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Abstract. In this work we present and analyze a new scaled conjugate gradient algorithm
and its implementation, based on an interpretation of the secant equation and on the
inexact Wolfe line search conditions. The best spectral conjugate gradient algorithm SCG
by Birgin and Martinez [3], which is mainly a scaled variant of Perry’s [13], is modified in
such a manner to overcome the lack of positive definiteness of the matrix defining the
search direction. This modification is based on the quasi-Newton BFGS updating formula.
The computational scheme is embedded in the restart philosophy of Beale-Powell. The
parameter scaling the gradient is selected as spectral gradient or in an anticipative manner
by means of a formula using the function values in two successive points. In very mild
conditions it is shown that, for strongly convex functions, the algorithm is global
convergent. Preliminary computational results, for a set consisting of 500 unconstrained
optimization test problems, show that this new scaled conjugate gradient algorithm
substantially outperforms the spectral conjugate gradient SCG algorithm.
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1. Introduction
The conjugate gradient methods represent an important innovation for solving large-scale
unconstrained optimization problems

min f(x), (1
where f:R" — R is continuously differentiable and its gradient is available. These

methods generate a sequence x, of approximations to the minimum x of £, in which

X =X, 0O d,, ()
diwy ==8in T Bid,, (3)

where g, = Uf(x,), a, is selected to minimize f(x)along the search direction d, , and
B, is a scalar parameter. The iterative process is initialized with an initial point x, and
d, =—g,. A lot of versions of conjugate gradient methods which correspond to the
selection procedure of parameter 3, are already known. When the function f is quadratic
and O, is selected to minimize f(x) along the direction d, , then all choices of [3, are
equivalent, but for general nonlinear functions different choices of 3, give algorithms with
very different convergence performances. A history of conjugate gradient and Lanczos
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algorithms from their very beginning until 1976 is presented by Golub and O’Leary [9]. An
excellent survey of nonlinear conjugate gradient methods with special attention to global
convergence properties is made by Hager and Zhang [11].

This paper is motivated by a variant of the conjugate gradient algorithm, called
spectral conjugate gradient (SCG), given by Birgin and Martinez [3]. Preserving the nice
geometrical properties of Perry’s direction, Birgin and Martinez present a conjugate gradient
algorithm in which the parameter scaling the gradient defining the search direction is selected
by means of a spectral formula suggested for the first time by Barzilai and Borwein [2].
Numerical experiments with this algorithm proved that this computational scheme
outperforms Polak-Ribié¢re and Fletcher-Reeves and is competitive with CONMIN of Shanno
and Phua [19] and SGM of Raydan [16]. Another recent conjugate gradient scheme related to
the Perry/Shanno method is CG_DESCENT of Hager and Zhang [10].

In this paper we modify the best algorithm of Birgin and Martinez in order to
overcome the lack of positive definiteness of the matrix defining the search direction. This is
done using the quasi-Newton BFGS updating philosophy, thus obtaining a new descent
direction. Using the restart technology of Beale-Powell we get a new scaled conjugate
gradient algorithm in which the scaling parameter is selected as spectral gradient or in an
anticipative manner using the function values in two successive points. The algorithm
implements both Wolfe line search conditions.

The paper is organized as follows: In section 2 we present the scaled conjugate
gradient method with restart. A complete description of the scaled conjugate gradient
algorithm is shown in section 3. The algorithm performs two types of steps: a normal one in
which a double quasi-Newton updating scheme is used, and a restart one where the current
information is used to define the search direction. The convergence analysis of the algorithm
for strongly convex functions is described in section 4. In section 5 we present preliminary
computational results on a set of 500 unconstrained optimization test problems and compare
our algorithm with SCG algorithm by Birgin and Martinez [3].

2. Scaled conjugate gradient method with restart
For solving (1) we consider the iterative process (2), where for k£ =0,1,... the stepsize a, is

positive and the directions d, are generated by:
A = =618 + Bisis “4)
in which 8,,, and [, are parameters which are to be determined.

