
 1

An adaptive conjugate gradient algorithm with clustering the

singular values of the search direction matrix for large-scale

unconstrained optimization

Neculai Andrei
Research Institute for Informatics,

Center for Advanced Modeling and Optimization

8-10 Averescu Avenue, Bucharest 1, Romania

E-mail: nandrei@ici.ro

July 18, 2016

Abstract. An adaptive nonlinear conjugate gradient algorithm based on clustering the singular

values of the search direction matrix and on the inexact Wolfe line search is presented. The search

direction is dependent to a positive parameter. The value of this parameter is selected in such a way

that the singular values of the matrix defining the search direction are clustered around 1. We prove

that for general nonlinear functions and independent of the line search procedure the search

direction satisfies both the sufficient descent condition and the Dai and Liao conjugacy condition.

According to the value of the parameter, the algorithm uses the suggested search direction, or it

triggers to the Hestenes and Stiefel direction. Under classical assumptions, for uniformly convex

functions, we prove that the algorithm is globally convergent. Using a set of 800 unconstrained

optimization test problems we prove that our algorithm is significantly more efficient and more

robust than CG-DESCENT algorithm and slightly more efficient and more robust than ADCG

algorithm. By solving five applications from the MINPACK-2 test problem collection, with
610

variables, we show that the suggested adaptive conjugate gradient algorithm is top performer

versus CG_DESCENT.

Key words: Unconstrained optimization; conjugate gradient algorithms; Wolfe conditions; singular values

clustering; sufficient descent condition

1. Introduction

Let us consider the unconstrained optimization problem

 min{ (), },nf x x R (1.1)

where : nf R R is continuously differentiable and bounded below. For solving this problem

we suggest a nonlinear conjugate gradient algorithm, where the iterates ,kx 0,1,k are

generated as

 1 ,k k k kx x d (1.2)

the stepsize k is positive and the search directions kd are computed as:

 1 1 ,N

k k k kd g s 0 0 ,d g (1.3)

2

1 1 ,
T T

kN k k k k
k kT T T

k k k k k k

yy g s g

y s y s y s
 (1.4)

where . is Euclidian norm, ()k kg f x , 1 ,k k ky g g 1k k ks x x and k is a positive

parameter which follows to be determined. Observe that (1.4) is very close to the conjugate

gradient parameter of Hager and Zhang conjugate gradient algorithm [22], where 2.k In this

paper we are interested to determine a value for the parameter k in such a way to get an

mailto:nandrei@ici.ro

 2

efficient and robust conjugate gradient algorithm able to solve large-scale unconstrained

optimization problems.

 Observe that, if f is a quadratic function and the step length
k is selected to achieve

the exact minimum of f in the direction ,kd then 1 0,T

k ks g i.e., the formula (1.4) for N

k

reduces to the Hestenes and Stiefel [24] (HS) scheme. However, in this paper we consider general

nonlinear functions and inexact line search based on Wolfe conditions [33, 34]:

 () () ,T

k k k k k k kf x d f x g d (1.5)

 1 ,T T

k k k kg d g d (1.6)

where 0 1.

We see that the parameter N

k defined in (1.4) can be viewed as a modification of the HS

conjugate gradient algorithm. Observe that if the step length
k is computed according to the

Wolfe line search conditions (1.5) and (1.6), then 0.T

k ky s Therefore, along the iterations, when

the step
ks is small (in norm), the factor

ky in the numerator of 1 /HS T T

k k k k ky g y s tends to

zero. On the other hand, when the step
ks is small, again the factor

ky in the numerator the

second term of N

k tends to zero. Hence, N

k becomes small and the new search direction
1kd
 is

essentially a small alteration of the steepest descent direction 1.kg In other words our method

automatically adjust N

k to avoid or at least to attenuate jamming, which is the main defect of the

steepest descent direction.

It is worth saying that a conjugate gradient method related to our computational scheme (1.3) and

(1.4) is that given by Dai and Liao [12], in which the parameter N

k in (1.3) is replaced by:

 1

1
() ,DL T

k k k kT

k k

y ts g
y s

 (1.7)

where 0t is a constant parameter. For different choices of ,t the computational scheme of Dai

and Liao generates different results. An optimal value for t in this algorithm is not known (see

[3]). Observe that the method (1.3) and (1.4) can be viewed as an adaptive version of (1.7) where

,t at each iteration, is updated as
2

/ ().T

k k k kt y y s

The purpose of this paper is to find a value of the parameter ,k in such a way to get an

efficient and robust conjugate gradient algorithm. For this we suggest using the structure of the

singular values of the matrix associated to the search direction (1.3) and (1.4).

