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Abstract. For nonlinear constrained optimization a particle swarm optimization (PSO) method with a new 

penalty function method is presented. The penalty function includes a composite penalty factor, which 

introduce a linear progressive penalization subject to the values of the constraint violation into the current 

point. This new composite penalty function is used into the frame of the particle swarm optimization 

method. To improve the direct search of PSO a local coordinatewise search is used. The numerical 

experiments with this new penalization for 10 real nonlinear constrained optimization applications are 

reported. The obtained results are compared versus the well known direct search methods COBYLA, DFL 

and the primal-dual interior-point algorithm with a filter line-search method IPOPT. The conclusion is that 

minimizing a special penalty function using particle swarm optimization method yield a competitive 

algorithm being more efficient versus COBYLA and DFL.   
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1. Introduction 

Engineering nonlinear optimization problems are present in very numerous applications. These 

problems can be represented as: 

                                                           min ( )f x  

subject to:                                                                                                                                       (1) 

                                                            ( ) 0,ic x   1, , ,i m  

{ : },x x l x u    

 

where : ,nf  ,n
ic   1, , ,i m  are nonlinear functions, called functional 

constraints, and , nl u  are lower and upper simple bounds on variables ,nx  respectively. 

The above formulation is not restrictive because the inequality constraints of the form ( ) 0,ic x   

can also be represented as ( ) 0,ic x   and an equality constraint, ( ) 0,ic x   can be represented by 

two inequality constraints ( ) 0ic x   and ( ) 0.ic x   

For solving these problems plenty of methods are known. These can be classified as 

gradient methods using the information given by the gradients and the Hessians of the functions 

f  and ,ic 1, , ,i m  and direct methods using only the values of these functions along a 

sequence of points from .   

The main methods based on derivative information (the first and the second order) can be 

classified as: penalty and augmented Lagrangian methods [1, 2, 3], sequential quadratic 

programming [4, 5], interior-point methods [5], filter methods [6], etc. One of the most common 

methods for nonlinear constrained optimizations is based on penalty function. In the penalty 

method the constraints are penalized by building an extended objective function, which is 
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minimized by means of the unconstrained optimization algorithms (see [5, 7, 8]). The penalty 

function aims to penalize infeasible solutions by increasing their fitness values proportionally to 

their level of constraints violation. Using the same principle, an extension of the penalty methods 

is given by the augmented Lagrangian methods [2, 3, 9]. Methods based on augmented 

Lagrangian often use gradient techniques for minimizing the augmented Lagrangian [10, 11, 12, 

13], and rarely they are combined with heuristics that rely on a population of points where the 

Lagrangean function is evaluated [14, 15, 16].  

On the other hand, the methods using only the values of the functions defining the 

problem are much diversified, the main ones being based on: genetic algorithms, particle swarm 

optimization, ant colony optimization, evolutionary algorithms, bacterial foraging algorithms, 

tabu search, electromagnetism-like mechanism, etc. An excellent survey on bio inspired 

optimization algorithms is given in [17]. 

  In this paper we consider the Particle Swarm Optimization method for solving the 

nonlinear constrained optimization problems (1) using a special penalty method where a linear 

assignment of penalization is used. Plenty of particle swarm optimization (PSO) methods for 

solving nonlinear constraint optimization problems are known [18]. A particle-swarm 

optimization using modified BFGS updating [19, 20] for constrained nonlinear optimization was 

presented in [21]. Here, a hybrid algorithm which integrates the modified BFGS into the particle 

swarm optimization is used to minimize the augmented Lagrangian penalty function. The 

structure of this hybrid algorithm for the augmented Lagrangian minimization is taken from [7]. 