Observe that if 6,,, =1, then we get the classical conjugate gradient algorithms
according to the value of the scalar parameter [3,. On the other hand, if [, =0, then we
get another class of algorithms according to the selection of the parameter 8,,, . There are
two possibilities for 8,,, : a positive scalar or a positive definite matrix. If 8,,, =1 we have
the steepest descent (Cauchy [5]) algorithm. If 8, ,, = 0* f (xkﬂ)_l, or an approximation of
it, then we get the Newton or the quasi-Newton algorithms, respectively. Therefore, we can
see that in the general case, when 6,,, # 0is selected in a quasi-Newton manner and
B, #0, then (4) represents a combination between the quasi-Newton and the conjugate

gradient methods.
Using a geometric interpretation for the quadratic function minimization Birgin and
Martinez [3] suggest the following expression for parameter 3, in (4):

_ (C Al )T 8+

B )
‘ Vi S
With this, the corresponding direction is:
(9 k+ y -S )T g k+
dk+l = _6k+1gk+1 + S ‘ = Sk . (6)

T
Vi Sk



The following particularizations are obvious. If 8,,, =1, then (6) is the direction considered
by Perry [13]. At the same time we see that (6) is the direction given by Dai and Liao [6] for
t = 1. Additionally, if ngjﬂ =0, j=0,,...,k, then from (6) we get:

6,1 )i Ein
9 T Sk > (7)

a,6,8: 8k

which is the direction corresponding to a generalization of the Polak and Ribi¢re formula. Of

course, if 8,,, =8, =1 in (7), we get the classical Polak and Ribiére formula [14]. If

d., = _6k+1gk+1 +

S_]T g&m =0, j=0,1,...,k and additionally the successive gradients are orthogonal, then
from (6)

T

01181418

9 T Sk 5 (8)
a,6,8: 8
which is the direction corresponding to a generalization of the Fletcher and Reeves formula.
Therefore, (6) is a general formula for direction computation in a conjugate gradient manner
including the classical Fletcher and Reeves [8], and Polak and Ribiére [14] formulas.
Computational experiments given by Birgin and Martinez, with a spectral gradient selection
choice of parameter 8 on a set of 40 unconstrained optimization problems, show that the

d., = _6k+1gk+1 +

k+l o
algorithm (6) of Perry outperforms variant (7) of Polak and Ribié¢re and variant (8) of
Fletcher and Reeves and compare favourable with CONMIN computational scheme of
Shanno and Phua [19].

Shanno [17, 18] proved that the conjugate gradient method is exactly the BFGS
quasi-Newton method where at every step the approximation to the inverse Hessian is
restarted as the identity matrix. Now we extend this result for the scaled conjugate gradient.
We see that the direction given by (6) can be written as:

0] s, vl 5,5 0O
- _ _ Kk kSk - _
dy = el 9k+l . tTr %kﬂ = =018 u> ©)
yk Sk yk Sk

where
T T
S Ve | SiSk

Qk+1 = 9k+ll _9/c+1 T

.
YiSe  ViSk

(10)
If 8,,, =1, we have:

r T
O SV SkSk O

dpw="d-——7F+ > 11
! EI ykTSk ykTSngkl (1

which is exactly the Perry formula. By direct computation we can prove:

Proposition 1.
ViQu =s;- ™ (12)
Observe that (12) is similar but not identical to the quasi-Newton equation, which requires
that an update of the inverse Hessian /1., should be in such a way as to satisfy:
Hy =5, (13)
A major difficulty with (9) is that the matrix Q,,,,defined by (10), is not symmetric and
hence not positive definite. Thus, the directions d,,, from (9) are not necessarily descent
directions and therefore numerical instability can result. Besides, another difficulty arising
from this lack of symmetry is that the true quasi-Newton equation (13) is not satisfied.
In order to overcome this difficulty and to get a true quasi-Newton updating we first
make the matrix Q,,, from (10) symmetric as follows:



T T T
_ SV TViSk | SiSk
O =01 =6, T tr- (14)
Vi Sk Vi Sk
Now, we force Q,,, to satisfy the quasi-Newton equation (13) yielding to the following

symmetric update:

T T T T
YiSe TSV O Vi Vi DSkSk
a=0,1-06, , ——F+01+6,, ) 15
Qk 1 wind — 6y y;fsk H K+ ylzsk y;fsk (15)

By direct computation it is very easy to prove that Q,: 4 satisfies the quasi-Newton equation,
ie.

Proposition 2.

