  
 
 

 and

1

(2)
2

(3)
3

,

b

c b

b

 
 

  
 
 

 which can be solved by back substitution.

General Gaussian elimination

The above process may be performed in general by creating zeros in the first

column, then in the second one, and so forth. For 1,2, , 1k n  the Gaussian

elimination is defined by the following formulae:

 (1) () () () ()(/) ,k k k k k
ij ij ik kk kja a a a a   ,i j k

and

 (1) () () () ()(/) ,k k k k k
i i ik kk kb b a a b   ,i k

where (1) ,ij ija a , 1,2, , .i j n

To be well defined, the only assumption required is that () 0,k
kka  1,2, , ,k n

hold. In the Gaussian elimination these entries are called pivots. Usually, the

following notation is used:
() () ,k kA x b

as the system obtained after (1)k  stages, 1,2, , ,k n where (1)A A and

(1) .b b The final matrix ()nA is upper triangular.

Zero Pivots – Row Interchanges

The above described Gaussian process breaks down when a pivot is zero, say
() 0.k
kka  In this case, in order to continue the Gaussian process, row interchanges

 5

are needed. We illustrate zero pivots and row interchanges by using a small general

example.

Suppose we have executed two stages of the Gaussian elimination on a system of

order 5 and at the third stage the system is (3) (3) ,A x b in the following form:
(1) (1) (1) (1) (1) (1)
11 12 13 14 15 11

(2) (2) (2) (2) (2)
22 23 24 25 22

(3) (3) (3)
334 35 3

(3) (3) (3) (3)
443 44 45 4

(3) (3) (3) (3)5
53 54 55 5

0

.0 0 0

0 0

0 0

a a a a a bx

a a a a bx

xa a b

xa a a b

xa a a b

    
    
    
     
    
    
           

In this case, if (3)
43 0a  or (3)

53 0a  holds, then the third row is interchanged with

either the fourth or the fifth row and we may continue the Gaussian process. This

interchanging to obtain nonzero pivots is called pivoting.

On the other hand, the Gaussian elimination breaks down if (3) (3) (3)
33 43 53 0.a a a  

In this case the matrix is singular. i.e.
(3) (3)
34 35

(3) (1) (2) (3) (3)
11 22 44 45

(3) (3)
54 55

0

det det 0 0.

0

a a

A a a a a

a a

 
 

  
 
  

Relationship with LU Factorization

For solving the system ,Ax b where A is nonsingular, the Gaussian elimination

consists of the following 4 steps [Demmel, 1997]:

1. Factorize the matrix A as ,A PLU where:

P is a permutation matrix,

L is a unit lower triangular matrix,

U is a nonsingular upper triangular matrix.

2. Solve the system PLUx b subject to LUx by permuting the entries of ,b

i.e. 1 .TLUx P b P b 

3. Solve the system 1LUx P b subject to Ux by forward substitution, i.e.
1 1().Ux L P b 

4. Solve the system 1 1()Ux L P b  subject to x by backward substitution,

i.e. 1 1 1(()).x U L P b  

The following result is central in the Gaussian elimination:

The following two statements are equivalent:

1. There exists a unique unit lower triangular matrix L and a nonsingular

upper triangular matrix U such that .A LU This is called LU

factorization of .A

2. All leading principal submatrices of A are nonsingular.

 6

LU factorization without pivoting can fail on nonsingular matrices and therefore

we need to introduce permutations into the Gaussian elimination.

If A is a nonsingular matrix, then there exist permutation matrices 1P and 2 ,P a

unit lower triangular matrix L and a nonsingular upper triangular matrix U such

that 1 2 .P AP LU Observe that 1P A reorders the rows of .A 2AP reorders the

columns of .A 1 2P AP reorders both the rows and the columns of .A

If A is nonsingular, then it has a nonzero entry. Therefore, we choose the

permutations 1P and 2P so that the (1,1) entry of 1 2P AP  is nonzero. Now we write

the factorization and solve for the unknown components:

11 12 11 12 11 12

1 2

21 121 22 22 21 11 21 12 22

1 0
,

0n

a A u U u U
P AP

L IA A A L u L U A

      
                

where (1) (1)
22 22, n nA A    and 1

21 12, .T nL U  Solving for the components of this

2 2 block factorization we get:

11 11 0,u a  12 12 ,U A 21 11 21.L u A

Since 11 11 0,u a  we can solve it to get 21
21

11

.
A

L
a

 Finally, 21 12 22 22L U A A 

implies that 22 22 21 12.A A L U  Observe that

11 12

1 2 11 22

21 1 22

1 0
det det det 1(det).

