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Abstract. A scaled BFGS method with two parameters for unconstrained optimization is 

presented.  In this method the first two terms of the known BFGS update formula are 

scaled with a positive parameter and the third one is scaled with another positive 

parameter. The parameter scaling the first two terms of the BFGS update is determined 

by clustering the eigenvalues of the scaled BFGS matrix. On the other hand, the 

parameter scaling the third term is determined as a preconditioner to the Hessian of the 

minimizing function combined with the minimization of the conjugacy condition from 

conjugate gradient methods. This parameter is determined to reduce the large 

eigenvalues, thus obtaining a better distribution of them. Under the inexact Wolfe line 

search, the global convergence of this scaled BFGS method with two parameters is 

proved in very general conditions, without assuming the convexity of the minimizing 

function. Using 80 unconstrained optimization test functions with a medium number of 

variables, the preliminary numerical experiments show that this scaled BFGS method is 

more efficient than the standard BFGS update or than some other scaled BFGS methods 

based on interpolation conditions: Biggs [M.C. Biggs, Minimization algorithms making 

use of non-quadratic properties of the objective function. Journal of the Institute of 

Mathematics and Its Applications 8, 315-327 (1971)] and Yuan [Y. Yuan, A modified 

BFGS algorithm for unconstrained optimization. IMA Journal Numerical Analysis 11, 

325-332 (1991)], spectral scaling: Cheng and Li [W.Y. Cheng and D.H. Li, Spectral 

scaling BFGS method. Journal of Optimization Theory and Applications 146, 305-319 

(2010)], scaling only the first two terms of the BFGS update: Nocedal and Yuan [J. 

Nocedal and Y. Yuan, Analysis of self-scaling quasi-Newton method. Mathematical 

Programming 61, 19-37 (1993)] or scaling the last terms of the BFGS update with two 

parameters: Liao [A. Liao, Modifying BFGS method. Operations Research Letters 20, 

171-177 (1997)]. However, in this scaled BFGS method with two parameters, scaling the 

first two terms with a positive parameter for clustering the eigenvalues has only a 

marginal effect versus the scaling of the third term with diagonal preconditioning and 

conjugacy condition by Andrei [N. Andrei, A double parameter scaled BFGS method for 

unconstrained optimization. ICI Technical Report, Bucharest, May 2, 2017.].  
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1. Introduction  
For solving the unconstrained optimization problem 

                                                                      min ( ),f x                                                               (1.1) 

where ,nx R  one of the best methods is the BFGS introduced by Broyden [12], Fletcher [22], 

Goldfarb [25] and Shanno [44]. An excellent presentation of the theoretical aspects concerning 

the properties and the convergence of this method were given by Dennis and Moré [18, 19]. At 

the same time, a deep analysis of the BFGS method and its variants was presented by Nocedal 

[35]. The BFGS method is fast and robust and currently it is used in innumerable optimization 

software for solving unconstrained or constrained optimization problems.  

The BFGS method consists of starting with any approximation to the Hessian matrix of 

the minimizing function ,f  and at each iteration, update this matrix by incorporating the 

curvature of the function measured along the step direction.  Suppose that at the -thk  iteration, a 

symmetric and positive definite matrix approximation kB  of the Hessian 2 ( )kf x  is given and a 

search direction is computed as: 

                                                                   1 ,k k kd B g                                                              (1.2) 

where kg  is the gradient of function f  in point ,kx ( ).k kg f x   

The next iteration is computed as: 

                                                                1 ,k k k kx x d                                                            (1.3) 

where the stepsize k  satisfies the Wolfe line search conditions [52, 53]: 

                                                   ( ) ( ) ( ) ,T
k k k k k k kf x d f x g x d                                        (1.4) 

                                                   ( ) ( ) ,T T
k k k k k kg x d d g x d                                                  (1.5) 

the positive constants   and   satisfying 0 1.     The Hessian approximation is updated 

by: 

                                                         1 ,
T T

k k k k k k
k k T T

k k k k k

B s s B y y
B B

s B s y s
                                              (1.6) 

0,1, ,k   where 1 ,k k ks x x   1 ,k k ky g g   the initial approximation 0B  being symmetric 

and positive definite.  

 

An important property of the BFGS updating formula (1.6), which we call it standard 

BFGS, is that 1kB   inherits the positive definiteness of kB  if 0.T
k ky s   The condition 0k

T

k sy  

holds if the stepsize k  in (1.3) is determined by the Wolfe line search conditions (1.4) and (1.5). 

We note that the condition 0T
k ky s   is also guaranteed to hold if the stepsize k  is determined by 

the exact line search: min{ ( ), 0}.k kf x d    Since kB  is positive definite, the search direction 

kd  generated by (1.2) is a descent direction of f  at ,kx  no matter whether the Hessian is 

positive definite or not. 

 

In practical implementations the search direction is computed as  

                                                                       ,k k kd H g                                                          (1.7) 

where kH  is the BFGS approximation to the inverse Hessian 2 1( )kf x   of f  at ,kx  i.e. 

1.k kH B  With a  little algebra, using the rank-one Sherman-Morrison-Woodbury formula twice, 

from (1.6) we get: 
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                                       1 1 .
T T T T

k k k k k k k k k k k
k k T T T

k k k k k k

H y s s y H y H y s s
H H

y s y s y s


 
    

 
                      (1.8) 

Also, for the stepsize computation, in practical implementations the inexact Wolfe line search 

conditions (1.4) and (1.5) are used.  

 

The main results concerning the convergence property of the BFGS method are as 

follows. For twice continuously differentiable convex functions with compact level sets, Powel 

[41] proved the global convergence of the BFGS algorithm. Under the exact line search or under 

some special inexact line searches, for convex minimization problems the BFGS method is 

globally convergent [14, 15, 20, 26, 40]. On the other hand, for nonconvex problems under the 

exact line search, Mascarenhas [34] proved that the BFGS method (and some other methods in 

the Broyden class) may fail. For non-convex functions with line searches that satisfy the Wolfe 

conditions, Yu-Hong Dai [17] showed that the BFGS method may fail. However, the BFGS 

method has very interesting properties and remains one of the most respectable quasi-Newton 

method for unconstrained optimization [ 23, 35].  

The most important properties of the BFGS method are its self-correcting quality and 

better corrections of the small eigenvalues than the large ones (see Nocedal [35]).  Concerning 

the self-correcting quality, it was proved that if the current inverse approximation to the Hessian 

kH  of the minimizing function incorrectly estimates the curvature of this function, i.e. if this 

estimate slows down the iteration, then the BFGS Hessian approximation will tend to correct 

itself within a few steps. Another important property of BFGS, explained by Nocedal [35], is that 

it better corrects small eigenvalues than large ones. Powell [43] proved that BFGS with inexact 

Wolfe line search is globally superlinear convergent for convex problems. On the other hand, 

Byrd and Nocedal [15] extended Powell’s analysis and obtained global convergence of BFGS 

with backtracking line search. Furthermore, under the Wolfe inexact line search, Byrd, Nocedal 

and Yuan [14] established the global and the superlinear convergence of the Broyden’s quasi-

Newton methods on convex problems (excepting DFP method). Intensive numerical experiments 

on minimizing functions with different dimensions and complexities showed that the BFGS 

method may require a large number of iterations or function and gradient evaluations on certain 

problems [24]. The sources of inefficiency of the BFGS method may be caused by a poor initial 

approximation to the Hessian or, more important, by the ill-conditioning of the Hessian 

approximations along the iterations, thus leading to a poorly defined search direction. 

 

Two important tools in the analysis of the properties and of the convergence of the BFGS 

method are the trace and the determinant of the standard 1kB   given by (1.6). The trace of a 

matrix is exactly the sum of its eigenvalues. The determinant of a matrix is the product of its 

eigenvalues. By direct computation from (1.6) we get:  

                                                  

2 2

1( ) ( ) .
k k k

k k T T
k k k k k

B s y
tr B tr B

s B s y s
                                              (1.9) 

On the other hand 

1

1det( ) det
T T

k k k k k k
k k T T

k k k k k

s s B B y y
B B I

s B s y s





  
    

   

 

                                                         1( )
det( )det .