QZ+1yk =5, 0 (16)
Notice that

k+1 - Qk+1gk+1 (17)
does not actually require the matrix Qk +1» 1.¢. the direction d,,, can be computed as:

s 0 O O

_ k+15% ykyk B§k+ S gk+ Vi

dk+1 = _9k+lgk+l +6k+1 T1 E[Vk _% + 9k+1 T : 6k+l Tl O, (18)
Uy s,

Vi Sk DJ’kSk Yisi U

involving only 4 scalar products. Again observe that if g ,fﬂs . =0, then (18) reduces to:

T
din = =018k t61y gk;lyk S+ (19)
Vi Sk
Thus, in this particular case the effect is simply one of multiplying the Hestenes and Stiefel
[12] search direction by a positive scalar.
As we know, the BFGS update to the inverse Hessian, which is currently the best

update of the Broyden class, is defined by:
Hy,s, +s,y H, U J’kaJ’k Dsksk

H,., =H, -

k

(20)

k+1

- + % +
YieSk Yese Ovis,
Therefore, we can immediately see that the conjugate gradient method (17), where Q,: 4 18

given by (15), is exactly the BFGS quasi-Newton method, where at every step the
approximation of the inverse Hessian is restarted as the identity matrix multiplied by the
scalar 6, ;.

In order to ensure the convergence of the algorithm (2), with d,,, given by (18), we
need to constrain the choice of a,. We consider line searches that satisfy the Wolfe
conditions [20, 21]:

f(xk+akdk)_f(xk)so-lakglzdk’ (21)
Of (x#+ a,d) d2z 0,g/d,, (22)
where 0 <0, <0, <l

Theorem 1. Suppose that O, in (2) satisfies the Wolfe conditions (21) and (22), then the
direction d,,, given by (18) is a descent direction.

2
Proof: Since d, = —g,, we have g, d, = —HgOH < 0. Multiplying (18) by g,,,, we have

2
(J’kTSk)z +20, (ngﬂyk )(ngﬂSk )(ykTSk)

1
ng+1dk+l = [_ek +

(yIZ"Sk)Z gk+1



_(ng+1Sk)2 (ykTSk) -0, (J’/CTJ’k )(ng+1Sk)2]-

1
Applying the inequality u'v < 5(||u||2 +||v||2) to the second term of the right hand side of

the above equality, with u = (s, y,)g,,, and v =(g/,,s,)y, we get:

(g k+1 Sk )
idyy S—= 23
gk bin yk s, (23)
But, by Wolfe condition (22), y, s, > 0. Therefore, g,,,d,,, <0 forevery k=0,1,...®

Observe that the second Wolfe condition (22) is crucial for the descent character of
direction (18). Besides, the estimation (23) is independent of the parameter 8, ,, .

Usually, all conjugate gradient algorithms are periodically restarted. The standard
restarting point occurs when the number of iterations is equal to the number of variables, but
some other restarting methods can be considered as well. The Powell restarting procedure
[15] is to test if there is very little orthogonality left between the current gradient and the
previous one. At step 7 when:

2

‘ngng‘ 2 O'ZngH ) (24)

we restart the algorithm using the direction given by (18). Another restarting procedure,

considered by Birgin and Martinez [3], consists of testing if the angle between the current
direction and — g,,, is not acute enough. Therefore, at step » when:

a7 g >=107]d [ g,

the algorithm is restarted using the direction given by (18).
At step r when one of the two criteria (24) or (25) is satisfied, the direction is
computed as in (18). For k = r+1, we consider the same philosophy used to get (15), i.e.
that of modifying the gradient g,,, with a positive definite matrix which best estimates the

(25)

inverse Hessian without any additional storage requirements. Therefore, the direction d,,,,
for k = r+1, is computed using a double update scheme as:

dk+1 = _Hk+1gk+1’ (26)
where
o= _Hr+1ykSZ +5, v H,y +D + 0k Hr+lyk DSkSZ 27)
e+l r y;sk H yk Sk yk Sk
and
s7
_9r+ll 9 yl r Iyl +H+9 ylyl I I . (28)
yr S,

As above, observe that this computatlonal scheme does not mvolve any matrix. Indeed,
H,. g.,and H , vy, can be computed as:

% |:|
S

V H~+ + 6~+ 4 6~+ — -

7 lgkl 7 lgkl 7 lDyT %yl

r (
% + 6 yr yl |ﬁkﬂ r 0r+l gk;lyr B'r, (29)
yr Sr Dyl r yr Sr |:|

(s, 0
w=H_,y, =0,y -6, T Byr

and



T T |:|
yl y' S' y yl'
%w Bi e 8 (30)

involving 6 scalar products. With these the direction (26) at any nonrestart step can be
computed as:
T T T
_ (gins)w+(giqw)s, O J//c w g s,
diy =7v+ T -g+
yk Sk D y/c S/c Dyk Sk

St (31)

involving only 4 scalar products. We see that d,,, from (31) is defined as a double quasi-

Newton update scheme. It is useful to note that y, s, >0 is sufficient to ensure that the
direction d,,, given by (31) is well defined and it is always a descent direction.

We shall now consider some formulas for the computation of 8,,, . As we have
already seen, in our algorithm @, is defined as a scalar approximation of the inverse

Hessian. According to the procedures for a scalar estimation of the inverse Hessian we get a
family of scaled conjugate gradient algorithms. The following procedures can be used.

8, ., spectral. Motivated by the spectral gradient method introduced by Barzilai and
Borwein [2] and analyzed by Raydan [16] and Fletcher [7], we can consider a spectral
gradient choice for 8,,, as:

_ Sk S
0,. s, (32)
The parameter 6, ,, given by (32) is the inverse of the Rayleigh quotient. Again we notice
that y, s, >0 is sufficient to ensure that 6,,, in (32) is well defined.
0,,, anticipative. Recently, Andrei [1], using the information in two successive
points of the iterative process, developed another scalar approximation of the Hessian of
function f* obtaining a new algorithm which compares favourable with Barzilai-Borwein's.

Indeed, in point x,,, = x, +a,d, we can write

F)= [0 40, 81d, +5a}d] 0 f2)d,,
where z is on the line segment connecting x, and x,,,. Having in view the local character
of the searching procedure and that the distance between x, and x,,, is small enough we
can choose z = x,,, and consider Y,,, as a scalar approximation of 0° f(x,,,), where
Y.+ U R. This is an anticipative viewpoint in which a scalar approximation of the Hessian
at point x,,, is computed using only the local information from two successive points: x,
and x,,,. Therefore, we can write'

yk+1_dk d, CY [f(xk+1) S(x) - akgk ] (33)

Observe that for convex functions y,,, >0. If f(x,,,)= f(x,)—0a,g,d, <0, then the
reduction f(x,,,)= f(x,) in function value is smaller than @, g, d,. In these cases the
idea is to change a little the stepsize O, as ', —I],, maintaining the other quantities at their
values, in such a way so that y,,, is positive. To get a value for 1], let us select a real
0 >0, small enough”, but comparable with the value of the function, and take

8k d +5] (34)

ne =

with which a new value for Yy, ,, can be computed as:



2 1 )
d[dk(ak-—nk)z[f(xkﬂ)‘lf(xk)—(ak -n,)gld,]. (35)

With these, the value for parameter 6, ,, is selected as:

1
6k+l = (36)

>
Yien

yk+1 =

where Y, ,, is given by (33) or (35).

Proposition 3. Assume that f(x)is continuously differentiable and Uf (x)is Lipschitz
continuous, with a positive constant L. Then at point x,,,,

Vo <2L. (37)

Proof: From (33) we have:
_S G +a 0fE) de Sy aPs(x)"d]
- 2
.|
where €, is on the line segment connecting x, and x,,,. Therefore
T
&y O f(x)]| 4,
k+l T 2 :
‘ dk ak
Using the inequality of Cauchy and the Lipschitz continuity it follows that
< 2H|:|f(gk)_ D f(xk) < 2L‘ Ek _xk < 2L‘
e+ = = =
|dJer, |dJar, |d,

k+1 4

Xie1 — Xp

a

=2L. =

Therefore, from (36) we get a lower bound for 8, ,, as:

1
O 250

i.e. it is bounded away from zero.

3. The algorithm

Having in view the above developments and the definitions of g,, s, and y,,as well as the
selection procedures for 8,,, computation, the following family of scaled conjugate gradient
algorithms can be presented.

