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This appendix concentrates on methods for solving systems of linear equations  

,Ax b  

where n nA   and .nb  This is a basic problem that arises in many 

optimization algorithms and is crucial in the efficiency of the algorithms. Assume 

that A  is nonsingular, so the solution is unique for all vectors b  and is given by 
1 .x A b  The matrix A  is often called the coefficient matrix and the vector b  is 

called the right-hand side term. Firstly we present some cases for which Ax b  

can be easily solved. In these cases the coefficient matrix has some special 

structures. Further on we will focus on general systems where A  has no structure 

[Meyer, 2000], [Golub and Van Loan, 1996], [Demmel, 1997], [Higham, 1996] 

and [Trefethen and Bau, 1997]. 

 

1. Systems with diagonal matrices 

 

Suppose that n nA   is a diagonal and nonsingular matrix, i.e. for all ,i  0.iia   

In this case the set of linear equations Ax b  can be written as ,ii i ia x b  

1, , .i n  Therefore, the solution is simply given by / ,i i iix b a  1, , .i n  

 

2. Systems with upper triangular matrices. (Back substitution) 

 

Consider the system ,Ux b  where the coefficient matrix n nU   is an upper 

triangular matrix in which 0,iiu   1, , ,i n  i.e. there are no zero pivots. 
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For solving this system the general back substitution is as follows: 

1. Firstly compute / .n n nnx b u  

2. Determine ,ix  1, 2, ,1,i n n    recursively as: 

, 1 1 , 2 2 ,

1

1 1
( ) .

n

i i i i i i i i i n n i ik k

ii ii k i

x b u x u x u x b u x
u u

   

 

 
       

 
  

 

 

3. Systems with lower triangular matrices. (Forward substitution) 

 

Consider the system ,Lx b  where the coefficient matrix n nL   is a unit lower 

triangular matrix, that is 

1 1

21 2 2

1 2

1 0 0

1 0
.

1n n n n

x b

l x b

l l x b

     
     
     
     
     
     

 

For solving this system the general forward substitution is as follows: 

1. Firstly compute 1 1.x b  

2. Determine ,ix  2,3, ,i n  recursively as: 

1

,1 1 ,2 2 , 1 1

1

( ) .
i

i i i i i i i i ik k

k

x b l x l x l x b l x


 



        

 

 

4. Systems with orthogonal matrices 

 

A matrix n nA   is orthogonal if ,TA A I  i.e. 1 .TA A   In this case the 

solution of the system Ax b  can be computed by a simple matrix-vector product 

.Tx A b   

 

 

5. Systems with permutation matrices 

 

Let 1 2( , , , )n     be a permutation of (1,2, , ).n  A permutation matrix is a 

square matrix obtained from the identity matrix by a permutation of its rows. Every 

row and column of a permutation matrix have a single 1 with 0s everywhere else. If 

A  is a permutation matrix, then solving Ax b  is very simple: x  is obtained by 

permuting the entries of b by 1.   
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6. Gaussian Elimination (LU Factorization) 

 

Gaussian elimination (Gauss method) is a direct method for solving linear systems 

of equations ,Ax b where n nA   is a real matrix. Let A  be a nonsingular 

matrix, then the end result of applying the Gaussian elimination to A  is an upper 

triangular matrix with nonzero elements on the main diagonal, i.e. 

 

A  Gaussian elimination  

* * *

0 * *
.

0 0 *

 
 
 
 
 
 

 

 

Gaussian elimination for a general small example 

Let us illustrate the Gaussian elimination by means of a general small example: 

 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

.

a a a x b

a a a x b

a a a x b

     
     
     
          

 

The Gaussian elimination transforms this system to triangular form as follows. 

Suppose that 11 0.a   Multiplying the first row by 21 11/a a  and subtracting it from 

the second row leads to the equivalent system 

 

11 12 13 11

(2) (2) (2)
22 23 2 2

31 32 33 3 3

0 ,

a a a bx

a a x b

a a a x b

    
         
        

 

where  
(2)
22 22 21 11 12( / ) ,a a a a a   

                                              (2)
23 23 21 11 13( / )a a a a a   

and 

                                              (2)
2 2 21 11 1( / ) .b b a a b   

Now, multiplying the first row by 31 11/a a  and subtracting it from the third row 

leads to the equivalent system 

 

11 12 13 11

(2) (2) (2)
22 23 2 2

(2) (2) (2)
332 33 3

0 ,

0

a a a bx

a a x b

xa a b

    
         