T T
k k k

k k k kT T
k k k k k

B s y
B I s B y

s B s y s

 
   

 
 

Now, applying the identity (see [39] and [48]) 

                                1 2 3 4 1 2 3 4 1 4 2 3det( ) (1 )(1 ) ( )( )T T T T T TI u u u u u u u u u u u u                             (1.10) 
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where  

1 ,ku s   2 ,k k
T
k k k

B s
u

s B s
   1

3 k ku B y  and  4 ,k
T
k k

y
u

y s
  

we obtain: 

                                                        1det( ) det( ) .
T
k k

k k T
k k k

y s
B B

s B s
                                                (1.11) 

 

From the right hand side of (1.6) observe that the Hessian approximation kB  is modified 

by two correction matrices, each having rank one. As we know, the efficiency of the BFGS 

method is dependent on the structure of the eigenvalues of the approximation to the Hessian 

matrix (see Nocedal [35]). Powell [43] and Byrd, Liu and Nocedal [13] showed that the BFGS 

method actually suffers more from the large eigenvalues than from the small ones. Analyzing 

1( )ktr B   observe that the second term of the right hand side of (1.9) is negative. Therefore, it 

produces a shift of the eigenvalues of 1kB   to the left. Thus, the BFGS method is able to correct 

large eigenvalues. On the other hand, the third term of the right hand side of (1.9) being positive 

produces a shift of the eigenvalues of 1kB   to the right. If this term is large, 1kB   may have large 

eigenvalues, too. Therefore, a correction of the eigenvalues of 1kB   can be achieved by scaling 

the corresponding terms in (1.6) and this is the main motivation for which we use the scaled 

BFGS method. We emphasize that it must be a balance between these scaling of the 

corresponding terms in (1.6) (i.e. the eigenvalue shifting), otherwise the Hessian approximation 

could either approach singularity or become arbitrarily large, thus determining the failure of the 

method [35].  

For strongly convex functions Nocedal [35] proved that the second term of the right hand 

side of (1.9) depends on cos ,k  the angle between the steepest descent direction and the search 

direction, i.e. this term may be bounded as: 

                                                              

2

2
,

cos

k k k
T
k k k k

B s

s B s c




                                                    (1.12) 

where 0c   is a constant. Therefore, this term tends to decrease the trace of 1kB   with a quantity 

which is proportional to 2/ cos .k k   At the same time, Nocedal [35] proved that the third term of 

the right hand side of (1.9) is upper bounded, i.e. 

                                                                    

2

,
k

T
k k

y
M

y s
                                                             (1.13) 

where 0M   is a constant. Therefore, on strongly convex problems, the term that tends to 

increase the trace of 1kB   is bounded above for all .k  With these, from (1.9) we obtain: 

                                                   1 2
( ) ( ) .

cos

k
k k

k

tr B tr B M
c




                                              (1.14) 

The analysis includes two cases. Suppose that the stepsizes k  are bounded below. Observe that 

if cos k  is not very small, then some eigenvalues of 1kB   could become large because the second 

term of the right hand side of (1.14) could be significantly smaller that .M  On the other hand, if 

cos k  is small, then the self correcting mechanism takes place, i.e. the middle term of the right 

hand side on (1.14) will be larger than ,M  thus decreasing the trace. Therefore, the smaller 

cos k  is, the faster the reduction in the trace of 1kB   (see Nocedal [35]). Now, suppose that the 

stepsizes k  tend to zero. In this case, Byrd, Nocedal and Yuan [14] proved that this is due to the 
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existence of very small eigenvalues in 1,kB   which cannot be monitored by means of the trace. 

But, BFGS updating formula has a strong self-correcting property subject to determinant of 1,kB   

which can be used to show that, in fact, k  is bounded away from zero in mean. From (1.11) we 

see that when T
k k ks B s  is small relative to ,T

k ky s  then the determinant increases, showing that the 

small curvature of the model of the minimizing function f  is corrected, thus increasing some 

eigenvalues. As a conclusion of this short presentation we see that the trace of 1kB   shows that 

for strongly convex functions, the eigenvalues of 1kB   cannot become too large, and the 

determinant of 1kB   shows that they cannot become too small [35]. Therefore, by scaling the 

terms of the BFGS update (1.6) the structure of the eigenvalues of the 1kB   matrix is modified in 

such a way that the efficiency of the BFGS method could be improved. This is the main 

motivation of scaling in BFGS update. 

 

In order to improve the performances of the BFGS method, the self-scaling BFGS 

methods have been derived, firstly suggested and analyzed for minimization of the quadratic 

functions. Oren and Luenberger [38] scaled the Hessian approximation kB  before updating it, i.e. 

they replaced kB  by ,k kB  where k  is a self-scaling factor computed to reduce the condition 

number of kR  when it is applied to a quadratic function with Hessian ,G  where 1/2 1/2
k kR G H G  

and kH  is the current inverse approximation to the Hessian.  

An extension of this self-scaling BFGS method was considered by Al-Baali [1], who 

introduced a simple modification: min{1, }.k k   The numerical experiments in [1] showed that 

the modified self-scaling BFGS method is competitive versus the unscaled BFGS method. In the 

same line of efforts, Al-Baali [2] introduced a restricted class of self-scaling quasi-Newton 

methods which imposed some conditions on the Broyden family parameter and on the self-

scaling factor .k  The global convergence and the local superlinear convergence of this class of 

self-scaling methods with inexact line search were given by Al-Baali [2]. The numerical 

experiments with this restricted class of self-scaling quasi-Newton methods were reported by Al-

Baali [3] on a set of small test unconstrained optimization problems up to 20 variables.   

Another self-scaled BFGS method was proposed by Nocedal and Yuan [36] where the 

first two terms of the BFGS updating formula are scaled by the same factor / ,T T
k k k k ky s s B s  where 

1k k ks x x   and 1 .k k ky g g   They proved that this scaled BFGS method under inexact line 

search is globally convergent on general convex functions. They reported disappointing 

numerical results with their self-scaling BFGS method, this being consistent with the analysis 

given by Shanno and Phua [46]. 

This idea of scaling is now commonly applied only after the first iteration of a quasi-

Newton method. A different approach was proposed by Powell [43] and further developed by 

Lalee and Nocedal [28] and Siegel [47]. Powell’s idea was to work with a factorization 
T

k k kH Z Z  of the inverse Hessian. On the other hand, Lalee and Nocedal [28] extended Powell’s 

idea to scale down the columns of kZ  that are too large, as well as to scale up those which are too 

small. Siegel [47] suggested scaling up the last l  columns of ,kZ  where l  is an integer 

parameter.  

Many other modified BFGS methods were suggested. Using different function 

interpolation conditions, Biggs [9, 10] and Yuan [50] obtained some modified BFGS methods 

and proved their global convergence. The idea of their methods was to scale the third term of the 

BFGS updating formula. The modified BFGS method by Yuan used both gradient and function 

values information in one step.  
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Another self-scaling modified BFGS method was suggested by Aiping Liao [30]. In this 

method two positive scaling parameters which scale the second and the third terms of the BFGS 

updating formula were introduced, which correct the eigenvalues of kB  better than the original 

unscaled BFGS does. Numerical experiments support this claim and indicate that this scaled 

BFGS method may be competitive versus the standard unscaled BFGS method. The values of 

these parameters are computed in an adaptive way subject to a positive parameter. The global 

convergence of this two parameters scaled BFGS modified method is proved by using a tool 

introduced by Byrd and Nocedal [15].  

A recent spectral scaling BFGS method was proposed by Cheng and Li [16]. In their 

method, the standard BFGS update is modified by introducing a positive scale factor k  to the 

third term of the BFGS updating formula, which is exactly the Barzilai and Borwein [8] 

parameter obtained by minimizing 
2
.k k ks y  Comparisons of this spectral scaled BFGS 

method versus some other scaled modified BFGS methods given by Yuan [50], Al-Baali [3], 

Zhang and Xu [51] proved that this spectral scaled BFGS method is clearly more efficient and 

more robust.  

Another very recent adaptive scaled BFGS method has been suggested by Andrei [6]. In 

this method the third term in the standard BFGS update formula is scaled by a positive factor in 

order to reduce the large eigenvalues of the approximation to the Hessian of the minimizing 

function. Under the inexact Wolfe line search, the global convergence of this adaptive scaled 

BFGS method is proved in very general conditions without assuming the convexity of the 

minimizing function. Intensive numerical experiments on unconstrained optimization test 

functions with a medium number of variables (up to 100) show that this variant of the scaled 

BFGS method is more efficient than the standard BFGS update or than some other well 

established scaled BFGS methods, including those of Biggs [9, 10], Cheng and Li [16] and Yuan 

[50]. 