0n

u U
P AP u A

L I A

   
      

  

Since 1 2det det 0,P AP A     it follows that 22det A must be nonzero. Therefore,

the factorization process may continue.

Indeed, by induction there exist the permutation matrices 1P and 2P so that

1 22 2 ,P A P LU where L is a unit lower triangular matrix and U is an upper

triangular and nonsingular matrix. Substituting this in the above 2 2 block

factorization we get:

11 12 11 12

1 2

21 211 2 1 2

1 01 0 1 0

0 0 0T T T T

u U u U
P AP

L I L IP LUP P L UP

        
           

        

11 12 2

21 1 2

1 0 1 0

0 0T T

u U P

UL P L P

    
     

    

11 12 2

1 211 2

1 0 1 01 0
.

00 0T T

u U P

PL L UP P

     
      

      

Therefore, the desired factorization of A is:

11 12 2
1 2 1 2

1 2 1 21

1 0 1 0 1 0
.

0 0 0

u U P
P AP P A P

P P PL L U

          
            

          

 7

The next two results state simple ways to choose the permutation matrices 1P and

2P to guarantee that the Gaussian elimination will run on nonsingular matrices.

Gaussian elimination with partial pivoting

We can choose the permutation matrices 2P I  and 1P in such a way that 11a is

the largest entry in absolute value in its column, which implies that 21
21

11

A
L

a
 has

entries bounded by 1 in absolute value. More generally, at step i of the Gaussian

elimination, where we are computing the thi column of ,L we reorder rows i

through n so that the largest entry in the column is on the diagonal. This is called

„Gaussian elimination with partial pivoting”, or GEPP for short. GEPP

guarantees that all entries of L are bounded by one in absolute value.

Gaussian elimination with complete pivoting

We can choose the permutation matrices 2P and 1P in such a way that 11a is the

largest entry in absolute value in the whole matrix. More generally, at step i of the

Gaussian elimination, where we are computing the thi column of ,L we reorder

rows and columns i through n so that the largest entry in this submatrix is on the

diagonal. This is called „Gaussian elimination with complete pivoting”, or GECP

for short.

The following algorithm is an implementation of the results mentioned above by

performing permutations, by computing the first column of L and the first row of

,U and then by updating 22A to get 22 22 21 12.A A L U 

 Algorithm GE (LU factorization with pivoting)

 for 1i  to 1n 

 apply permutations so that 0iia  (permute L and U too)

 /* for example, for GEPP, swap rows j and i of A and of L

 where jia is the largest entry in (: ,) ;A i n i for GECP, swap

 rows j and i of A and of ,L and columns k and i of A and

 of ,U where jka is the largest entry in (: , :)A i n i n */

 /* compute column i of L */

 for 1j i  to n

 /ji ji iil a a

 end for

 /* compute row i of U */

 for j i to n

 ij iju a

 end for

 8

 /* update 22A */

 for 1j i  to n

 for 1k i  to n

 jk jk ji ika a l u 

 end for

 end for

 end for

Remark

Once the column i of A has been used to compute the column i of ,L it will

never be used later in the algorithm GE. Similarly, row i of A is never used after

computing row i of .U This property allows us to overwrite L and U on top of

A as soon as they are computed. Therefore, there is no need for extra space to

store these matrices. L can occupy the strict lower triangle of A (the ones on the

diagonal of L are not stored explicitly). Similarly, U can occupy the upper

triangle of .A Therefore, the algorithm can be simplified as:

 Algorithm LU (LU factorization with pivoting, overwriting L and U on A)

 for 1i  to 1n 

 apply permutations so that 0iia 

 for 1j i  to n

 /ji ji iia a a

 end for

 for 1j i  to n

 for 1k i  to n

 jk jk ji ika a a a 

 end for

 end for

 end for

7. Cholesky factorization

If n nA  is symmetric and positive definite, then it can be factored as

,TA LL

where L is a lower triangular and nonsingular matrix with positive diagonal

elements. This is called the Cholesky factorization of A and can be interpreted as a

symmetric LU factorization with .TL U The matrix ,L which is uniquely

determined by ,A is called the Cholesky factor of .A The algorithm is as follows:

 9

Cholesky factorization

for 1j  to n

  
1/2

1 2

1

j

jj jj jkk
l a l




 

 for 1i j  to n

1

1
() /

j

ij ij ik jk jjk
l a l l l




 

 end for

end for

If A is not positive definite, then the Cholesky factorization will fail by attempting

to compute the square root of a negative number or by dividing by zero. This is the

cheapest way to test if a symmetric matrix is positive definite.