Another approach based on augmented Lagrangian which solves a sequence of simple bound 

constrained sub-problems whose objective function penalizes equality and inequality constraints 

violation and depends on the Lagrange multipliers and a penalty parameter was given by Rocha 

and Fernandes [22]. Each sub-problem is solved by a population-based method that uses an 

electromagnetism-like mechanism introduced in [23]. An application of swarm optimization for 

nonlinear programming using the evaluation of infeasible particles is described in [24]. Another 

penalty function approach was described in [25]. Here the constraints are penalized by means of a 

multi-stage assignment function. Other approaches for solving constrained nonlinear optimization 

problems have been suggested. For example, a hybrid multi-swarm particle swarm optimization 

method is proposed in [26], where the current swarm is partitioned into several sub-swarms and 

the particle swarm optimization is used as the search engine for each sub-swarm. In order to 

explore more promising regions of the search space differential evolution is incorporated in order 

to improve the personal best of each particle. A dynamic-objective particle swarm optimization 

for constrained optimization problems is presented in [27]. This method converts the original 

constrained optimization problem into a bi-objective optimization problem and then it enables 

each particle to dynamically adjust its objectives according to its current position in the search 

space. In [28] a measure of the infeasibility of a particle is computed using an exponential 

function which contains the logarithms of the modified constraints.  

 

For solving nonlinear constrained optimization problems, in this paper we consider a 

modification of the penalty function introduced in [25]. The penalty function used here is a 

composite function in which the constraints are penalized by means of a linear assignment 

function. In Section 2 we present the penalty function method used in this paper. Section 3 is 

dedicated to give the main ideas of particle swarm optimization method in conjunction to this 

new penalty function. In order to improve the best point generated by the PSO algorithm a 

procedure for the local search around the best point is used. The numerical results of this method 

subject to a number of 10 nonlinear constrained optimization applications are presented in 

Section 4. Comparisons of our method versus the direct search methods: COBYLA [29] and DFL 

[30], as well as versus IPOPT [31, 32] illustrate the performances of our algorithm. 
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2. The Penalty Function Method with a linear progressive penalization 

The penalty function method solves the nonlinear constrained optimization problem (1) by 

solving a sequence of unconstrained optimization sub-problems. The unconstrained optimization 

sub-problems are solved using the PSO method. In PSO a non-stationary penalty function with a 

multi-sage assignment function was introduced by Homaifar, Lai and Qi [33] and used in [25] 

and [34]. In this paper, for problem (1), we modify this non-stationary penalty function and 

consider the following one: 

 

                                                          ( ) ( ) ( ) ( ),F x f x h k P x                                                       (2) 

 

where ( )f x  is the original objective function, ( )h k  is a variable coefficient dynamically 

modified at every iteration ,k  and ( )P x  is a composite penalty factor defined as: 

 

                                                     
( ( ))

1

( ) ( ( )) ( ) ,i

m
q x

i i

i

P x q x q x





                                              (3) 

 

where ( ) max{0, ( )},i iq x c x  1, , .i m  Observe that the function ( )iq x  gives a measure of the 

violation of constraint ic  into the point .x  If the constraint ic  is satisfied, then it has no influence 

into the penalty factor, i.e. ( ) 0P x   for every admissible .x  ( ( ))iq x  is an assignment function 

which introduce a progressive penalization subject to the values of the constraint ( )ic x  into the 

current point. In order to emphasize the penalization of the violation of the constraints around 1, 

the function ( ( ))iq x  is introduced as: 

 

                                                       
1, if ( ) 1,

( ( ))
2, if ( ) 1.

i

i

i

q x
q x

q x



 


                                                   (4) 

 

The variable coefficient ( )h k  is dependent by the number of iteration .k  Simple expressions of 

this coefficient can be ( ) ,h k k k  or ( ) .h k k  Observe that the functions (.)  and (.)  are 

dependent by the constraint functions defining the problem.  

The function ( )t  which is a penalization of the constraint ( ) 0ic x   is defined as: 

 

                                     

, if 0.001,

0.001
( ) , if 0.001 1,

0.999 0.999

, if 1,

u t

U u u U
t t t

U t




  

   




                                   (5) 

 

where u  and U  are the positive penalty coefficients ( u U ). In our numerical experiments we 

have considered 10u   and 300.U   In other words, we consider a moderate linear evolution of 

the penalization coefficients associated to the constraints. Clearly, this continuous evolution of 

function ( )t  may be modified, by changing the values of parameters u  and ,U  in order to 

accentuate or diminish the penalization of the constraints in ( ).P x  The simple bound constraints 

defined by   are also introduced in function ( )P x  as functional constraints. Observe that ( )P x  

is positive for any value of .x  With these, the penalty function method for solving (1) consists of 

minimizing the penalty function (2), viewed as an unconstrained optimization problem, using the 

particle swarm optimization method, which we present in the next section. 
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 3. The Particle Swarm Optimization Method 