Using (1.4) in (1.3) the search direction in our algorithm is computed as:

2

1 1
1 1 ,

T T
kk k k k

k k k k kT T T

k k k k k k

yy g s g
d g s s

y s y s y s

 (1.8)

where k is a positive parameter. Now, considering the Perry [28] idea the search direction (1.8)

can be represented as:

 1 1 1,k k kd H g (1.9)

where

2

1 .
T T

kk k k k
k kT T T

k k k k k k

ys y s s
H I

y s y s y s
 (1.10)

Observe that 1kH is a sum of a symmetric matrix
2 2[/ ()]T T

k k k k k kI y y s s s and a non-

symmetric one / ,T T

k k k ks y y s i.e., 1kH is a non-symmetric matrix. Therefore, (1.9) represents an

 3

ad hoc algebraic expression of the search direction
1kd
 in which the non-symmetric matrix 1kH

is not an approximation to the inverse Hessian 2 1

1() .kf x

 It is this algebraic form of the

parameter ,N

k given by (1.4), which leads us to this expression of
1.kH

 In other words, strictly

speaking, (1.9) is not a real, quasi-Newton direction.

In this point, to define the algorithm the only problem we face is to specify a suitable value for

the positive parameter
k in (1.8). The approach used here is to determine the value of the

parameter
k in (1.8) in such a way to minimize the condition number of the iterate matrix 1kH

in (1.9). In other words, the idea of this paper is to determine the value of the parameter
k in

order to achieve more numerical stability in computation of the search direction (1.9). The effect

of ill-conditioning of 1kH on the iterative algorithm (1.2) using the search direction (1.9) can be

explained as follows (see also [8, 9]). For a vector ,nv R let us denote

1() [(), , ()]Tnfl v fl v fl v as a vector in ,nR where (),ifl v 1, , ,i n is the nearest floating

point number to .iv Using (9) we have

1 1 1() (),k k kfl d H fl g 0,1,....k

Therefore,

 1 1 1 1 1() (())k k k k kfl d d H fl g g

 1 1 1() .k k kH fl g g

Now, if the matrix 1kH is nonsingular, it follows that

1 1 1 1 1 1
1 1 1

1 1 1 1 1

() () ()
.

k k k k k k
k

k k k k k

fl g g fl d d fl d d
H

g H d H d

Therefore, the following inequality between the relative errors of 1kd and 1kg can be

established:

1 1 1 1

1

1 1

() ()
() ,

k k k k
k

k k

fl d d fl g g
H

d g

 (1.11)

where 1
1 1 1()k k kH H H
 is the condition number of 1.kH Therefore, if the iteration matrix

1kH is ill-conditioned, then even for small values of the relative error of 1,kg the relative error

of the search direction 1kd may be large. In other words, if 1()kH is large, then the system

(1.9) could be very sensitive to perturbations in 1.kg The idea of this paper is to select a value

for the parameter k in (1.10) in such a way to minimize the condition number of the iteration

matrix 1.kH Minimizing the condition number of the iteration matrix in conjugate gradient

algorithms have also been considered by Babaie-Kafaki and Ghanbari [8, 9] for Dai-Liao

nonlinear conjugate gradient algorithm, or by Liu and Xu [25] for Perry descent conjugate

gradient algorithm, leading them to efficient and robust conjugate gradient algorithms.

The structure of the paper is as follows. The algorithm and its properties are presented in Section

2. We prove that the search direction used by this algorithm satisfies both the sufficient descent

condition and the Dai and Liao conjugacy condition, independent of the line search. The

parameter k in the search direction (1.8) is determined by minimizing the condition number of

the iteration matrix 1,kH i.e., by clustering the singular values of this matrix around to 1. Using

standard assumptions, Section 3 presents the global convergence of the algorithm for uniformly

convex functions. In Section 4 the numerical comparisons of our algorithm versus CG-

 4

DESCENT [23] and ADCG [5] conjugate gradient algorithms are presented. The computational

results, for a set of 800 unconstrained optimization test problems, show that this new algorithm

substantially outperforms CG-DESCENT, and is slightly more efficient and more robust than

ADCG. Considering five applications from the MINPACK-2 test problem collection [7], with
610 variables, we show that our algorithm is way more efficient and more robust than CG-

DESCENT.

