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Abstract. In this work we present the relaxed gradient descent method for solving
unconstrained optimization problems. Using a simple multiplicative modification of the steplength
by means of a random variable uniformly distributed in (0,1) we get the relaxed gradient descent
method. It is shown that for strongly convex functions the relaxed gradient algorithm is linearly
convergent. We emphasize that the poor behavior of the classical gradient method is due to the
choice of the steplength and not to the choice of the search direction. The paper extends the results
obtained by Raydan and Svaiter [15] for quadratic unconstrained optimization problems to strongly
convex functions.
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1. Introduction

One of the first and very well known method for unconstrained optimization is the gradient
descent method, designed by Cauchy early in 1847, in which the negative gradient direction is used
to find the local minimizers of a differentiable function. The method proved to be effective for
functions very well conditioned, but for functions poorly conditioned the method is excessively
slow, thus being of no practical value. Even for quadratic functions the gradient descent method
with exact line search behave increasingly badly when the conditioning number of the matrix
deteriorates. Early attempts to increase the performances of the method have been considered by
Humphrey [9], Forsyte and Motzkin [7] and Schinzinger [16]. Even though the storage
requirements for the gradient descent method are minimal ( 3nlocations for an N — dimensional
problem), the development of the conjugate gradient and quasi-Newton methods for large-scale
unconstrained optimization cast the gradient descent method in a penumbra.

Recently, for the quadratic positive definite case Raydan and Svaiter [15] considered the
relaxed gradient method as well as the Cauchy-Barzilai-Borwein methods showing the superiority
of the last one against the relaxed gradient descent and BB methods, Particularly, the Cauchy-
Barzilai-Borwein method proves to be Q-linearly convergent in a norm defined by the matrix of the
problem.

The purpose of this paper is to extend the relaxed gradient method to the convex, well
conditioned, functions. It is shown that for strongly convex, well conditioned minimization
problems the relaxed gradient descent algorithm is an improvement of the classical gradient descent
version. The corresponding algorithm belongs to the same class of linear convergent descent
methods. The conclusion is that using only the local information given by the gradient, any
procedure for step size computation, of any sophistication, does not change the linear convergence
class of algorithms.



The paper is organized as follows. In section 2 we present the backtracking line search.
Section 3 is dedicated to present the relaxed gradient descent algorithm and its properties. In section
4 we present some numerical evidence and discussions of this approach.

2. Line Search with Backtracking

In the following let us consider the problem:

min f(x) (1)
where f:R" - R is convex and twice continuously differentiable. A necessary and sufficient
condition for a point X to be a local minimum for (1) is

Of (x" & 0. 2)
Usually, the problem is solved by an iterative algorithm which generates a sequence of points
Xgy Xyreeor Xyo..0dom f, for which f(X,) - f as k — oo. The algorithms for solving (1)
generate a minimizing sequence X,, K=0.1,... as:

Xeir = X +.d,, 3)

where the scalar t, is the step size, and the vector d, is the search direction.

Many procedures for search direction computation have been proposed. One of the first
method, and the simplest one, for solving (1) using (3) was the gradient descent method (Cauchy
method [3]) where the choice for the search direction at the iteration X, is the negative gradient,

— [f (X,). Some other known methods dedicated for large-scale problems are based on the

conjugate gradient strategy or quasi-Newton selection of the direction.
At the same time, for step size selection many algorithms have been considered. In the
exact line search the step t, is selected as:

t, =argmin f(x, +td,). 4)
t>0

In some special cases (for example quadratic problems) it is possible to compute the step t,
analytically, but in the most cases it is computed to approximately minimize f along the ray
{Xk +td, :t = (}, or at least to reduce f enough. In practice the most used are the inexact

procedures. A lot of inexact line search methods have been proposed: Goldstein [8], Armijo [1],
Wolfe [17], Powell [14], Denis and Schnabel [4], Fletcher [6], Potra and Shi [13], Lemaréchal [10],
Mor¢ and Thuente [12], and many others. In particular, one of the very simple and efficient line
search procedure is the backtracking line search. This procedure considers the following scalars

2
0<a <05, 0<B <1 and s, =—g,d, /Hdk H and takes the following steps based on the
Armijo’s rule:

Backtracking procedure
Step 1. Consider the descent direction d, for f atpoint X,. Set # =s,.

Step 2. While f(x, +td,) > f(x, ) +atOf(x,)"d,, set z=18.
Step 3. Set t, =t.

Typically, a =0.0001 and [ =0.8, meaning that we accept a small decrease in f of the
prediction based on the linear extrapolation. If d, = —g,, then s, =1.