Particle Swarm Optimization is a stochastic optimization method based on simulation of the 

social behavior [18, 35, 36]. This is a technique that can be likened to the behavior of a flock of 

birds or the sociological behavior of a group of people. PSO is a population based optimization 

technique, where the population is called swarm. Each particle represents a possible solution to 

the optimization problem. Along the iterations each particle accelerates in the direction of its own 

personal best solution computed so far, as well as in the direction of the global best position 

discovered by any of the particles in the swarm. The idea is that if a particle finds a better new 

solution, then all other particles in the swarm will move closer to it, thus intensively exploring the 

corresponding region.   

 The PSO algorithm has three main steps: generating the particles’ positions and 

velocities, velocity update and finally position update. Suppose that the searching space is n  

and the population of particles consists of npop  particles 1 2, , , ,npopX X X  where ,n
jX   

1, , .j npop  Each particle defines the position of the searching point from ,n  that is 

,1 ,[ , , ].j j j nX X X  Therefore, at the k -th iteration, for all the particles the matrix of positions 

1[ , , ]k k k n npop
npopX X X    is defined. The best previous position that is the position of the 

best value of the minimizing function corresponding to the particle ,j  at iteration ,k  is denoted 

as ,k
jP  1, , .j npop  Clearly, .k n

jP   At the same time, the best position found by any other 

particle at iteration ,k  is denoted by .kG  k nG   and represents the best position found by all 

the population of particles. Every particle, at iteration ,k  is characterized by a velocity ,k n
jV   

1, , .j npop  Therefore, for all population of npop  particles, at iteration ,k  the matrix of 

velocities 1[ , , ]k k k n npop
npopV V V    can be defined.  

 The PSO method is characterized by the following evolution of velocities: 

 

                                 1
1 2( ) ( ) ,k k k k k k k k

j j j j j j jV wV c r P X c r G X                                      (6) 

 

for 1, , ,j npop  where:   is a constriction factor which is used to control and constrict 

velocities; w  is the inertia weight; 1c  and 2c  are two positive constants, called the cognitive and 

social parameter respectively, also known as acceleration constants. The constriction coefficient 

is determined as [37]: 

2

2
,

2 4


  


  
  1 2.c c    

k n npop
jr

  and 
k n npop
jr

  are two matrices with random numbers uniformly distributed in the 

range [0,1].    is product on components. The first term in (6), 
k
jwV  is defining the current 

motion, the second one 1 ( )k k k
j j jc r P X   is defining the particle memory influence and the 

last one 2 ( )k k k
j jc r G X   is the swarm influence. 

The inertia factor w  is for controlling the impact of the previous history of velocities on 

the current velocity. It is used to balance the global (wide-ranging) and local (nearby) search 

abilities and was introduced to improve the convergence rate of the PSO algorithm. A large 

inertia weight is more appropriate for global search facilitating the exploration (searching new 
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areas), while a small one is more appropriate for local search facilitating the exploitation (fine 

tuning the current search area). A linear decreasing of the inertia weight over the course of search 

was proposed by Shi and Eberhart [38]. The parameters j
kr  and j

kr  are used to maintain the 

diversity of the population of the swarm and they are uniformly distributed in the range [0,1].  

The constant parameters 1c  and 2c  are not critical in PSO, but a fine tuning of them may result in 

faster convergence and alleviation of local minima. Better results are obtained by choosing a 

larger cognitive parameter 1,c  than a social parameter 2 ,c  but with 1 2 4c c   [34]. 

 The position update of each particle is computed using the velocity vector as: 

 

                                                  1 1,k k k
j j jX X V     1, , .j npop                                              (7) 

 

The velocity update, the position update and the evaluation of the minimizing function in all 

particles are repeated until a desired convergence criterion is met.  