        

 

where 
(2)
32 32 31 11 12( / ) ,a a a a a   

                                               (2)
33 33 31 11 13( / )a a a a a   
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and 

                                              (2)
3 3 31 11 1( / ) .b b a a b   

Finally, assuming that (2)
22 0,a   multiplying the new second row by (2) (2)

32 22( / )a a  

and subtracting it from the third row leads to the system 

 

11 12 13 11

(2) (2) (2)
22 23 2 2

(3) (3)
333 3

0 ,

0 0

a a a bx

a a x b

xa b

    
         
        

 

where 
(3) (2) (2) (2) (2)
33 33 32 22 23( / )a a a a a   

and 

                                             (3) (2) (2) (2) (2)
3 3 32 22 2( / ) .b b a a b   

Observe that the system obtained at the end of this process has the upper triangular 

form ,Ux c  where 

11 12 13

(2) (2)
22 23

(3)
33

0

0 0

a a a

U a a

a

 
 

  
 
 

     and     

1

(2)
2

(3)
3

,

b

c b

b

 
 

  
 
 

 

 which can be solved by back substitution. 

 

General Gaussian elimination 

The above process may be performed in general by creating zeros in the first 

column, then in the second one, and so forth. For 1,2, , 1k n   the Gaussian 

elimination is defined by the following formulae: 

                                               ( 1) ( ) ( ) ( ) ( )( / ) ,k k k k k
ij ij ik kk kja a a a a      ,i j k  

and 

                                               ( 1) ( ) ( ) ( ) ( )( / ) ,k k k k k
i i ik kk kb b a a b      ,i k  

where (1) ,ij ija a  , 1,2, , .i j n  

To be well defined, the only assumption required is that ( ) 0,k
kka   1,2, , ,k n  

hold. In the Gaussian elimination these entries are called pivots. Usually, the 

following notation is used: 
( ) ( ) ,k kA x b  

as the system obtained after ( 1)k   stages, 1,2, , ,k n  where (1)A A  and 

(1) .b b  The final matrix ( )nA  is upper triangular. 

 

Zero Pivots – Row Interchanges 

The above described Gaussian process breaks down when a pivot is zero, say 
( ) 0.k
kka   In this case, in order to continue the Gaussian process, row interchanges 
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are needed. We illustrate zero pivots and row interchanges by using a small general 

example.  

Suppose we have executed two stages of the Gaussian elimination on a system of 

order 5 and at the third stage the system is (3) (3) ,A x b  in the following form: 
(1) (1) (1) (1) (1) (1)
11 12 13 14 15 11

(2) (2) (2) (2) (2)
22 23 24 25 22

(3) (3) (3)
334 35 3

(3) (3) (3) (3)
443 44 45 4

(3) (3) (3) (3)5
53 54 55 5

0

.0 0 0

0 0

0 0

a a a a a bx

a a a a bx

xa a b

xa a a b

xa a a b

    
    
    
     
    
    
           

 

 

In this case, if (3)
43 0a   or (3)

53 0a   holds, then the third row is interchanged with 

either the fourth or the fifth row and we may continue the Gaussian process. This 

interchanging to obtain nonzero pivots is called pivoting.  

On the other hand, the Gaussian elimination breaks down if (3) (3) (3)
33 43 53 0.a a a    

In this case the matrix is singular. i.e. 
(3) (3)
34 35

(3) (1) (2) (3) (3)
11 22 44 45

(3) (3)
54 55

0

det det 0 0.

0

a a

A a a a a

a a

 
 

  
 
  

 

 

Relationship with LU Factorization 

For solving the system ,Ax b  where A  is nonsingular, the Gaussian elimination 

consists of the following 4 steps [Demmel, 1997]: 

1. Factorize the matrix A  as ,A PLU  where: 

P  is a permutation matrix, 

L  is a unit lower triangular matrix, 

U  is a nonsingular upper triangular matrix. 

2. Solve the system PLUx b  subject to LUx  by permuting the entries of ,b  

i.e. 1 .TLUx P b P b   

3. Solve the system 1LUx P b  subject to Ux  by forward substitution, i.e. 
1 1( ).Ux L P b   

4. Solve the system 1 1( )Ux L P b   subject to x  by backward substitution, 

i.e. 1 1 1( ( )).x U L P b    

 

The following result is central in the Gaussian elimination: 

The following two statements are equivalent: 

1. There exists a unique unit lower triangular matrix L  and a nonsingular 

upper triangular matrix U  such that .A LU  This is called LU 

factorization of .A  

2. All leading principal submatrices of A  are nonsingular. 
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LU factorization without pivoting can fail on nonsingular matrices and therefore 

we need to introduce permutations into the Gaussian elimination. 