Proposition 1. Suppose that d, is a descent direction and Uf (x, ) satisfies the Lipschitz condition

| (o O f(x, 8

a constant. If the line search satisfies the Armijo condition, then

L”—x X, H for all x on the line segment connecting x, and x,,,,where L is



L Ba-ngld,
k= 2
Lo fa
Proof. Observe that for all k for which ¢, <, it follows that ¢, / B <'s, . Therefore
S +td, | BY=f(x)>a(t, /B)gd,.

Using the mean value theorem on the left side of the above inequality, the Cauchy-Schwartz
inequality and the Lipschitz condition, there exists &, [1[0,1] such that

angdk < g(x, +tk€kdk /B )T dk =g(x, +tk€kdk /B) -g(x, )]Tdk +g£dk
<|g(x, +1,&.d, 1 B)-g(x)||a,| +gld, <Li]a[ /B +gld,.

)

Rearranging this inequality gives (5). B

3. Relaxed Gradient Descent Method
As we said, the goal of this paper is to show that the linear behavior of the gradient descent
method for well-conditioned functions could be improved by a subrelaxation of the step size. The
idea is to modify the gradient descent method by introducing a relaxation of the following form:
X, =X, +0,t,d,, (6)
where 8, is the relaxation parameter, a random variable uniformly distributed between 0 and 1.
With this, the Relaxed Gradient Descent algorithm can be presented as:

Relaxed Gradient Descent Algorithm (RGD)
Step 1. Consider a starting point x, [J dom f. Set k = 0.

Step 2. Compute the search direction: d, = —Lf(x,).
Step 3. Line search. Choose the steplength #, via exact or backtracking line search
procedures.
Step 4. Update the variables: Select 8, [1(0,1) and update the variables:
Xy =X, +6,1,d,.
Step 5. Test a criterion for stopping the iterations. If the test is satisfied, then stop;
otherwise consider k£ = k +1 and continue with step 2.
Clearly, if 8, =1, for all k, we get the classical Gradient Descent (GD) method. For quadratic
positive definite problems an overrelaxation have been considered by Raydan and Svaiter [15].
They proved that the poor behavior of the steepest descent methods is due to the optimal Cauchy
choice of step size and not to the choice of the search direction. Indeed for the quadratic problem

. 1 T T
mlnf(x)ZEx Ox —-b" x, (7)
where Q 0 R™" is symmetric and positive definite, the classical Cauchy method can be written as:
Xpy =X —1,8;,where g, = [f(x,) and
_ g 8

= : ®)
8,98,

Taking 6, as relaxation parameters between 0 and 2, Raydan and Svaiter get the relaxed gradient

descent algorithm:

I

Xpw = X, —0,1,8,, )
where again ¢, is given in (8). The following theorem shows the convergence of relaxed Cauchy
algorithm (9) for quadratic symmetric and positive definite functions:

Theorem 1. (Raydan and Svaiter [15]) If the sequence 6, has an accumulation point 6 [ (0,2),

then x, generated by the relaxed Cauchy method (9), where t, is given in (8), converges to x".

Now we extend this idea of relaxation to general convex functions. But, before considering
the theoretical aspects for the general convex functions let us take an example.



Example 1. Let us illustrate the behavior of the relaxed gradient descent method in comparison
with the classical gradient descent on the following function:

or Zx +ﬁ§xﬁ

Considering x, =[0.5,0.5,...,0.5], a =0.0001 and B =0.8 in the backtracking procedure, as
well as the following criteria for stopping the iterations

|||:|f(xk) S &g, or 1y g/ch/c| = gf|f(x/c+1)5 (10)

with €, = 107 and £, = 107, for n =100, the evolution of |f(xk)— f*| given by the gradient
descent method and the relaxed gradient descent method, respectively, are presented in Figure 1.
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Figure 1. Gradient Descent versus Relaxed Gradient Descent.
Table 1 shows the number of iterations corresponding to these algorithms, as well as the average
steplength, for different values of 7, using the above criteria for stopping the iterations.

Table 1. Number of iterations and the average steplength.

GD RGD
n #iter average step Hiter average step
100 717 0.009979 219 0.03157
200 1431 0.005011 330 0.01621
300 2146 0.003358 344 0.01643
400 2866 0.002506 488 0.01219
500 3575 0.002006 452 0.01044
600 4290 0.001681 486 0.01121
700 50064 0.001442 599 0.008647
800 5742 0.001249 565 0.008685
900 6448 0.001123 718 0.007778
1000 7160 0.001000 501 0.009060

Observe that the relaxed version of gradient descent method clearly outperforms the classical
gradient method. Both methods exhibits a linear convergence to the minimizer of the function, and
they converge monotonically to the minimizer, but RGD algorithm takes a significant smaller
number of iterations. In this case the total number of iterations for Gradient Descent Algorithm is
39439, and 4702 for Relaxed Gradient. Notice that, subject to the number of iterations, RGD is
about 8 times more performant than GD. Similar results have been obtained using different random



number generators in interval (0,1). The parameters & and [ from backtracking linear search has

a noticeable but not a dramatic influence on the number of iteration. Numerical experiments with
different values for @ and [ leads to the same behaviour of the algorithm. We also observe that

the average stepsize in both GD and RGD algorithms are bounded away from zero, as we proved in
Proposition 1. However, the average stepsize in RGD algorithm is significantly greater than in GD
version. This explains its efficiency.