In this paper we introduce a new scaled BFGS method with two parameters. The idea of 

this new two parameter scaled BFGS method is to improve its self-correcting property by scaling 

the first two terms of the standard BFGS update with a positive parameter and the third one with 

another positive parameter. In Section 2 we present the BFGS update with two scaling parameters 

and the corresponding DSBFGS algorithm. A number of 5 methods for selection of the scaling 

parameters in BFGS method, known in literature, are discussed in Section 3. These methods 

based in interpolation conditions [9, 10], spectral scaling [16], diagonal preconditioned and 

minimization the conjugacy conditions [6], scaling the last terms of the BFGS update with two 

parameters [30] or scaling the first two terms of the BFGS update with a parameter [36] are used 

to compare their computational performances versus the suggested BFGS update with two 

parameters. Section 4 presents an analysis of the proposed scaled BFGS update with two 

parameters. The parameter scaling the first two terms of the standard BFGS update is determined 

to cluster the eigenvalues of this matrix. The parameter scaling the third term is determined to 

reduce its large eigenvalues, thus obtaining a better distribution of them. The convergence 

analysis of the scaled BFGS update with two parameters is presented in Section 5. The analysis is 

based on the developments given in [6, 15 and 29]. We find that the scaled BFGS algorithm with 

two parameters is globally convergent in very general conditions without the convexity 

assumption of the minimizing function and when the scaling parameters are bounded. Our 

analysis is based on the trace of the BFGS approximation of the Hessian. In Section 6 some 

numerical results of the suggested scaled BFGS update with two parameters are given by using 

80 unconstrained optimization test problems of medium dimensions (100 variables). Comparisons 

versus standard BFGS algorithm, as well as versus some other scaled BFGS algorithms by Biggs 

[9, 10], Cheng and Li [16], Yuan [50], Nocedal and Yuan [36] and Liao [30] are given. We have 

the computational evidence that our scaled BFGS algorithm with two parameters is more efficient 

than all these scaled BFGS algorithms. However, the adaptive scaled BFGS method by Andrei 
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[6], in which only the third term of the standard BFGS update is scaled with a positive factor, is 

much more efficient than the scaled BFGS method with two parameters suggested in this paper. 

 

2. A scaled BFGS method with two parameters 

Motivated by the idea of changing the structure of the eigenvalues of the BFGS approximation to 

the Hessian matrix by scaling its terms, in this paper we propose a scaled BFGS method with two 

parameters in which the updating of the approximation Hessian matrix 1kB   is computed as: 

 

                                                   1 ,
T T

k k k k k k
k k k kT T

k k k k k

B s s B y y
B B

s B s y s
 

 
   

 
                                    (2.1) 

 

where k  and k  are positive parameters. In our scaled BFGS method the parameter k  is 

selected to cluster the eigenvalues of 1.kB   On the other hand, k  is determined to reduce the 

large eigenvalues of 1,kB   thus hoping to obtain a better distribution of the eigenvalues. It is 

worth saying that a variant of this scaled BFGS update was firstly considered by Oren and 

Luenberger [38] and further analyzed by Nocedal and Yuan [36], where /T T
k k k k k ky s s B s   and 

1.k   With 1,k   other choices for k  are given in Luenberger [33] and Oren [37], as well as 

in the references therein. If 1k   and 1,k   then this method reduces to the standard BFGS 

method. Using the rank-one Sherman-Morrison-Woodbury update formula twice, from (2.1) we 

get 1
1 1,k kH B
   where 

 

                                 1

1
,

T T T T
k k k k k k k k k k k k

k k T T T
k kk k k k k k

H y s s y H y H y s s
H H

y s y s y s



 


  
     

   

                 (2.2) 

 

is the approximation to the inverse Hessian.  

 

Proposition 2.1. If the stepsize k  is determined by the Wolfe line search (1.4) and (1.5), kB  is 

positive definite and 0,k   then 1kB   given by (2.1) is also positive definite. 

 

Proof  Using  the symmetry and positivity of ,kB  we have 

2( ) ( )( ),T T T
k k k k k ks B z s B s z B z  

with equality if 0z  or .0ks  On the other hand, by the Wolfe line search (1.4) and (1.5) we 

have that 0.T
k ky s   Therefore, using the above inequality we get: 

                        1

T T T T
T T k k k k k k

k k k k kT T
k k k k k

z B s s B z z y y z
z B z z B z

s B s y s
       

                                     
2 2 2( ) ( ) ( )

0,
T T T

T k k k k
k k k k kT T T

k k k k k k k

z B s z y z y
z B z

s B s y s y s
         

for any nonzero .z                                                                                                                            

 

The above proposition says that 1kB   given by (2.1) with 0k   inherits the positive definiteness 

of kB  and it does not rely on the line search used or on the convexity of the function .f  

Moreover, observe that this property is not dependent on the values of the parameter .k  
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Therefore, (2.1) is well defined if 0,T
k ky s   which is satisfied if the stepsize is determined by the 

Wolfe line search conditions (1.4) and (1.5). The corresponding scaled BFGS algorithm with two 

parameters can be presented as follows. 

 Double Parameter Scaled BFGS algorithm – DSBFGS 

1. Initialization. Choose an initial point 0
nx R  and an initial positive definite matrix 0.H  

(Usually, 0 .H I ) Choose the constants ,    with 0 1,     and 0   sufficiently 

small. Compute 0 0( ).g f x   Set 0 0.d g   Set 0.k   

2. Test a criterion for stopping the iterations. For example, if ,kg   then stop the 

iterations. Otherwise, continue with step 3. 

3. Compute the stepsize 0k   satisfying the Wolfe line search conditions (1.4) and (1.5). 

4. Compute 1 ,k k k kx x d    1 1( )k kf f x   and 1 1( ).k kg f x    Set 1 ,k k ks x x   

1 .k k ky g g   

5. Compute the scaling factors k  and .k  

6. Update the inverse Hessian kH  using (2.2). 

7. Compute the search direction as 1 1 1.k k kd H g     

8. Set 1k k   and continue with step 2.                                                                                

  

Observe that if 1k   and 1k   for all 0,1,...,k   then the above algorithm is exactly the 

standard BFGS algorithm. For different values of the parameters k  and k  in (2.1) (or (2.2)), 

different scaled BFGS algorithms are obtained. The algorithm is very easy to implement, but it is 

applicable only for solving small and medium unconstrained optimization problems. 

 

 

3. Selection of the scaling parameters in BFGS method 

To implement the DSBFGS algorithm, some procedures for k  and k  in step 5 must be given. 

For the scaling parameter k  in (2.1) some values have been proposed in literature, as follows.  

 1) Scaled BFGS with different interpolation conditions (Biggs [9, 10] and Yuan [50]). 

Observe that the quasi-Newton step k k kd H g   is a stationary point of the following problem: 

                                             
1

min ( ) ( ) .
2

n

T T
k k k kd R

d f x g d d B d


                                         (3.1) 

Since for small ,d  ( ) ( ),k kd f x d    it follows that the problem (3.1) is an approximation to the 

problem (1.1) near the current point .kx  From (3.1) we have that 

                                                   (0) ( ),k kf x     (0) ( ),k kg x                                              (3.2) 

and the quasi-Newton condition 1 1k k kH y s   is equivalent to  

                                                          1 1( ) ( ).k k k kx x g x                                                       (3.3) 

Therefore ( )k kx x   is a quadratic interpolation of ( )f x  at kx  satisfying the above conditions 

(3.2) and (3.3).  

If the objective function is cubic along the line segment connecting 1kx   and kx  and the 

Hermite interpolation is used on the same line between 1kx   and ,kx  then the following condition 

holds 

                               2
1 1 1 1 1 1( ) 4 2 6( ( ) ( )).T T T

k k k k k k k k ks f x s s g s g f x f x                                 (3.4) 
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Biggs [9, 10] considers the update (2.1) with 1k   and the value of k  chosen in such a way 

that the new approximate Hessian satisfies the reasonable condition 

                                    1 1 1 1 1 14 2 6( ( ) ( )).T T T
k k k k k k k k ks B s s g s g f x f x                                     (3.5) 

Therefore, the value of k  proposed by Biggs is 

                                             1 1

6
( ( ) ( ) ) 2.T

k k k k kT
k k

f x f x s g
y s

                                           (3.6) 

For one-dimensional problems, Wang and Yuan [49] showed that the scaled BFGS (2.1) with 

1k   and k  given by (3.6) and without line search is R-linear convergent. 