Algorithm SCALCG
Step 1. Select x,[0 R", and the parameters 0<0, <0, <l. Compute f(x,) and

2o = Of (x,). Set d, = —g, and a, =1/ g, Set k =0.
Step 2. Line search. Compute o, satisfying the Wolfe conditions (21) and (22). Update the
variables x,,, = x, +0,d,. Compute f(x;,), & and 5, = Xy = X4, Vi = &puy ~ &y

Step 3. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
elseset k =k +1.

Step 4. Compute 8, using a spectral (32) or an anticipative (36) approach.
Step 5. Compute the (restart) direction d, as in (18).
Step 6. Line search. Compute the initial guess of the step length as

a, =a,.|d.|, /|4,

) Using this initialization compute «, satisfying the Wolfe



conditions (21) and (22). Update the variables x,,, =x, +a,d,. Compute
S (X)), rmand s, =X, =X, Vi =& — &

Step 7. Store 8 =60, s=s, and y = y,.

Step 8. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
elseset k =k +1.

Step 9. If the Powell restart criterion (24) or the angle restart criterion (25) is satisfied, then
go to step 4 (a restart step); otherwise continue with step 10 (a normal step).

Step 10. Compute

T
A %ND v yBeis _ pgivh
T YOS s R S%is ysa
_6%5—1SD+E+GJ’ yDykl ykly
yTsE( % yisOy's ySH

and
( s, )w+(giw)s O y/ wUgls,_
d =—v+ g5 Sk AT Tkl Dng k-1 5. (38)
J’k 15 -1 U YiaSia Wi Sis

Step 11. Line search. Compute the initial guess of the step length as
a, =a,. Hd . H2 / Hd i H2 Using this initialization compute o, satisfying the Wolfe
conditions (21) and (22). Update the wvariables x,, =x, +a,d,. Compute

S (X)), raand s, =X =X, Vi = & ~ &
Step 12. Test for continuation of iterations. If this test is satisfied the iterations are stopped,
else set k =k +1 and go to step 9. W

It is well known that if f is bounded below along the direction d,, then there exists
a step length «, satisfying the Wolfe conditions. The initial selection of the step length
crucially affects the practical behavior of the algorithm. At every iteration k£ =1 the starting

guess for the step @ in the line search is computed as a Ha’k_1 Hz / Hdk Hz This selection,
was considered for the first time by Shanno and Phua in CONMIN [19].

4. Convergence analysis for strongly convex functions
Throughout this section we assume that f is strongly convex and Lipschitz continuous on
the level set

L, ={x0R": f(xk f(x,}.

That is, there exists constants [ >0 and L such that

OFrOfOoN & » ke (39)

and

I0feor D04 Ll (40)
for all x and y from L,. For the convenience of the reader we include here the following
lemma.

Lemma 1. Assume that d, is a descent direction and Uf satisfies the Lipschitz condition

ey orxd Lk x (41)
for every x on the line segment connecting x, and Xx,,,, where L is a constant. If the line
search satisfies the second Wolfe condition (22), then




1- L d
a, > LO'z ‘«‘g;k 5‘ (42)

Proof: Subtracting g,? d, from both sides of (22) and using the Lipschitz condition we have

2
(0, - l)ngdk < (& — & )T dk < Lak‘dk (43)
Since d, is a descent direction and 0, <1, (42) follows immediately from (43). B

Lemma 2. Assume that Uf is strongly convex and Lipschitz continuous on L. If 8., is
selected by spectral gradient, then the direction d,,, given by (18) satisfies:

b 2L I°
Hdkﬂ SBE-FF-FF@ng

Proof: By Lipschitz continuity (40) we have

Hyk H = Hgkﬂ ~ 8 :H Lf(x+ a,d, ) Df(xkﬂ Lakudk:ﬁ LHSk H (45)
On the other hand, by strong convexity (39)

2
vis,z s (46)
Selecting 8,,, as in (32), it follows that

. (44)

2

SkTSk ‘ _ 1
T, = 2~

Vi Sk HHSICH l’l

Now, using the triangle inequality and the above estimates (45)-(47), after some algebra on

‘ dk+1

Lemma 3. Assume that Uf is strongly convex and Lipschitz continuous on L. If 8., is

Sk

0., = 47

,where d,,, is given by (18), we get (44). B

selected by the anticipative procedure, then the direction d,,, given by (18) satisfies:
0 2L 1 L
st —+—+—— g