This numerical experiment reveals the serious limitation of the steplength choice by
backtracking when searching is along the negative gradient. This reveals a lack of robustnees of the
gradient descent algorithm with backtracking at steplength perturbations.

The convergence analysis of RGD algorithm for general strongly convex function is given
by the following theorems.

Theorem 2. Suppose that f is a strongly convex function with 0° f(xX MI,where M is a
positive constant. If the sequence 0, has an accumulation point 0 0(0,1), then for strongly

convex functions the sequence x, generated by the RGD algorithm converges linearly to x.

Proof. Let us consider ®@, (8) = f(x, —0¢,g,), where g, = [f(x,). We can write:

1
f(x, —0t.g)=f(x;) _etkglfgk +562t1§g1€ sz(xk)gk'

Since the function f'is strongly convex it follows that @®,(8) is a convex function and
@, (0) = f(x,). From the strong convexity of f it follows that:

2

Fx ~06,0) 5 fGx) - - L0 e,

.
t
But 6 —Tkez is a concave and nonnegative function on (0,2/ Mt,) and has the maximum

value equal with 1/2Mt, at point 1/ M¢,. Therefore f(x,, )< f(x,) for all k. Since f is
bounded below, it follows that

lim (f(x)~ f(xp0)) =0.
k - o
Now observe that @, (0) is a convex function with the minimum value at the point

T
g 8k
6 = >0
" tk(gZDZf(xk)gk)

On the other hand, ®, (0) = f(x,)and ®,(8,) = f(x,), where 8, =20, . But,

(g;glc)z
.06 )= - .
k( m) f(xk) Z(ngDZf(xk)gk) < f(xk)
Therefore, for 8 [1[0,20, 1, ®,(0) < P, (0).

There exists some y (0(0,0, ) with y <1,such that y < 8 <28 - y. Therefore, there
exists a subsequence O, contained in the interval [y ,26 - y].Using again the convexity of

®, (8) we get that

D, (0)-®,(y6,) 2 -y, ()~ D (0)]

m m

But,



(gzgk)z

®,(6,)-®,(0)=

" 2(ng|:|2f(xk)gk).
Hence
y (gk gk 2
P, (0)-d,(y6,)= )
( ) (y m) 2 (gklj f(xk)gk H HZ
Therefore,

Yy 2

S~ S 27 led,

But, f(x, )= f(x,.) — 0 and as a consequence g, goes to zero, i.e. X, converges to Xx .
7 7 J J

Having in view that f(x,) is an nonincreasing sequence, it follows that f(x,) converges to

f(x7). m

In the following let us assume that f'is strongly convex and the sublevel set
S = {x Odomf: f(xEg f (xo)} is closed. Strong convexity of f on S involves that there exists
positive constants m and M such that mI < 0° f(xX MI, for all x 0 S. A consequence of

strong convexity of f on S is that we can bound f(x") as:

1 2
-5 relis e sor ek (an

In these circumstances the following theorem can be proved.

Theorem 3. For strongly convex functions the Relaxed Gradient Descent algorithm with
backtracking is linear convergent and

S)= 1 sﬁjci@ﬂxo)— )

c =1—min{2m0{9i,2m0{[39i /M} <1

where

Proof. Consider 0 < 8 <1, then
S(x, =0t,g,)< f(x,)~ % e 92@ Hgku

. Mtk 2 . . Mtk 2
Notice that 8 —79 is a concave function and for all 08 <1/ Mt,, 6 —79 =>0/2.

Hence

f(x, 06,80 f(x)- Hng < f(x)-a61, g,

since @ <1/2. Therefore the backtracking line search procedure terminates either with #, =1 or
with a value ¢, 2 B / M. With this, at step k we can get a lower bound on the decrease of the
function. In the first case we have

S s f)-ab, g,

and in the second one

fx) s flx,)—ab, %Hgkuz

Therefore, we have

S (X)) < f(xk)_minﬁjek a8, %@&Hj

Hence



)= 1 S 1) - 1 ~minthi6, a6, DHe |

2 .
But, from (11) it follows that H g, H2 22m(f(x,)— f ). Therefore, combining this with the above

inequality we get
S~ f* s ﬁ —minﬁZmd@k ,2ma 0, %@f(xk)_ f*)

Denoting: ¢, =1— minHZma@k ,2ma o, %ﬁ, it follows that for every k£ =0,1,...