In the same line of developments, Yuan [50] considered that the approximate function 

( )k d  satisfies the interpolation condition 

                                                           1 1( ) ( )k k k kx x f x                                                        (3.7) 

instead of (3.3) and determines the following value for the scaling parameter 

                                                1 1

2
( ( ) ( ) ).T

k k k k kT
k k

f x f x s g
y s

                                             (3.8) 

For uniformly convex functions it is easy to prove that there exists a constant 0   such that for 

all ,k  [ ,2].k   Powell [42] showed that the scaled BFGS method (2.1) with 1k   and k  

given by (3.8) is globally convergent for convex functions with inexact line search. However, for 

general nonlinear functions, the inexact line search does not involve the positivity of .k  In these 

cases Yuan restricted k  in the interval [0.01,100]  and proved the global convergence of this 

variant of the scaled BFGS method. 

 

2) Spectral scaled BFGS (Cheng and Li [16]). In this method, introduced by Cheng and 

Li [16], in (2.1), 1k   and the scaling parameter k  is computed as 

                                                                    
2

,
T
k k

k

k

y s

y
                                                                (3.9) 

obtained as solution of the problem: 
2

min .k k ks y  Observe that (3.9) is exactly one of the 

spectral stepsizes introduced by Barzilai and Borwein [8]. Therefore, the scaled BFGS method 

given by (2.1) with 1k   and k  given by (3.9) is viewed as the spectral scaled BFGS method. 

Under classical assumptions it is proved that this spectral scaled BFGS method with Wolfe line 

search is globally convergent and R-linear convergent for convex optimization problems.  Using 

some test problems with dimensions between 10 and 500 from the CUTE collection [11], Cheng 

and Li [16] present the computational evidence that their spectral scaled BFGS algorithm is top 

performer versus the standard BFGS and the scaled BFGS algorithms by Al-Baali [3], Yuan [50] 

and Zhang and Xu [51]. 

 

3) Scaled BFGS with diagonal preconditioning and conjugacy condition (Andrei [6]). In 

[6] Andrei introduced another scaled BFGS update given by (2.1), in which 1k   and the 

scaling parameter k  is computed in an adaptive manner as: 

                                                         
2

min ,1 ,
T
k k

k

k k

y s

y




  
  

  

                                                (3.10) 

where 0k  for all .,1,0 k  Since under the Wolfe line search conditions (1.4) and (1.5) 

0T
k ky s   for all 0,1, ,k   it follows that k  given by (3.10) is bounded away from zero, i.e. 
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.10  k  Therefore, the motivation behind this adaptive computation of the scaling parameter 

k  as in (3.10) is that if 1,k   then the structure of the large eigenvalues of 1kB  is corrected by 

their shifting to the left. It is proved that if k  is selected as in (3.10), where 0k  for all 

,,1,0 k  then the large eigenvalues of 1kB  given by (2.1) with 1k   are shifted to the left 

[6]. In [6], intensive numerical experiments showed that this scaled BFGS algorithm with 

1
T

k k ks g   is the best one, being more efficient and more robust versus the standard BFGS 

algorithm as well as versus some other scaled BFGS algorithms, including the versions of Biggs 

[9, 10], Yuan [50] and Cheng and Li [16]. The theoretical justification of this selection of the 

parameter k  is as follows. To have a good algorithm, we hope that k I  is a diagonal 

preconditioner of 2
1( )kf x   that reduces the condition number to the inverse of 2

1( ),kf x   i.e. 

it reduces the large eigenvalues. Such matrix k I  should be a rough approximation to the inverse 

of 2
1( ).kf x   Therefore, k  can be computed to minimize 

2
.k k ks y  On the other hand, for 

nonlinear functions, the classical conjugacy condition used by Hestenes and Stiefel [27] for 

quadratic functions which incorporate the second-order information is 1 1.
T T
k k k kd y s g    

Therefore, in our scaled BFGS algorithm we want k I  to be a diagonal preconditioner of 

2
1( )kf x   and also to minimize the conjugacy condition, i.e. k  can be selected to minimize a 

combination of these two conditions: 

                                                          
2 2

1min{ }.T
k k k k k ks y s g     

Therefore, DSBFGS algorithm may be particularized with k  selected as in (3.10), where 

1 ,T
k k ks g   and 1k   (see [6]). 

 

4) Scaling the last terms of the BFGS update with two parameters (Liao [30]). In another 

avenue of research Liao [30] introduced the modified (scaled) BFGS method with two 

parameters: 

                                                  1

T T
k k k k k k

k k k kT T
k k k k k

B s s B y y
B B

s B s y s
                                             (3.11) 

and proved that this scaled BFGS method with two positive parameters k  and k  corrects the 

large eigenvalues better than the standard BFGS method given by (1.6) does. In other words, it is 

proved that this scaled BFGS method has a strong self-correcting property with respect to the 

determinant [30]. In Liao’s method, the parameters scaling the terms in the BFGS update are 

computed in an adaptive way subject to the values of a positive parameter as: 

 

                      
, , if ,

( , )

( ,1), otherwise,

T T T
k k k k k k k k

kT T T T T T
k k k k k k k k k k k k k k k k k

k

s B s y s s B s

s B s y s s B s y s s B s y s


 



 
 

    



             (3.12) 

 

where 0 1.k   Liao [30] proposed 2exp( 1/ ).k k    Using a tool given by Byrd and Nocedal 

[15], Liao proved that the scaled BFGS method given by (3.11)-(3.12) with the Wolfe line search 

generates iterates which converge superlinearly to the optimal solution. Limited numerical 

experiments with Liao’s scaled BFGS method proved that it is competitive with the standard 

BFGS method and it corrects large eigenvalues better than the standard BFGS method. 
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5) Scaling the first two terms of the BFGS update with a parameter (Oren and 

Luenberger [38] and Nocedal and Yuan [36]). Now, concerning the selection of k  in (2.1) with 

1,k   Oren and Luenberger [38] suggested /T T
k k k k k ky s s B s   being one of the best as it 

simplifies the analysis. Furthermore, Nocedal and Yuan [36] presented a deep analysis of this 

scaling quasi-Newton method and showed that even if the corresponding algorithm with inexact 

line search is superlinear convergent on general functions, it is computationally expensive as 

regards the steplength computation. In other words, the numerical results with this scaling BFGS 

algorithm are not convincing. In this paper we propose another strategy for selecting the scaling 

parameter .k   

 

4. Analysis of the scaled BFGS update with two parameters 

As we know, the performances of the BFGS method are much improved if the eigenvalues of the 

iteration matrix (2.1) are clustered (see [5]). From (2.1) observe that 

 

                                            

2 2

1( ) ( ) .
k k k

k k k k kT T
k k k k k

B s y
tr B tr B

s B s y s
                                          (4.1) 

 

Nocedal [35] proved that the third term on the right hand side of (1.9) is bounded by a positive 

constant as in (1.13). In our algorithm the third term of (4.1) is reduced by the selection of k  as 

in (3.10). Since the trace of a matrix is the sum of its eigenvalues, in our scaled BFGS update 

with two parameters (2.1) we suggest the parameter k  should be selected in such a way that 

1( )ktr B   given by (4.1) to be equal to .n  The idea is to select k  such that the eigenvalues of 

1kB  to be clustered. Therefore, from the equation 1( ) ,ktr B n   where k  is given by (3.10) we 

obtain: 

                                                               

2

2
.

k
k T

k k
k

k k

T
k k k

y
n

y s

B s
n

s B s











                                                        (4.2) 

A characterization of k  in (4.2) is as follows. 