Proof: By strong convexity on L, , there exists the constant m >0, such that

0% f(xe ml, forall x O L,. Therefore, for every k, ¥,,, = m. Now, from (36) we see
that, for all k&,

. (48)

(49)

1
6k+l < ;

With this, like in lemma 2, we get (48). B

The convergence of the scaled conjugate gradient algorithm (SCALCG) when fis
strongly convex is given by

Theorem 2. Assume that f is strongly convex and Lipschitz continuous on the level set L.
If at every step of the conjugate gradient (2) with d,,, given by (18) and the step length
a, selected to satisfy the Wolfe conditions (21) and (22), then either g, =0 for some k, or
lim =0.
P oogk
Proof: Suppose g, # 0 forall k. By strong convexity we have
2
Vid, = (g —8) ' d, 2 Hakudku . (50)



By theorem 1, g/d, <0. Therefore, the assumption g, # 0implies d, #0. Since

a, >0, from (50) it follows that y, d, >0. But f is strongly convex over L, therefore
f is bounded from below. Now, summing over k the first Wolfe condition (21) we have

Zakgk d, > -0
=0

Considering the lower bound for o, given by (42) in lemma 1 and having in view that d, is
a descent direction it follows that

‘g 4 ‘
Z ‘ (s1)
N
Now, from (23), using the inequality of Cauchy and (46) we get
2 2 2
", _ (gin5:) < _Hgkﬂ HSkH _ Hgkﬂ
S P N 7
Therefore, from (51) it follows that
Hg ;
Z : (52)
o[
Now, inserting the upperbound (44), or (48), for d, in (52) yields

- 2

2 leil <o

=0
which completes the proof. B

For general functions the convergence of the algorithm is coming from theorem 1

and the restart procedure. Therefore, for strongly convex functions and under inexact line
search it is global convergent. If restarts are employed, the algorithm is convergent, but the
speed of convergence can decrease. To a great extent, however, SCALCG algorithm is very
close to Perry/Shanno computational scheme [17, 18]. In fact SCALCG is a scaled
memoryless BFGS preconditioned algorithm where the scaling factor is the inverse of a
scalar approximation of the Hessian. Although a global convergence result has not been
established for SCALCG, recall that for the Perry/Shanno scheme, the iterates either
converge to a stationary point or the iterates cycle.

5. Preliminary computational results and comparisons

In this section we present the preliminary computational performance of a Fortran
implementation of the SCALCG - scaled conjugate gradient algorithm on a set of 500
unconstrained optimization test problems. At the same time, we compare the performance of
SCALCG to the best spectral conjugate gradient algorithm, SCG (betatype=1, Perry-M1), by
Birgin and Martinez [3]. The SCALCG code is authored by Andrei, while the SCG is co-
authored by Birgin and Martinez. SCG uses spectral selection of 6,,, and angle restart
criterion. All codes are written in double precision Fortran using the same style of
programming and compiled with f77 (default compiler settings) on an Intel Pentium 4,
1.8GHz workstation. The SCALCG code implements both the scaled conjugate gradient with
spectral choice of scaling parameter 8,,,, as well as with the anticipative choice of this
parameter. In order to compare SCALCG with SCG we manufactured a new SCG code of
Birgin and Martinez by introducing a sequence of code implementing the same stopping
criteria of the algorithms used in SCALCG.

The test problems are the unconstrained problems in the CUTE [4] library, along
with other large-scale optimization test problems. We selected 50 large-scale unconstrained
optimization test problems in extended or generalized form. For each test function we have
considered 10 numerical experiments with number of variables 7 =1000,2000,...,10000.

10



Concerning the stopping criterion used in steps 3, 8 and 12 we consider the following
tests:

IN

cl: Hgk Hm £, (53)

2 sl <mas, e el ). s

-6

where |, denotes the maximum absolute component of a vector and & ¢ = 10™ and

g,=107".
S
In all algorithms the Wolfe line search conditions are implemented with
0, =0.0001 and 0, =0.9. SCALCG and SCG use exactly the same implementation of

Wolfe conditions. The initial guess of the step length at the first iteration is o, =1/ H 9o H At
the following iteration, in all algorithms, the starting guess for the step ', is computed as
ak—l ‘ dk—l HZ / ‘ dk
length.