 

If A  is a nonsingular matrix, then there exist permutation matrices 1P  and 2 ,P  a 

unit lower triangular matrix L  and a nonsingular upper triangular matrix U  such 

that 1 2 .P AP LU  Observe that 1P A  reorders the rows of .A  2AP  reorders the 

columns of .A  1 2P AP  reorders both the rows and the columns of .A  

 

If A  is nonsingular, then it has a nonzero entry. Therefore, we choose the 

permutations 1P  and 2P  so that the (1,1) entry of 1 2P AP   is nonzero. Now we write 

the factorization and solve for the unknown components: 

11 12 11 12 11 12

1 2

21 121 22 22 21 11 21 12 22

1 0
,

0n

a A u U u U
P AP

L IA A A L u L U A

      
                

 

where ( 1) ( 1)
22 22, n nA A     and 1

21 12, .T nL U   Solving for the components of this 

2 2  block factorization we get: 

11 11 0,u a     12 12 ,U A    21 11 21.L u A  

Since 11 11 0,u a   we can solve it to get 21
21

11

.
A

L
a

  Finally, 21 12 22 22L U A A   

implies that 22 22 21 12.A A L U   Observe that  

11 12

1 2 11 22

21 1 22

1 0
det det det 1( det ).

0n

u U
P AP u A

L I A

   
      

  
 

Since 1 2det det 0,P AP A      it follows that 22det A  must be nonzero. Therefore, 

the factorization process may continue. 

Indeed, by induction there exist the permutation matrices 1P  and 2P  so that 

1 22 2 ,P A P LU  where L  is a unit lower triangular matrix and U  is an upper 

triangular and nonsingular matrix. Substituting this in the above 2 2  block 

factorization we get: 

 

  
11 12 11 12

1 2

21 211 2 1 2

1 01 0 1 0

0 0 0T T T T

u U u U
P AP

L I L IP LUP P L UP

        
           

        
 

            

11 12 2

21 1 2

1 0 1 0

0 0T T

u U P

UL P L P

    
     

    

11 12 2

1 211 2

1 0 1 01 0
.

00 0T T

u U P

PL L UP P

     
      

      
 

 

Therefore, the desired factorization of A  is: 

11 12 2
1 2 1 2

1 2 1 21

1 0 1 0 1 0
.

0 0 0

u U P
P AP P A P

P P PL L U

          
            

          
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The next two results state simple ways to choose the permutation matrices 1P  and 

2P  to guarantee that the Gaussian elimination will run on nonsingular matrices. 

 

Gaussian elimination with partial pivoting 

We can choose the permutation matrices 2P I   and 1P  in such a way that 11a  is 

the largest entry in absolute value in its column, which implies that 21
21

11

A
L

a
  has 

entries bounded by 1 in absolute value. More generally, at step i  of the Gaussian 

elimination, where we are computing the thi  column of ,L  we reorder rows i  

through n  so that the largest entry in the column is on the diagonal. This is called 

„Gaussian elimination with partial pivoting”, or GEPP for short. GEPP 

guarantees that all entries of L  are bounded by one in absolute value. 

 

Gaussian elimination with complete pivoting 

We can choose the permutation matrices 2P  and 1P  in such a way that 11a  is the 

largest entry in absolute value in the whole matrix. More generally, at step i  of the 

Gaussian elimination, where we are computing the thi column of ,L  we reorder 

rows and columns i  through n  so that the largest entry in this submatrix is on the 

diagonal. This is called „Gaussian elimination with complete pivoting”, or GECP 

for short. 

 

The following algorithm is an implementation of the results mentioned above by 

performing permutations, by computing the first column of L  and the first row of 

,U  and then by updating 22A  to get 22 22 21 12.A A L U   

 

   Algorithm GE (LU factorization with pivoting) 

     for 1i   to 1n   

 apply permutations so that 0iia   (permute L  and U  too)  

     /* for example, for GEPP, swap rows j  and i  of A  and of L   

                    where jia  is the largest entry in ( : , ) ;A i n i  for GECP, swap  

                    rows j  and i  of A  and of ,L  and columns k  and i  of A  and  

                   of ,U   where  jka  is the largest entry in  ( : , : )A i n i n  */ 

 /* compute column i  of L  */ 

 for 1j i   to n  

      /ji ji iil a a  

 end for 

 /* compute row i  of U  */ 

 for j i  to n  

      ij iju a  

 end for 



 