 

Proposition 4.1. Let k  be computed as in (4.2). Then, for any 0,1,k  , k  is positive and 

close to 1.                                                           

 

Proof Observe that along the iterations .01 k

T

k gs  Therefore, 
2 2

1/ ( )T
k k k ky y s g   is close 

to 1. On the other hand, kB  is symmetric and positive definite. Therefore, it has real and positive 

eigenvalues: .,,1 n   Since kB  is nonsingular and ,)( nBtr k   it follows that for any 

,,,1 ni   0i   such that 
1

.
n

ii
n


  Observe that 

2

0 0 0 0 0.
TB s s B s  But, for k  

sufficiently large, 
2

0 1k kB s   and 0 1.T
k k ks B s   Since 

2

k kB s  and T
k k ks B s  are 

approximately of the same order of magnitude, it follows that 
2

/ .T
k k k k kn B s s B s  Therefore, 



 12 

we have 
2

/ T
k k k kn y y s  and ,/

2

kk

T

kkk sBssBn   i.e. for any 0,1, ,k   k  is positive 

and close to 1. Observe that the bigger n  is, the closer to 1 k  is.                                                 

 

In order to investigate the properties and the rate of convergence of the DSBFGS 

algorithm let us consider the analysis on minimization of the strictly convex quadratic function 

                                                * * *1
( ) ( ) ( ) ( )

2

Tf x x x G x x f x                                             (4.3) 

using the Newton method 1 ,k k k k kx x H g    where kH  is a positive definite matrix and k  is a 

stepsize.  When the Newton method with the exact line search is applied to minimize (4.3), then 

the single-step convergence rate can be expressed as: 
2

* *
1

( ) 1
( ) ( ) ( ( ) ( )),

( ) 1

k
k k

k

R
f x f x f x f x

R






 
   

 
 

where 1/2 1/2
k kR G H G  and ( )kR  is the condition number of ,kR  i.e. the ratio of the largest to 

the smallest eigenvalues of .kR  Observe that for the steepest descent method ,kH I  so kR G  

and the single-step convergence rate is linear, with a rate bounded in term of ( ).G  Luenberger 

[32] proved that the quasi-Newton DFP method with exact line search applied to minimize (4.3) 

might cause ( ) ( )kR G   at some iterations. Therefore, in some cases DFP method may be 

inferior to the steepest descent method. Dixon [20] showed that the Broyden class of the quasi-

Newton methods with exact line search produces the same iterations for general functions. 

Therefore, in some cases, the BFGS method with exact line search may be inferior to the steepest 

descent method (see [16]). The following theorem shows that the algorithm DSBFGS can avoid 

such cases. For this we need to introduce the following result of Loewner [31]. 

 

Proposition 4.2. Let n nA R   be a symmetric matrix with eigenvalues 1 1n n      and let 

na R  be an arbitrary nonzero vector. Denote the eigenvalues of the matrix TA A aa   by 

1 1.n n      Then, we have 1 1 1 1.n n n n                                                   

 

 

Theorem 4.1. If we apply the algorithm DSBFGS with k  selected as in (3.10), where 0,k   

with exact line search and 0B I  to minimize (4.3), then ( ) ( ),kR G   where 1/2 1/2
k kR G H G  

and 1.k kH B  

 

Proof  The proof is given by induction as in [16] (see also [38]). Define 1/2 .k kr G s  Observe that 

kR  is similar to .kH G  For 0k   the conclusion of the theorem is clear since 0 .H I  Suppose 

that for some 0,k   ( ) ( ).kR G   Now, let us write (2.1) as 

                                            
1 1

1 1
1 1

.
T T

k k k k k k
k k k k kT T

k k k k k

H s s H y y
H H

s H s y s
  

 
 
 
                                      (4.4) 

Now, pre-multiplying and post-multiplying both sides of the above equality by 1/2G  and using 

the relation k ky Gs  we get: 

                                               
1 1

1 1
1 1

.
T T

k k k k k k
k k k k kT T

k k k k k

R r r R r r
R R

r R r r r
  

 
 
 
                                         (4.5) 

Let the eigenvalues of 1
kR  be arranged as 1 2 0.n       Define the matrix: 
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1 1

1

1
.

T
k k k k

k k T
k k k

R r r R
P R

r R r


 




 
  

 
                                                (4.6) 

Observe that 0.kPr   Therefore, the matrix P  has zero as its eigenvalue, which corresponds to 

kr  as eigenvector. Observe that P  in (4.6) can be written as: 

                                                 1 1 1

1
( )( ) .Tk

k k k k k kT
k k k

P R R r R r
r R r


   


                                           (4.7) 

Now, if we denote the eigenvalues of P  by 1 2 0,n       and having in view the 

structure of P  given by (4.7), then by Proposition 4.2 we have 

                                                 1 1 2 2 0.n n                                                     (4.8) 

From (4.5) we have 

1
1 .

T
k k

k k T
k k

r r
R P

r r


    

Therefore, since 0kPr   we have 1
1 ,k k k kR r r
   i.e. 1

1kR
  has k  as its eigenvalue which 

corresponds to kr  as eigenvector. Since P  is symmetric and kr  is an eigenvector of ,P  it follows 

that every other eigenvector of P  is orthogonal to .kr  Let us consider jw  as an eigenvector of P  

corresponding to the eigenvalue j  for some 1, , 1.j n   Then, we have 

1
1 ,k j j j jR w Pw w
   1, , 1.j n   Therefore, 1 2 1, , ,n k     are eigenvalues of 1

1.kR
  

 Since for any nonsingular matrix X  we have that 1( ) ( ),X X    by inductive 

assumption it follows that  

                                                                1 1( ) ( ).kR G                                                           (4.9) 

Now, let us consider that 1h  and 2h  are the largest and the smallest eigenvalues of 1G  

respectively. Then, (4.9) implies that 1 2 1[ , ] [ , ].n h h    Therefore, from (4.8) it follows that 

1 2 1 2 1, , , [ , ].n h h       

On the other hand, observe that  

2 2
.

T T
k k k k

k

k k k

y s y s

y y



 


 

But, the Rayleigh quotient of 1G  is: 

2 2
.

T T T
k k k k k k

T T
k k k kk

y s s Gs r r

s G s r Gry
   

Therefore, k  is smaller than the Rayleigh quotient of 1.G  Thus, 2 1[ , ].k h h   With this we have 

proved that all the eigenvalues of 1
1kR
  are in the interval 2 1[ , ].h h  Therefore, 1 1

1( ) ( ),kR G  
   

i.e. 

1( ) ( ),kR G    

which completes the proof of the theorem.                                                                                      

 

From the proof of Theorem 4.1 we see that the parameter k  is the key parameter in the economy 

of the DSBFGS algorithm. k  has only a marginal effect in this theorem. However, selected as in 

(4.2), the importance of the parameter k  consists in clustering the eigenvalues of the iteration 

matrix. 
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5. Convergence analysis of the scaled BFGS update with two parameters 

In this section we analyze the convergence of a variant of the scaled BFGS update with two 

parameters, i.e. of the DSBFGS algorithm where the scaling parameters k  and k  are computed 

as in (3.10) and (4.2) with 1 ,T
k k ks g   respectively. Assume that the level set 

0{ : ( ) ( )}S x f x f x   is bounded. From the first Wolfe condition (1.4) it follows that the 

sequence { ( )}kf x  is nonincreasing and therefore lim ( )k kf x  exists. Besides, .kx S  In order 

to establish the global convergence of the algorithm DSBFGS, some useful propositions are 

proved as follows, where k  is computed as in (3.10) and k  is computed as in (4.2) with 

1
T

k k ks g  . Our analysis is based on the same principles as those presented by Andrei [6] (see 

also Li and Fukushima [29] and by Byrd and Nocedal [15]). 

 

 

Proposition 5.1. Let k  be computed as in (4.2) for 0,1, .k   Then, there are the positive 

constants 0     such that for any 0,1, , ,j k   

                                                              1 .k k j                                                            (5.1) 

 

Proof From Proposition 4.1 it follows that k  is close to 1 for any 0,1, .k   As a consequence, 

there are the positive constants 0     such that any product of the form 1 ,k k j    for any 

0,1, ,j  is bounded as in (5.1).                                                                                                    

 

Proposition 5.2. Consider the scaled 1kB   update with two parameters given by (2.1), where k  

and k  are computed as in (3.10) and (4.2), with 1
T

k k ks g  , respectively. Then 

                                                        1 0( ) ( ) ( 1)ktr B tr B k                                                     (5.2) 

and 

                                                    

2

0

0

1
( ( ) ) .

k
i i

T
i i ii

B s
tr B k

s B s  



                                                 (5.3) 

 

Proof  Observe that 

       

2 2

1( ) ( )
k k k

k k k k kT T
k k k k k

B s y
tr B tr B

s B s y s
       

2 2 2 2

1 1 1
1 1 1 1

1 1 1 1 1

( )
k k k k k k

k k k k k k kT T T T
k k k k k k k k k k

B s y B s y
tr B

s B s y s s B s y s
       

   

    

 
     
 
 

 

                    ...  