The numerical results concerning the number of iterations, the number of restart
iterations, the number of function and gradient evaluations, cpu time in seconds, for each of
the methods are posted at the following web site:

http://www.math.ufl.edu/~hager/coap/ (Journal Software).

In the following we present the numerical performances of these two codes and
SCALCG
e

) This proved to be one of the best selection of the initial guess of the step

comparisons between SCALCG and SCG using the same stopping criterion. Let f;
the optimal functional value found by SCALCG algorithm and fl.SCGCf the optimal functional
value found by SCG algorithm for test problem 7 =1,...,500 using the stoppping criterion
¢j, j=12. We say that, in the particular problem i, the performance of SCALCG,; was

better than the performance of SCG,; if ‘ A

i

<107 and the number of

iterations, or the number of function-gradient evaluations, or the CPU time of
SCALCG,; was less than the number of iterations, or the number of function-gradient

evaluations, or the CPU time corresponding to SCG,; respectively.

In the first set of numerical experiments we compare SCALCG,, with 8,,, spectral
(6°) and SCALCG,; with 6,,, anticipative (6 ) using the Powell restart criterion. The
Tables 1 and 2 present the comparisons between SCALCG,; (8°) and SCALCG,; (6 )

using stopping criterion ¢j, j = 1,2, respectively. In these Tables we find the number of

problems, out of 500, for which an algorithm achieved the minimum number of iterations
(#iter), or the minimum number of function-gradient evaluations (#fg) or the minimum CPU

time. For example when comparing SCALCG, (0" ) and SCALCG,, (8“), using the
stopping criterion cl, subject to the number of iterations, SCALCG,, (6" ) was better in
177 problems (i.e. it achieved the minimum number of iterations in 177 problems),
SCALCG,, (8“ ) was better in 150 problems, and they had the same number of iterations in
159 problems, etc.

Table 1. Comparisons between SCALCG,, (0" )and SCALCG,, (0“).
SCALCG,(8") | SCALCG, (8%) =

# iter 177 150 159
#fg 194 170 122
CPU time 179 193 114
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Table 2. Comparisons between SCALCG,, (8" )and SCALCG,, (6“).
SCALCG,,(8%) | SCALCG,,(6“) -

# iter 174 139 173
# fg 191 151 144
CPU time 176 182 128

In the second set of numerical experiments we compare SCALCG, with 6,,,

anticipative (6 ) using the Powell restart criterion and SCG,; with 8,,, spectral (6° ) and
angle restart criterion for j=1,2. As above, in Tables 3 and 4 we find the number of
problems, out of 500, for which SCALCG,; (6“) and SCG,, (8") achieved the minimum

number of iterations or the minimum number of function-gradient evaluations or the
minimum CPU time, using the stopping criterion ¢j, j = 1,2, respectively.

Table 3. Comparisons between SCALCG,, (0“ )and SCG,, (6").
SCALCG,, (6“) SCG, (6") =

# iter 349 75 51
# fg 271 126 78
CPU time 408 52 15

Table 4. Comparisons between SCALCG,, (8“ )and SCG,, (0").
SCALCG,, (8“) SCG, (8") =

# iter 346 69 41
# fg 257 113 86
CPU time 394 50 12

From these Tables we see that, for these criteria, the top performer is SCALCG algorithm
with anticipative selection of scaling parameter (6 “ ).

6. Conclusion

The best algorithm of Birgin and Martinez, which mainly is a scaled variant of Perry’s, was
modified in order to overcome the lack of positive definiteness of the matrix defining the
search direction. This modification takes advantage of the quasi-Newton BFGS updating
formula. Using the restart technology of Beale-Powell, we get a scaled conjugate gradient
algorithm in which the parameter scaling the gradient is selected as spectral gradient or in an
anticipative manner by means of a formula using the function values in two successive
points. Although the update formulas (18) and (29)-(31) are more complicated this
computational scheme proved to be more efficient and more robust in numerical
experiments. The algorithm implements the Wolfe conditions, and we prove that the steps are
along the descent directions. A preliminary computational study shows that our scaled
conjugate gradient algorithm performs better than Birgin and Martinez’s SCG algorithm for a
test set consisting of 500 problem:s.
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