With these, the particle swarm optimization procedure for composite function ( )F x  can be 

summarized as follows: 

 

   Algorithm CPSO - Constrained Particle Swarm Optimization 

Step 1. Initialize: 1,c  2 ,c  ,w  ,  maxk  and set 1.k   

Step 2. Generate a swarm of npop  particles with random positions ,n
jX   

1, , ,j npop  and with random velocities ,n
jV  1, , .j npop  

Step 3. Evaluate the penalty function ( ),jF X 1, , .j npop  

Step 4. Find the best particle ,gX  where argmin{ ( ) : 1, , },jg F X j npop   is the index 

of the best evaluated particle. 

Step 5. Modify the velocities and the positions of the particles by (6) and (7), respectively.  

Step 6. Evaluate the penalty function F  for all particles and update the best position for 

each particle and its index .g  

Step 7. If max ,k k  then set 1k k   and go to step 3; otherwise stop and output the best 

particle.                                                                                                                      ♦ 

 

Convergence analysis and stability studies on PSO have been reported by Clerc and 

Kennedy [37], Trelea [39], Yasuda et al. [40], etc. Research on performance improvements 

subject to the parameters variations and topological structures have been considered by Eberhart 

and Shi [41, 42], Li and Engelbrecht [43]. 

 

 The CPSO algorithm gives only local solutions to problem (1). Therefore, possible this 

solution can be improved by local search. Since the value of the penalty function (2) is zero in 

any feasible point, a procedure for improving the solution given by CPSO is not based on the 

penalty function (2). A simple local search procedure we adopt here is a coordinatewise one 

applied to the best point. Let x  be the best solution generated by CPSO algorithm. For each 

component ,i  x  is assigned to a temporary point .y Then in y  a movement of length 0   is 

carried out in coordinate .i  If the point y  satisfies the simple bounds and is feasible, and if the 

value of the objective function f  is reduced, then x  is replaced by .y  When the point y  is 

infeasible, or the value of the objective function computed in y  is not improved, then it is 

rejected and another coordinate is tried. The local search stops when all coordinates were tried. 
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The local search algorithm for searching around the solution given by CPSO is very simple and 

possible in some cases it can improve the performances of CPSO. 

 

4. Numerical results 

Test problem suite 

In this paper we have considered a number of 10 applications of nonlinear constrained 

optimization. Table 4.1 presents the name of the application and references where they are 

described. 
Table 4.1. Name of the applications and references. 

ALKI Optimization of an alkylation process, [44, Problem No. 114,  page 123] 

CAM Shape optimization of a cam, [45, Application 5.21, page 117] 

MSP3 3-stage membrane separation [44, Problem No. 116,  page 124] 

MSP5 5-stage membrane separation process, [46], [47, Application 6, page 983]  

PREC Optimal Reactor Design. [44, Problem No. 104, page 113], [45, Application 7.1, 

page 161] 

PPSE Static Power Scheduling [44, Problem No. 107.  page 116], [45, Application 6.4, 

page 144] 

TRAFO Transformer design [44, Problem No. 93. page 108], [45, Application 6.1, page 

137] 

LATHE Multi-spindle automatic lathe [45, Application 5.13, page 90] 

BRAKE Optimal design of a disc brake [45, Application 5.8, page 83] 

SPRING Minimizing the weight of a tension/compression spring [45, Application 5.3, page 

73] 

 

Numerical results with CPSO-Constrained Particle Swarm Optimization 

In our numerical experiments we have considered the following values for the parameters in the 

particle swarm optimization: 0.73,   0.7,w   1 2,c   2 2.c   The penalty function (5) is 

defined with 10u   and 300.U   The size of swarm, i.e. the number of particles in the swarm, is 

different for each application. Empirical studies shown that the number of particles can influence 

the results of the optimization. For some problems we see an improvement of performances as the 

size of the swarm is increased, while for others better results are obtained by smaller swarms. The 

number of iterations is limited to max 50000.k   For each application we have considered 50 

independent experiments. An experiment was considered to be successful only if a feasible 

solution was obtained. The best solution corresponds to the minimum value of the objective 

function found in these 50 experiments. Table 4.2 shows the performances of CPSO algorithm, 

where n  is the number of variables, m  is the number of constraints (including the simple bounds 

on variables), size is the number of the particles in the swarm, iter is the number of iteration to get 

the best solution, vfo is the best value of the objective function obtained by the algorithm and vfoa 

is the best value of the objective obtained by local search. 