 8 

 /* update 22A  */ 

 for 1j i   to n  

     for 1k i   to n  

          jk jk ji ika a l u   

     end for 

 end for 

     end for   

 

 

Remark 

Once the column i  of A  has been used to compute the column i  of ,L  it will 

never be used later in the algorithm GE. Similarly, row i  of A  is never used after 

computing row i  of .U  This property allows us to overwrite L  and U  on top of 

A  as soon as they are computed. Therefore, there is no need for extra space to 

store these matrices. L  can occupy the strict lower triangle of A  (the ones on the 

diagonal of L  are not stored explicitly). Similarly, U  can occupy the upper 

triangle of .A  Therefore, the algorithm can be simplified as: 

 

   Algorithm LU (LU factorization with pivoting, overwriting L and U on A ) 

     for 1i   to 1n   

 apply permutations so that 0iia   

 for 1j i   to n  

      /ji ji iia a a  

 end for 

 for 1j i   to n  

     for 1k i   to n  

          jk jk ji ika a a a   

     end for 

 end for 

     end for   

 

 

 

7. Cholesky factorization 

 

If n nA   is symmetric and positive definite, then it can be factored as 

,TA LL  

where L  is a lower triangular and nonsingular matrix with positive diagonal 

elements. This is called the Cholesky factorization of A  and can be interpreted as a 

symmetric LU factorization with .TL U  The matrix ,L  which is uniquely 

determined by ,A  is called the Cholesky factor of .A  The algorithm is as follows: 
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Cholesky factorization 

for 1j   to n  

      
1/2

1 2

1

j

jj jj jkk
l a l




   

     for 1i j   to n  

           
1

1
( ) /

j

ij ij ik jk jjk
l a l l l




   

     end for 

end for  

 

If A  is not positive definite, then the Cholesky factorization will fail by attempting 

to compute the square root of a negative number or by dividing by zero. This is the 

cheapest way to test if a symmetric matrix is positive definite.  

The Cholesky factorization can be used to solve the system Ax b  when A  is 

symmetric and positive definite. 

 

Solving linear systems by Cholesky factorization 

1. Cholesky factorization. Factor A  as .TA LL  

2. Forward substitution. Solve .Lz b  

3. Back substitution. Solve .TL x z  

 

 

8. The factor-solve method 

 

For solving the linear system Ax b  the basic approach is based on expressing A  

as a product of nonsingular matrices: 

1 2 .rA A A A  

Therefore, the solution is given by: 
1 1 1 1

1 1 .r rx A b A A A b   
   

The solution x  is computed working from right to left as: 

                                             1
1 1 ,z A b  

                                             1 1 1
2 2 1 2 1 ,z A z A A b     

                                                     

                                             1 1 1 1
1 1 2 1 2 1 ,r r r r rz A z A A A b   
       

                                             1 1 1 1
1 1 1 .r r r rx A z A A A b   
    

We see that the thi  step of this process requires computing 1
1,i i iz A z
  i.e. 

solving the linear system 1.i i iA z z   The step of expressing A  in factored form is 

called the factorization step. On the other hand, the process of computing 1x A b  

recursively by solving a sequence of systems of the form 1,i i iA z z   is called the 

solve step.  The idea of the factor-solve method is to determine the factors ,iA  



 

 10 

1, , ,i r  as simple as possible, i.e. diagonal, lower or upper triangular, 

permutation, orthogonal, etc.  

 

Factor-solve method and LU factorization.  

Assume that in the general Gaussian elimination ( ) 0k
kka   hold for every 

1, , .k n  Referring to the general Gaussian elimination, we see that 
( ) /k k

ik ik kkl a a  for ,i k  is exactly what is used to multiply the thk row and 

subsequently subtract it from the thi  row in building the new thi  row. ikl  is called 

a multiplier.  

Now, let ( )kL  be the unit lower triangular matrix which differs from the identity 

matrix only in the thk  column below the main diagonal, where the negatives of the 

multipliers ikl  appear. These matrices are called elementary lower triangular 

matrices. With these matrices, the general Gaussian elimination can be expressed 

in matrix notation as: 
( 1) ( ) ( ) ,k k kA L A   

where (1) .A A  Using these relations for all values of k  we get: 
( ) ( 1) ( 2) (1) .n n nU A L L L A    

The inverse of ( )kL  is very easy to be computed: by changing the sign of the 

multipliers.  