The Cholesky factorization can be used to solve the system Ax b when A is

symmetric and positive definite.

Solving linear systems by Cholesky factorization

1. Cholesky factorization. Factor A as .TA LL

2. Forward substitution. Solve .Lz b

3. Back substitution. Solve .TL x z

8. The factor-solve method

For solving the linear system Ax b the basic approach is based on expressing A

as a product of nonsingular matrices:

1 2 .rA A A A

Therefore, the solution is given by:
1 1 1 1

1 1 .r rx A b A A A b   
 

The solution x is computed working from right to left as:

 1
1 1 ,z A b

 1 1 1
2 2 1 2 1 ,z A z A A b   

 1 1 1 1
1 1 2 1 2 1 ,r r r r rz A z A A A b   
     

 1 1 1 1
1 1 1 .r r r rx A z A A A b   
  

We see that the thi step of this process requires computing 1
1,i i iz A z
 i.e.

solving the linear system 1.i i iA z z  The step of expressing A in factored form is

called the factorization step. On the other hand, the process of computing 1x A b

recursively by solving a sequence of systems of the form 1,i i iA z z  is called the

solve step. The idea of the factor-solve method is to determine the factors ,iA

 10

1, , ,i r as simple as possible, i.e. diagonal, lower or upper triangular,

permutation, orthogonal, etc.

Factor-solve method and LU factorization.

Assume that in the general Gaussian elimination () 0k
kka  hold for every

1, , .k n Referring to the general Gaussian elimination, we see that
() /k k

ik ik kkl a a for ,i k is exactly what is used to multiply the thk row and

subsequently subtract it from the thi row in building the new thi row. ikl is called

a multiplier.

Now, let ()kL be the unit lower triangular matrix which differs from the identity

matrix only in the thk column below the main diagonal, where the negatives of the

multipliers ikl appear. These matrices are called elementary lower triangular

matrices. With these matrices, the general Gaussian elimination can be expressed

in matrix notation as:
(1) () () ,k k kA L A 

where (1) .A A Using these relations for all values of k we get:
() (1) (2) (1) .n n nU A L L L A  

The inverse of ()kL is very easy to be computed: by changing the sign of the

multipliers.

()

1,

,

1

1

1 ,

1

1

k

k k

n k

L

l

l



 
 
 
 
 

  
 
 
 
  

 () 1

1,

,

1

1

1()

1

1

k

k k

n k

L

l

l





 
 
 
 
 

  
 
 
 
 
 

Therefore, from the above relations we get:
(1) 1 (2) 1 (1) 1() () () .nA L L L U   

The solution of the linear system Ax b is very easy to be computed by using the

structure of the ()kL and U matrices.

9. Solving underdetermined linear systems

Let us consider the linear system of equations ,Ax b where ,m nA  and

.m n Assume that () ,rank A m so there is at least one solution for all .b In

many applications it is sufficient to know one particular solution .x In other

situations it is necessary to have a parameterization of all solutions as

 11

   : : ,n mx Ax b Zy x y    

where Z is a matrix whose columns form a basis for the null space of .A

The solution of the underdetermined system Ax b is very easy to be

determined if a m m nonsingular submatrix of A is known. Assume that the first

m columns of A are linearly independent. The system can be written as

  1

1 2 1 1 2 2

2

,
x

Ax A A A x A x b
x

 
    

 

where 1
m mA  is nonsingular. Therefore, we can express 1x as

1
1 1 2 2().x A b A x 

A particular solution for the system Ax b is 2 0x  and 1
1 1 .x A b All solutions

of Ax b can be parameterized using 2
n mx  as a free parameter. We can

write:
1 1

1 1 2 1
2

2

.
0

x A A A b
x x

x I

      
      
     

This gives the following parameterization:
1

1 2 ,
A A

Z
I

 
  
 

1

1 .
0

A b
x

 
  
 

10. The QR factorization

The matrix n mA  with m n and rankA m can be factored as:

 1 2 ,
0

R
A Q Q

 
  

 

where 1
n mQ  and ()

2
n n mQ   satisfy

1 1 ,TQ Q I 2 2 ,TQ Q I 1 2 0TQ Q 

and m mR  is upper triangular with nonzero diagonal elements. This is called

the QR factorization of .A

The QR factorization can be used for solving the underdetermined systems

of linear equations ,Ax b where m nA  with .m n Consider that

 1 2
0

T R
A Q Q

 
  