                    1 0 0( )k k tr B    

                       

2 2

0 0 0
1 0 1 1 0

0 0 0 0 0

k k k kT T

B s y

s B s y s
          

                      

2 2

1 1 1
1 1 1 2 1

1 1 1 1 1

k k k kT T

B s y

s B s y s
          
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2 2

1 1 1
1 1

1 1 1 1 1

k k k
k k k kT T

k k k k k

B s y

s B s y s
     

 

    

   

                      

2 2

.
k k k

k kT T
k k k k k

B s y

s B s y s
                                                                                            (5.4) 

 

But, for any 0, , ,i k  
2 2 2

2 2

1 1

1.
T

i i ii i
i T TT T

i i i ii i i i i i

y y yy s

y s y sy s g y s g


 

  
 

 

 

Therefore, since by Proposition 5.1 there are the positive constants 0     such that for any 

0,1, , ,j k  1 ,k k j       it follows that 

                           

2

1 0 0

0 1

( ) ( ) 1 ( ) 1.
k k

i i
k T

i i ii k

B s
tr B tr B tr B k

s B s


 

                                  (5.5) 

 

From (5.5) we get (5.2).   

On the other hand, since 1kB   is positive definite, 1( ) 0.ktr B    Therefore (5.3) is true.               

 

Remark 5.1 If 0 ,B I  then 

1( ) ( 1)ktr B n k          and    

2

0

1
( ) .

k
i i

T
i i ii

B s
n k

s B s  



    

 

Observe that the last inequality in (5.5) shows that the largest eigenvalue of 1kB   is strictly 

smaller than 0( ) ( 1).tr B k     Therefore, the scaled DSBFGS method with k  given by (3.10) 

and k  given by (4.2) with 1
T

k k ks g   has a good self-correcting property subject to the trace, 

i.e. it may be more efficient than the standard BFGS in correcting the large eigenvalues. 

 

 

Proposition 5.3. If for all ,k  ,k m   where 0m   is a constant, and ,k   where 0   is a 

constant, then there is a constant 0c   such that for all k  sufficiently large: 

                                                                     
0

.
k

k
i

i

c


                                                              (5.6) 

 

Proof Considering the identity (1.10), the determinant of the scaled 1kB   given by (2.1) is as 

follows: 

1

1det( ) det
T T

k k k k k k k
k k k T T

kk k k k k

s s B B y y
B B I

s B s y s










  
     

  

 

                                                     1( )
det( )det ( )

T T
k k k k

k k k k kT T
kk k k k k

B s y
B I s B y

s B s y s






 
   

 
 

                                                     det( ) .
T

n k k k
k k T

k k k k

y s
B

s B s





                                                          (5.7) 
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Therefore, 

         1
1det( ) det( )

T
n k k

k k k kT
k k k

y s
B B

s B s
    

                        1 1 1 1
1 1 1

1 1 1

det( )
T T

n nk k k k
k k k k kT T

k k k k k k

y s y s
B

s B s s B s
      

  

  

  
   
  

 

1 1 11 1 0 0
1 1 0 0 0

1 1 1 0 0 0

det( )
T T T

n n nk k k k
k k k kT T T

k k k k k k

y s y s y s
B

s B s s B s s B s
        

 

  

    
     
    

 

                        1
0

0

det( ).
k T

n i i
i i T

i i ii

y s
B

s B s
 



 
  
 
                                                                              (5.8) 

 

But, for all ,i  T T
i i i i i is B s s g   and (1 ) .T T

i i i iy s s g    Besides, for all ,i i m   and .i   

Therefore, 

 

                    
1

1 1 1 1
1 0 0

0 0

1 1
det( ) det( ) det( ) (1 ) .

k k
k

n n k k
k

i ii i

B B m B m


  
 


   



 


             (5.9) 

 

Since 1 1

1
det( ) ( ) ,

n

k kB tr B
n

 

 
  
 

 by using Proposition 5.2, we get 

 1 0

1
det( ) ( ) 1 .

n

kB tr B k
n



 
     
 

 

Therefore, 

                   

 

( 1)( 1) 1 1 ( 1)( 1) 1 1
0 0

10

0

det( ) (1 ) det( ) (1 )
.

det( ) 1
( ) 1

k n k k k n k k k

i n
ki

B m B m

B
tr B k

n

   


       



 
 

 
    

 

         (5.10) 

 

When k  is sufficiently large, (5.10) implies (5.6).                                                                       

 

Remark 5.2. If 0 ,B I  then 

 

( 1)( 1) 1 1

0

(1 )
.

1
1

k n k k k

i n
i

m

n k
n

 


   






 
    

 

  

 

Theorem 5.1. Let { }kx  be generated by the algorithm DSBFGS with k  and k  computed as in 

(3.10) and (4.2) with 1 ,T
k k ks g   respectively.  Then 

                                                              liminf 0.k kg                                                       (5.11) 

 

Proof Assume that 0,kg     for all .k  Observe that .k k k k kB s B d  Since f  is bounded 

from below, from the first Wolfe condition (1.4) we have 
0
( ) .T

k kk
s g




    Therefore, 
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0 0 0
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 

 

     

                                         
2 2

2 2

0 0

.
T T
k k k k k k

k k k

k kk k k k

s B s s B s
g

B s B s
 

 

 

                                            (5.12) 

 

Now, from the geometric inequality, for any 0  there exists an integer 0 0k   such that for 

any positive integer q  we have: 

                                         
0 0

0 0

1/

2 2

1 1

.

q
k q k qT T

k k k k k k
k k

k k k kk k k k

s B s s B s
q

B s B s
 

 

   

 
   
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Hence,  
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0

2
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0

1
( ) ( ) ,

k q
k k

T
k k kk

B s
tr B k q

q s B s q   





    
     

 
         (5.14) 

 

where the last inequality follows from Proposition 5.2. Now, considering ,q  we get a 

contradiction because of Proposition 5.3 which shows that the left-hand side of the above 

inequality (5.14) is greater than a positive constant. Therefore, (5.11) is true.                               

 

Observe that the global convergence of the algorithm DSBFGS with k  given by (3.10) where 

1
T

k k ks g   bounded from below and with k  given by (4.2) lower and upper bounded is 

proved in very general conditions without the convexity assumption of function .f  This is the 

best result we can obtain under general assumptions that the function f is bounded from below 

and the line search is based on the inexact Wolfe line search conditions (1.4) and (1.5) and 

without the convexity assumption on .f  Moreover, the above results can be obtained for any 

positive value for the parameter k  tending to zero. The superlinear convergence of the scaled 

BFGS method (2.1) with the scaling parameters k  and k  given by (3.10) and (4.2) respectively 

can be proved by using a tool and the results presented by Byrd and Nocedal [15] and Dennis and 

Moré [18, 19] (see also [29]). If the Hessian matrix 2 ( )f x  of the minimizing function f  is 

Lipschitz continuous at the optimal solution *x  of the problem (1.1), then for any positive 

definite matrix 0B  the modified BFGS method (2.1) with the scaling parameters given by (3.10) 

and (4.2), and the line search satisfying the inexact Wolfe line search conditions (1.4) and (1.5), 

generates a sequence { }kx  which converges to *x  superlinearly. This result is obtained under 

very general assumptions that f  is twice continuously differentiable near 
*,x  { }kx  converges to 

*x  where *( ) 0,f x   2 *( )f x  is positive definite and 2 ( )f x  is Lipschitz continuous, again 

without convexity assumption on f  (see also [29]).  
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Remark 5.3. The scaling factor k  in (4.2) is determined only from the equation 1( ) ,ktr B n   

i.e. using only the trace operator. This is not a limitation: if the stepsizes k  tend to zero, then, as 

proved by Byrd, Nocedal and Yuan [14] this is due to the existence of very small eigenvalues in 

,kB  which cannot be monitored by the trace operator. However, the BFGS update formula has a 

strong self-correcting property with respect to the determinant which can be used to show that, in 

fact, k  is bounded away from zero in mean. From (5.8) we see that when T
i i is B s  is small 

relative to ,T
i iy s  then the determinant increases, showing that the small curvature of the model of 

the minimizing function is corrected, thus increasing some eigenvalues satisfying the condition 

1( ) .ktr B n    

 

 

6. Numerical results and comparisons 

In this section we present some numerical results with a Fortran implementation of the scaled 

BFGS algorithms we presented above. For this, the algorithm DSBFGS is particularized as 

follows: BFGS (DSBFGS with 1k   and ,1k  i.e. the standard BFGS), BFGSC (DSBFGS 

with 1k   and k  given by (3.9), i.e. the scaled BFGS given by Cheng and Li [16]), BFGSB 

(DSBFGS with 1k   and k  given by (3.6), i.e. the scaled BFGS proposed by Biggs [9, 10]), 

BFGSY (DSBFGS with 1k   and k  given by (3.8), i.e. the scaled BFGS suggested by Yuan 

[50]), BFGSA (DSBFGS with 1k   and k  given by (3.10) with 1
T

k k ks g  , i.e. the scaled 

BFGS proposed by Andrei [6]), BFGSD (DSBFGS with k  and k  are given by (4.2) and (3.10), 

with 1
T

k k ks g  , respectively, i.e. the scaled BFGS given by Andrei [7]), NOYA (DSBFGS 

with /T T
k k k k k ky s s B s   and 1,k   i.e. the scaled BFGS given by Nocedal and Yuan [36]) and 

LIAO (scaled BFGS by Liao [30], given (3.11) and (3.12)). 