 

( )

1,

,

1

1

1 ,

1

1

k

k k

n k

L

l

l



 
 
 
 
 

  
 
 
 
  

     ( ) 1

1,

,

1

1

1( )

1

1

k

k k

n k

L

l

l





 
 
 
 
 

  
 
 
 
 
 

 

 

Therefore, from the above relations we get: 
(1) 1 (2) 1 ( 1) 1( ) ( ) ( ) .nA L L L U     

The solution of the linear system Ax b  is very easy to be computed by using the 

structure of the ( )kL and U  matrices. 

 

 

9. Solving underdetermined linear systems 

 

Let us consider the linear system of equations ,Ax b  where ,m nA   and 

.m n  Assume that ( ) ,rank A m  so there is at least one solution for all .b  In 

many applications it is sufficient to know one particular solution .x  In other 

situations it is necessary to have a parameterization of all solutions as  
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   : : ,n mx Ax b Zy x y      

where Z  is a matrix whose columns form a basis for the null space of .A  

The solution of the underdetermined system Ax b  is very easy to be 

determined if a m m  nonsingular submatrix of A  is known. Assume that the first 

m  columns of A  are linearly independent. The system can be written as 

  1

1 2 1 1 2 2

2

,
x

Ax A A A x A x b
x

 
    

 
 

where 1
m mA   is nonsingular. Therefore, we can express 1x  as  

1
1 1 2 2( ).x A b A x   

A particular solution for the system Ax b  is 2 0x   and 1
1 1 .x A b  All solutions 

of Ax b  can be parameterized using 2
n mx   as a free parameter. We can 

write: 
1 1

1 1 2 1
2

2

.
0

x A A A b
x x

x I

      
      
     

 

This gives the following parameterization:  
1

1 2 ,
A A

Z
I

 
  
 

   
1

1 .
0

A b
x

 
  
 

 

 

 

10. The QR factorization 

 

The matrix n mA   with m n  and rankA m  can be factored as: 

 1 2 ,
0

R
A Q Q

 
  

 
 

where 1
n mQ   and ( )

2
n n mQ    satisfy 

1 1 ,TQ Q I    2 2 ,TQ Q I    1 2 0TQ Q   

and m mR   is upper triangular with nonzero diagonal elements. This is called 

the QR factorization of .A  

The QR factorization can be used for solving the underdetermined systems 

of linear equations ,Ax b  where m nA   with .m n  Consider that  

 1 2
0

T R
A Q Q

 
  

 
 

is the QR factorization of .TA  Therefore, 1
1( )Tx Q R b  satisfies the equations: 

1
1 1( ) .T T TAx R Q Q R b b   

The columns of 2Q  form a basis for the nullspace of .A  Therefore, the complete 

solution set of the above system can be parameterized as 

2{ : }.n mx x Q z z     
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Usually, the QR factorization is used for solving underdetermined systems of linear 

equations. The main drawback of this method is that it is difficult to exploit the 

sparsity of the matrix. Even if A  is sparse, the factor Q  is usually dense. 

 

 

11. LU factorization of rectangular matrices 

 

The matrix n mA   with m n  and rankA m  can be factored as 

,A PLU  

where n nP   is a permutation matrix, n mL   is unit lower triangular (i.e. 

0ijl   for i j  and 1)iil   and m mU   is nonsingular and upper triangular. If 

the matrix A  is sparse, then the LU factorization usually includes row and column 

permutation, i.e. A  is factored as 

1 2,A PLUP  

where 1 ,n nP   2
m mP    are permutation matrices. The LU factorization of a 

sparse rectangular matrix can be calculated efficiently at a cost that is much lower 

than for dense matrices. 

 The LU factorization can be used for solving underdetermined systems of 

linear equations. Consider the system of linear equations ,Ax b  where m nA   

with .m n  Suppose that the matrix TA  is LU factored as TA PLU  and L  is 

partitioned as  

1

2

,
L

L
L

 
  
 

 

where 1
m mL   and ( )

2 .n m mL    Then the solution set of the system can be 

parameterized as  

{ : } { : },n mx Ax b Zz x z      

with  
1

1 2( )
,

T TL L
Z P

I

 
  

 
    

1 1
1( ) ( )

.
0

T TL U b
x P

  
  

 
 

The LU factorization of rectangular matrices is used in MINOS and SNOPT 

packages [Saunders, 2015]. 
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