 

is the QR factorization of .TA Therefore, 1
1()Tx Q R b satisfies the equations:

1
1 1() .T T TAx R Q Q R b b 

The columns of 2Q form a basis for the nullspace of .A Therefore, the complete

solution set of the above system can be parameterized as

2{ : }.n mx x Q z z   

 12

Usually, the QR factorization is used for solving underdetermined systems of linear

equations. The main drawback of this method is that it is difficult to exploit the

sparsity of the matrix. Even if A is sparse, the factor Q is usually dense.

11. LU factorization of rectangular matrices

The matrix n mA  with m n and rankA m can be factored as

,A PLU

where n nP  is a permutation matrix, n mL  is unit lower triangular (i.e.

0ijl  for i j and 1)iil  and m mU  is nonsingular and upper triangular. If

the matrix A is sparse, then the LU factorization usually includes row and column

permutation, i.e. A is factored as

1 2,A PLUP

where 1 ,n nP  2
m mP  are permutation matrices. The LU factorization of a

sparse rectangular matrix can be calculated efficiently at a cost that is much lower

than for dense matrices.

 The LU factorization can be used for solving underdetermined systems of

linear equations. Consider the system of linear equations ,Ax b where m nA 

with .m n Suppose that the matrix TA is LU factored as TA PLU and L is

partitioned as

1

2

,
L

L
L

 
  
 

where 1
m mL  and ()

2 .n m mL   Then the solution set of the system can be

parameterized as

{ : } { : },n mx Ax b Zz x z    

with
1

1 2()
,

T TL L
Z P

I

 
  

 

1 1
1() ()

.
0

T TL U b
x P

  
  

 

The LU factorization of rectangular matrices is used in MINOS and SNOPT

packages [Saunders, 2015].

References
Boyd, S., Vandenberghe, L., (2006) Convex Optimization. Cambridge University

Press, Cambridge (UK), 2
nd

 edition, 2006.

Davis, T.A., (2006) Direct Methods for Sparse Systems. SIAM, Philadelphia, PA,

2006.

Duff, I.S., Erismann, A.M., Reid, J.K., (1986) Direct Methods for Sparse Matrices.

Clarendon Press, 1986.

 13

Demmel, J.W., (1997) Applied Numerical Linear Algebra, SIAM, Philadelphia,

PA, 1997.

George, A., Liu, J.W.H., (1981) Computer Solution of Large-Sparse Positive

Definite Systems, Prentice-Hall, 1981.

Gill, P.E., Murray, W., Wright, M.H., (1981) Practical Optimization. Academic

Press, 1981.

Golub, G.H., Van Loan, C.F., (1996) Matrix computation. Johns Hopkins

University Press, Baltimore, MD. Third edition, 1996.

Higham, N.J., (1996) Accuracy and Stability of Numerical Algorithms. SIAM, PA,

Philadelphia, 1996.

Meyer, C.D., (2000) Matrix Analysis and Applied Linear Algebra. SIAM,

Philadelphia, PA, 2000.

Nocedal, J., Wright, S.J., (2006) Numerical optimization. Springer Series in

Operations Research. Springer Science+Business Media, New York, Second

ed., 2006.

Luenberger, D.G., (1984) Introduction to linear and nonlinear programming.

Addison-Wesley Publishing Company, Reading, Second ed., 1984.

Luenberger, D. G., Ye, Y., (2008) Linear and nonlinear programming.

International Series in Operations Research & Management Science 116

(Third ed.). New York, Springer. 2008.

Osterby, O., Zlatev, Z., (1983) Direct Methods for Sparse Matrices. Springer

Verlag, New York, 1983.

Saad, Y., (1996) Iterative methods for sparse linear systems. PWS Publishing

Company, Boston, 1996.

Saad, Y., (2011) Numerical Methods for Large Eigenvalue Problems. Second

Edition, SIAM, Philadelphia, PA, 2011.

Schendel, U., (1989) Sparse Matrices – Numerical aspects with applications for

scientists and engineers. Ellis Horwood Limited, Chichester, 1989.

Trefethen, L.N., Bau III, D., Numerical Linear Algebra, SIAM, Philadelphia, PA,

1997.

http://en.wikipedia.org/wiki/David_G._Luenberger
http://en.wikipedia.org/wiki/Yinyu_Ye