)= 1 <e(f)-r7),

which prove the second part of the theorem.

Since ¢, <1, the sequence f(x,)converges to f like a geometric series with an
exponent that partialy depends on the condition number bound M / m, the backtracking parameters
a and B, the sequence 8, of random uniform distributed numbers in (0,1) interval and on the
initial suboptimality. Therefore, the RGD algorithm is linear convergent. B

4. Numerical Results

In this section we report some numerical results obtained with a Fortran implementation of
the above gradient descent algorithms for a number of 360 unconstrained optimization problems.
The full description of these experiments is documented at the web page

http://www.ici.ro/camo/neculai/ansoft.htm.

All codes are written in Fortran and compiled with f77 (default compiler settings) on a Pentium 1.5
Ghz. We selected 36 large-scale unconstrained optimization test problems (5 from CUTE library
[2]) in extended or generalized form. For each test function we have considered 10 numerical
experiments with number of variables #» =100,200,...,1000.

In the following we present the numerical performance of RGD and GD codes, in which the
computations are terminated as soon as the stopping criteria in (10) are satisfied. In all numerical
experiments the backtracking procedure considers o = 0.0001 and 8 =0.8 .

The main indicator of performance is the relative number of iterations (iter), or the relative
number of function/gradient evaluations (fg) or the relative cpu time (time), of methods A and B,
introduced by Morales [11], and measured by:

ris = ~log, %%D

nd, H
where ind', represents the number of iterations, or the number of function/gradient evaluations, or
the cpu time, corresponding to algorithm A, for solving the i —th problem, respectively. ind; has a
similar interpretation for algorithm B. The sign of r/;B indicate the winer: all the cases in which
algorithm A wins correspond to a positive r/jB. The number of times by which the winer

outperforms the loser is given by 2‘“’3‘. In this interpretation we can refer this number as the

outperforming factor. In this numerical experiment A stands for RGD, and B for GD. Observe that
this is exactly the Dolan and Moré’s [5] performance profile for T =1.

In Figure 2 we display the values of 7|, , for this set of problems, where ind’, and

l'ndlig represent the number of iterations corresponding to algorithm RGD and GD respectively, and

the problems have been placed in decreasing order with respect to their values of ‘r/j B ‘
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Fig. 2. Relative performance (iter) of RGD and GD.

In Figure 3 we show the values of r/i 5 corresponding to the number of function/gradient evaluations
of the algorithms RGD and GD, respectively.
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Fig. 3. Relative performance (fg) of RGD and GD.

Figure 4 shows the values of r/jB corresponding to cpu time of the algorithms RGD and GD,
respectively.
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Fig. 4. Relative performance (time) of RGD and GD.

Observe that RGD outperforms GD in the vast majority of problems, and the differences are
substantial: the outperforming factor is greater than 15 for cpu time, or 10 for function/gradient
evaluations. We explain this difference in behaviour of these algorithms by recalling that as the
stationary point is approached, GD method takes small, nearly orthogonal steps. This poor
convergence of the GD algorithm at the later iterations can be explained by considering the
following expression of function f :

2

x 1,
f(xk_tkgk):f(xk)_tkugku +Etkykugk ) (12)

where y, I[1] ? f(z) is a scalar approximation of the Hessian at the point z which belongs to the

line segment connecting x, and x,,,. Observe that if x, is close to a stationary point with zero

2
gk in (12)
is of a small order of magnitude, its contribution to reduce the function values being almost
insignificant. Since the gradient descent method uses only the linear approximation of f to find the

2
gradient, and f is continuously differentiable, then H g H will be small. Therefore, ¢,

2
,we expect that the

search direction, ignoring completely the second order term (¢; / Z)Vngk
direction generated will not be very effective, if the ignored term contributes significantly to the
description of f, even for relatively small values of ¢, . In RGD this is compensated by modifying
the steplength in order to distroy the orthogonality of the successive searching directions giving
thus the possibility for a substantial progress towards minimum.

S. Conclusion

We have presented the relaxed gradient descent algorithm and a numerical study of this
algorithm in comparison with the classical gradient descent algorithm. The RGD and GD
algorithms mainly differ in their strategy for steplength selection. A simple modification of the
steplength by means of a random variable, uniformly distributed in (0,1), multiplying the
steplength, represents an improvement of the classical gradient descent algorithm. For strongly
convex function we proved its linear convergence. We proved that at each iteration the factor of
reducing the suboptimality for RGD algorithm is greater than that corresponding to GD. This
explains the superiority of RGD against GD algorithm.

The conclusion is that using only the local information given by the gradient of the
minimizing function, any procedure for steplength computation, does not change the linear
convergence property of the gradient descent algorithms.
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