 
Table 4.2. Performance of the CPSO algorithm. 

 n  m  size Iter Vfo vfoa 

ALKI 10 34 150 1172 -1760.975932 -1763.528164 

CAM 10 43 100 5923 -43.379410 -43.523641 

MSP3 13 41 50 394 97.558862 97.558862 

MSP5 16 53 20 367 183.211378 183.024078 

PREC 8 22 50 45 4.040709 4.022867 

PPSE 9 30 50 >50000 5055.897360 5055.897360 

TRAFO 6 14 10 111 135.761724 135.761724 

LATHE 10 36 25 498 -4433.63308 -4433.63308 

BRAKE 4 14 9 6 0.147958 0.147323 

SPRING 3 10 5 70 0.0126904 0.0126904 
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The column vfoa in Table 4.2 represents the value of the objective function f  obtained by local 

search around the best solution given by PSOA using different values for .  Observe that in 

some cases the local search is not effective.  

 

Comparisons 

In Table 4.3 a comparison of CPSO versus COBILA [29], DFL [30] and IPOPT [31, 32] subject 

to the value of the objective function of the above constrained nonlinear optimization application 

is presented. COBYLA is a direct search optimization method that models the objective and the 

constraint functions by linear interpolation. Each iteration forms such a linear approximation at 

the vertices of a simplex and a trust region bound restricts each change to the variables. DFL 

solves the constrained nonlinear optimization problem by a sequence of approximate 

minimizations of a merit function where penalization of constrained violation is progressively 

increased. On the other hand, IPOPT is a primal-dual interior-point algorithm with a filter line-

search method for nonlinear programming.  
 

 

Table 4.3. Comparisons: COBILA, DFL, CPSO, IPOPT  

 COBILA DFL CPSO IPOPT 

ALKI -1550.38851 -931.120 -1763.528164 -1768.8069 

CAM -43.859947 -45.54602 -43.523641 -43.859947 

MSP3 97.587578 50.0 97.558862 97.587509 

MSP5 175.619466 209.96775 183.024078 174.786994 

PREC 3.951163 4.1431963 4.022867 3.951163 

PPSE 5055.0118 8063.5088 5055.897360 5055.01180 

TRAFO 135.075962 136.27182 135.761724 135.075962 

LATHE -3434.70855 -4429.152978 -4433.63308 -4430.08793 

BRAKE 0.1274 0.131321 0.147323 0.1274 

SPRING 0.0126652 0.0126897 0.0126904 0.0126652 

 

 

Comparing CPSO versus IPOPT, from Table 4.3 we see that the sum of the absolute difference of 

the objective values obtained by these two algorithms for solving the above 10 applications is 

19.0891.  Comparing DFL versus IPOPT the sum of the absolute difference is 3932.965. Finally, 

comparing COBYLA versus IPOPT we get the difference 1214.630. Observe that subject to the 

value of the objective function the CPSO algorithm is closest to the primal-dual interior-point 

algorithm with a filter line-search method IPOPT. However, COBYLA was able to get the same 

value for the objective function as IPOPT in 6 out of 10 applications considered in this numerical 

study.  

 

5. Conclusions 

PSO is one of the methods for solving in an approximate way the optimization problems. The 

algorithm is able to search an optimal value of a constrained minimizing function by comparing 

only the values of a penalty function associated to the original problem. The PSO algorithm 

contains some random factors. Therefore, the algorithm can be regarded as a stochastic one. In 

this paper for general nonlinear constrained optimization we introduced a new penalty function 

based on an assignment function which considers a linear progressive penalization subject to the 

violation of the constraints into the current point. The PSO method is used to minimize this 

penalty function. To improve the results of the algorithm a local coordinatewise search is 

considered around the best point obtained by the CPSO algorithm. Numerical experiments proved 
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that this local coordinatewise search is dependent by the problem. Some remarks are in order. 

CPSO is very simple to be implemented and it is able to generate good enough approximate 

solutions. It is dependent by the first random number with which the searching process starts. 

Therefore better results are obtained by trying to solve the problem using different initial 

randomly selected population and by comparing the results. In general swarms of small sizes give 

better results, but this is dependent by the problem. The CPSO method is a competitive 

alternative to the very sophisticated gradient methods used for solving nonlinear constrained 

optimization problems. 
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