 

All the algorithms implement the Wolfe line search conditions with 0.8   and 

0.0001.   The iterations are stopped if the inequality 
510kg 


  is satisfied, where .


 is the 

maximum absolute component of a vector or if the number of iterations exceeds 1000.  In all the 

algorithms, for all the problems, the initial matrix 0 ,H I  i.e. the identity matrix. For each 

method, except the method of Liao given by (3.11) and (3.12), in order to get the search direction 

we do not solve the system k kB d g   to get .kd  Instead, we use the inverse updating formula 

(2.2). For the scaled BFGS methods by Biggs [9, 10] and Yuan [50], k  given by (3.6) and (3.8) 

respectively is restricted in the interval [0.01, 100]. Besides, at the very first iteration of these 

methods the scaling is not applied. All the codes were written in double precision Fortran and 

compiled with f77 (default compiler settings) on an Intel Pentium 4, 1.8GHz workstation. All the 

codes are authored by Andrei.  

 

For a start, we present a simple example which illustrates the main elements of running 

the BFGSD algorithm. Consider the problem: 

 

1

min ( ) (exp( ) ),
n

i i

i

f x x ix


   
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where 10n   and 0 [1,1, ,1].x   For this problem 0( ) 4.71454f x   and the BFGSD algorithm 

gives a local optimal solution for which *( ) 3.19505f x   in 8 iterations and 42 evaluations of the 

function f  and of its gradient. 

Table 1 presents: the eigenvalues 1 10, ,   of the Hessian approximation given by (2.1); the 

scaling factors k  and k  given by (3.10) and (4.2) with 1 ,T
k k ks g   respectively; as well as 

the evolution of the elements 
2

k kB s  and T
k k ks B s  for 1, ,8.k   

 

 
Table 1. Characteristics of the BFGSD algorithm. 

Eigenvalues of Hessian approximation (2.1), k  given by (4.2), k  given by (3.10),  

2

k kB s  and .T
k k ks B s  

k  1 2 3 4 5 6 7 8 

1  0.8532 0.6423 0.6414 0.5303 0.4471 0.8606 1.5591 1.5288 

2  1.0094 1.0227 1.0075 0.9921 1.5161 0.9380 0.6479 1.3073 

3  1.0094 1.0227 1.0075 0.9921 1.0637 0.9380 1.1881 0.6181 

4  1.0094 1.0227 1.0075 0.9921 1.0061 0.9380 0.8883 0.8711 

5  1.0094 1.0227 1.0075 0.9921 0.9987 0.9388 0.9893 0.9821 

6  1.0094 1.0227 1.0075 0.9921 0.9951 0.9395 0.9496 0.9427 

7  1.0094 1.0227 1.0075 0.9966 0.9933 0.9463 0.9451 0.9380 

8  1.0094 1.0227 1.0185 1.0030 0.9933 0.9656 0.9443 0.9375 

9  1.0094 1.0749 1.0729 1.0667 0.9933 1.0090 0.9442 0.9372 

10  1.0713 1.1239 1.2223 1.4431 0.9933 1.5262 0.9442 0.9372 

k  1.0094 1.0131 0.9851 0.9847 1.0012 0.9443 1.0065 0.9926 

k  0.4193 0.4880 0.5943 0.5338 0.4343 0.9285 0.4195 0.4488 

2

k kB s  
1 0.356e-1 0.5203-2 0.553e-3 0.321e-4 0.249e-4 0.236e-6 0.207e-7 

T
k k ks B s  1 0.417e-1 0.809e-2 0.845e-3 0.554e-4 0.531e-4 0.224e-6 0.223e-7 

 

 

An attractive feature of the BFGSD algorithm, where k  and k  are given by (3.10) and (4.2) 

with 1 ,T
k k ks g   respectively, which we see in Table 1, is that along the iterations, the 

eigenvalues of the Hessian approximation (2.1) are all positive and clustered. In fact, the Hessian 

approximation (2.1) has a special eigenvalue structure that occurs in BFGSD: there are some 

large eigenvalues that may or may not be located near each other, as well as some smaller 

eigenvalues located more or less near 1, all satisfying the condition 
1

.
n

ii
n


  Observe that this 

structure of the eigenvalues of the Hessian approximation (2.1) is very similar to the structure of 

the eigenvalues encountered in conjugate gradient algorithms where the approximation to the 

inverse Hessian is restarted as identity matrix at every step (see [45]).  

From Table 1 we see that k  computed as in (4.2) is close to 1, as proved in Proposition 4.1. 

Observe that along the iterations, 
2

k kB s  and T
k k ks B s  are of the same order of magnitude, both of 

them tending to zero.  
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In the following, we considered a number of 80 unconstrained optimization test problems 

of medium size ( 100n   variables), described in [4]. The algorithms which we compare in these 

numerical experiments find local solutions. Therefore, the comparisons of the algorithms are 

given in the following context. Let 1ALG

if and 2ALG

if  be the optimal value found by ALG1 and 

ALG2 for problem 1, ,80,i   respectively. We say that, in the particular problem ,i  the 

performance of ALG1 was better than the performance of ALG2 if:  

                                                            1 2 310ALG ALG

i if f                                                       (6.1) 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the 

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient 

evaluations, or the CPU time corresponding to ALG2, respectively.  

 

In the first set of numerical experiments we compare BFGSD versus BFGS, BFGSC, 

BFGSB and BFGSY.  For BFGSC, BFGSB and BFGSY the search direction is computed as in 

(1.7) where 1kH   is updated as in (2.2) with 1k   and the corresponding values of .k  For the 

standard BFGS algorithm the search direction is determined as in (1.7) where the approximation 

to the inverse Hessian is updated as in (1.8). 

Figure 1 presents the Dolan and Moré [21] performance profiles of these algorithms for 

this set of unconstrained optimization test problems based on the CPU time metric. For example, 

when comparing BFGSD versus BFGS (standard BFGS algorithm), subject to the number of 

iterations, we see that BFGSD was better in 46 problems (i.e. it achieved the minimum number of 

iterations in 46 problems), BFGS was better in 26 problems. Both of them achieved the same 

number of iterations in 5 problems, etc. Out of 80 problems considered in this set of numerical 

experiments only for 77 does the criterion (6.1) hold. 

 

  

  
Fig.1. Performance profiles of BFGSD versus BFGS, BFGSC, BFGSB and BFGSY. 
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From the performance profiles given in Figure 1 we see that BFGSD is top performer 

against BFGS, BFGSB, BFGSC and BFGSY algorithms. Since all these codes use the same 

Wolfe line search and the same stopping criterion, they differ only in their choice of the search 

direction. The percentage of the test problems for which a method is the fastest is given on the 

left axis of the plot. The right side of the plot gives the percentage of the test problems that were 

successfully solved by these algorithms. Mainly, the left side is a measure of the efficiency of an 

algorithm; the right side is a measure of the robustness. From Figure 1 we see that BFGSD is top 

performer versus the classical BFGS and the scaled BFGS algorithms (BFGSB, BFGSC, 

BFGSY) considered in this numerical study and the differences are significant. 

 

Figure 2 presents the performance profiles of all these 5 modified BFGS methods subject 

to the CPU computing time metric. From Figure 2 we see that subject to the CPU time metric the 

BFGSD algorithm is top performer versus the standard BFGS algorithm and versus the scaled 

BFGSB, BFGSC and BFGSY algorithms. Observe that BFGSD and BFGSC are grouped, having 

better performances versus the other ones.  

 

 
Fig. 2. Performance profile of BFGSD, BFGS, BFGSB, BFGSC and BFGSY. 

 

 

In the second set of numerical experiments we compare the scaled BFGSD algorithm 

versus NOYA - the self-scaled BFGS algorithm by Nocedal and Yuan [36], where the 

approximation of the Hessian 1kB   is computed as in (2.1) with /T T
k k k k k ky s s B s   and 1.k   

Figure 3 presents the performance profile of BFGSD versus NOYA subject to CPU time metric. 

From Figure 3 we see that the BFGSD algorithm is top performer versus NOYA.  
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Fig. 3. Performance profile of BFGSD versus NOYA. 

 

In their study, Nocedal and Yuan proved that the self-scaled BFGS algorithm NOYA, with 

inexact line search, is globally convergent on general convex functions. However, the main 

drawback of this algorithm is that for achieving superlinear convergence it might need to evaluate 

the minimizing function twice per iteration, even very near the solution [36]. The scaling of the 

first two terms of 1kB   matrix with /T T
k k k k k ky s s B s  , like in NOYA algorithm, leads us to 

disappointing numerical results. This is consistent with the analysis given by Nocedal and Yuan 

[36] and Shanno and Phua [46]. On the other hand, in our study on the scaled BFGS algorithm 

BFGSD we emphasize that both parameters k  and k  are important in the economy of the 

algorithm: k  is computed to cluster the eigenvalues of 1kB   and k  is responsible for shifting 

the large eigenvalues to the left. These are the main motivations that DSBFGS has better 

performances versus NOYA.  

 

 In the third set of numerical experiments we compare the scaled BFGSD algorithm 

versus BFGSA. In BFGSA the search direction is determined like in (1.7) where the inverse 

approximation to the Hessian is computed as in (2.2), with 1k   and k  given by (3.10) with 

1
T

k k ks g   [6]. Figure 4 shows the performance profiles of these algorithms subject to CPU 

computing time. Observe that BFGSA is top performer versus BFGSD, being much more 

efficient. In Proposition 4.1 we proved that k  is close to 1. Therefore, in the economy of the 

BFGSD algorithm ,k  which scale the first two terms of the BFGS update, is selected as in (4.2) 

to cluster the eigenvalues of the scaled BFGS matrix in such a way that their sum to be equal to 

the dimension of the problem. On the other hand, in BFGSA the spectrum of the scaled BFGS 

matrix is free. Oren and Luenberger [38] showed that in order to guarantee that the BFGS update 

1kB   will have a lower condition number than ,kB  the interval spanned by the eigenvalues of kB  
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must contain the unity. But in our numerical experiments we noticed that along the iterations the 

spectrum of the BFGS update matrix generated by BFGSA always contain unity. On the other 

hand, in BFGSA the scaling factor k  is selected as in (3.10) with 1
T

k k ks g   in order to be a 

diagonal preconditioner of 2
1( )kf x   and also to minimize the conjugacy condition 

1 1.
T T
k k k kd y s g    These are the major arguments that BFGSA is superior versus BFGSD.  

 

 
Fig. 4. Performance profile of BFGSD versus BFGSA 

 

 

In the last set of numerical experiments we compare the scaled BFGSD algorithm versus 

LIAO - the scaled BFGS algorithm by Liao [30]. In the Liao algorithm the Hessian 

approximation 1kB   is computed as in (3.11), where the parameters k  and k  are computed as in 

(3.12).  Figure 5a presents the Dolan and Moré performance profiles of BFGSD versus LIAO 

with 1.0005exp( 100 / ).k k    Figure 5b presents the performance profiles of BFGSD versus 

LIAO with 2exp( 1/ ).k k    We observed that if k  is small, like in the LIAO algorithm with 

1.0005exp( 100 / ),k k    then the algorithm takes / ( )T T T
k k k k k k k k ks B s s B s y s    and 

/ ( ),T T T
k k k k k k k ky s s B s y s    as it is specified in (3.12). If k  is large, like in the LIAO algorithm 

with 2exp( 1/ ),k k    then the algorithm selects k k   and 1,k   as it is recommended by 

(3.12). From Figure 5 we see that BFGSD algorithm is top performer versus both variants of 

LIAO. The performances of the scaled BFGS algorithm LIAO are very sensitive to the values of 

the parameter .k  Both these values of k  has been suggested by Liao [30], but some other 

values could be tried leading us to similar results. It seems that BFGS update has a remarkable 

robustness subject to the scaling the last two terms in (1.6).  

 



 24 

 

  
 

Fig. 5. Performance profile of BFGSD versus LIAO. 

 

From (3.11) we get: 

                                             

2 2

1( ) ( ) .
k k k

k k k kT T
k k k k k

B s y
tr B tr B

s B s y s
                                           (6.2) 

From (3.12) we see that if ,T T
k k k k ks B s y s  then 0 1.k k     Therefore, the second term in 

(6.2) which shifts the eigenvalues to the left is almost the same as the second term in (1.9), but the 

third term in (6.2) which shifts the eigenvalues to the right is much smaller than the third term in 

(1.9). In this case, the LIAO algorithm better corrects the large eigenvalues than the standard 

BFGS does. In comparison, in BFGSD, the large eigenvalues are not only shifted to the left by 

means of k  selected as in (3.10), but they are clustered by a proper selection of k  as in (4.2). 

This is the reason why BFGSD is more efficient and more robust than LIAO (see Fig. 5).  

Since in LIAO the search direction 1kd   is computed as solution of the system 

1 1 1,k k kB d g     we generated a Fortran version of BFGSD code where the search direction is 

computed as solution of the system 1 1 1k k kB d g     to compare it versus the LIAO algorithm. 

Therefore, unlike the previous numerical experiments, in this comparison, both in BFGSD and in 

LIAO the search direction 1kd   is computed as solution of the system 1 1 1.k k kB d g     From 

Figure 5 we see that BFGSD is top performer versus LIAO and the difference is significant 

subject to the efficiency and robustness of the algorithms. Since these codes use the same Wolfe 

line search and the same stopping criterion, they differ only in their choice of the search direction. 

Again, observe that the numerical results with LIAO are disappointing. This is because in LIAO 

the modified (scaled) BFGS update is obtained by a simple symmetrization procedure from a rank 

one update (see [30]).   

As a byproduct, it is worth saying that the BFGSD algorithm where the search direction 

is computed as 1 1 1k k kd H g     is much faster than its version where 1kd   is computed as 

solution of the system 1 1 1.k k kB d g      

 

 

5. Conclusions 

Plenty of scaled BFGS algorithms are known. In this paper we suggested a new double parameter 

scaled BFGS method where the first two terms in standard BFGS update are scaled with a 

positive parameter and the third term is scaled with another positive one. In our algorithm the 

factor scaling the first two terms of the standard BFGS update is selected to cluster the 
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eigenvalues of the scaled BFGS update. On the other hand, the factor scaling the third term is 

determined to shift the large eigenvalues to the left. For general functions we proved that the 

algorithm with inexact line search is globally convergent under the very reasonable condition that 

the scaling parameters are bounded. Numerical results using a limited number of 80 

unconstrained optimization test problems of different structures and complexities show that this 

scaled BFGS update with two parameters is more efficient versus the standard BFGS algorithm as 

well as versus some other well known scaled BFGS algorithms, including those by Biggs [9, 10], 

Cheng and Li [16], Liao [30], Nocedal and Yuan [36] and Yuan [50]. The conclusion of this 

study is that scaling the first two terms of the standard BFGS update has an important effect on 

the performances of the scaled BFGS algorithm. The most important is the scaling of the third 

term of the standard BFGS update (see [6]). The scaling of the third term with 1k   will push 

down to the left the eigenvalues of the scaled BFGS update, thus obtaining a better structure of 

the eigenvalues than the one of the standard BFGS or of some other scaled BFGS methods. This 

is in agreement with the computational performances of the BFGSA algorithm in which only the 

third term of the right hand side term of the BFGS update is scaled. In fact, BFGSA proved to be 

the most efficient among the scaled BFGS algorithms discussed in this paper. 

The main lesson we get from this study is that scaling the terms of the standard BFGS update may 

lead to algorithms that are more efficient than the standard BFGS algorithm. However, selecting 

the values for the scaling factors is not easy to guess. In our algorithm, for scaling factors 

determination we implemented the idea of clustering the eigenvalues of the iteration matrix and 

of shifting its large eigenvalues to the left by using the trace operator. Some other principles may 

be used in which the scaling factors are determined by using the determinant of the iteration 

matrix, or a combination of these two operators (trace and determinant). Another idea is to scale 

the terms of the standard BFGS update at some selected iterations, for example only during the 

first few iterations. Anyway, the BFGS quasi-Newton methods continue to be full of surprises, 

always having more room for improving their numerical performances.  
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