2. The algorithm

An important property of our conjugate gradient algorithm is that the search direction (1.8)

always yields descent when 0,T

k ky s a condition which is satisfied when f is strongly convex,

or the step length
k is computed according to the Wolfe conditions. The following properties of

the search direction (1.8) can immediately be proved.

Theorem 2.1. If the step length
k in (1.2) is determined by the Wolfe line search conditions

(1.5) and (1.6) and 1/ 4,k then the search direction (1.8) satisfies the sufficient descent

condition

2

1 1 1

1
1 0.

4

T

k k k

k

g d g

 (2.1)

Proof. Since 0 0 ,d g it follows that
2

0 0 0 0.Tg d g From (1.8) we get:

2 2
2 1 1 1

1 1 1

()() ()
.

T T T
kT k k k k k k

k k k kT T T

k k k k k k

yy g s g s g
g d g

y s y s y s

 (2.2)

Now, we apply the inequality 2 21

2

Tu v u v to the second term in (2.2) with

1

1
()

2

T

k k k

k

u y s g

 and 12 ()T

k k k kv s g y

to obtain
2 2

2 11 1 1 1
12 2

()()() ()()() 1
.

() 4 ()

TT T T T T
k k kk k k k k k k k k k

k kT T T

k k k k k k k

y s gy g s g y g y s s g
g

y s y s y s

Therefore, introducing this estimation in (2.2) we get (2.1) showing that the search direction (1.8)

satisfies the sufficient descent condition when 1/ 4.k

If f is strongly convex or the line search satisfies the Wolfe conditions (1.5) and (1.6), then

0T

k ky s and our computational scheme yield descent. Note that if 1/ 4,k then 1 1

T

k kg d is

bounded by
2

1(1 1/ 4) ,k kg while in some other computational schemes, for example, of Dai

and Yuan [14, 15] only the negativity of 1 1

T

k kg d is established. We note in passing that if

2,k then from (2.1)
2

1 1 1

7
,

8

T

k k kg d g like in [22].

Another important property of the search direction (1.8) is that it satisfies the Dai and Liao

conjugacy condition [12], which addresses to the inexact line search, but reduces to the old

conjugacy condition 0T

k ky d when the line search is exact.

 5

Theorem 2.2. Consider 0k and the step length
k in (1.2) is determined by the Wolfe line

search conditions (1.5) and (1.6). Then the search direction (1.8) satisfies the Dai and Liao

conjugacy condition 1 1(),T T

k k k k ky d v s g where 0.kv

Proof. By direct computation we have
2

1 1 1() (),
kT T T

k k k k k k k kT

k k

y
y d s g v s g

y s

where

2

.
k

k k T

k k

y
v

y s
 By Wolfe line search conditions (1.5) and (1.6) it follows that 0,T

k ky s

therefore 0.kv

 In the following we are interested to specify a procedure for k computation in (1.8)

based on minimizing the condition number of the iterate matrix 1,kH given by (1.10). For this,

we briefly present the singular value analysis and the condition number of a matrix. The

following definitions and theorems, taken from Watkins [32], clarify some aspects of this concept

of condition number of a matrix.

Theorem 2.3. [32] Let n mA R be a nonzero matrix with rank .r Then, mR has an orthonormal

basis 1, , ,mv v nR has an orthonormal basis 1, , ,nu u and there exist the scalars

1 2 0r such that

, 1, , ,

0, 1, , ,

i i

i

u i r
Av

i r m

 and

, 1, , ,

0, 1, , .

i iT

i

v i r
A u

i r n

 (2.3)

Definition 2.1. The scalars 1, , r from the theorem 2.3 are called the singular values of the

matrix .A

Based on the Theorem 2.3, for any nonzero matrix n mA R with rank r it follows that

2 2 2

1 ,rF
A (2.4)

where .
F

 represents the Frobenius norm. If ,r m n then

 1 2det() .nA (2.5)

As we mentioned, a very important concept in the sensitivity analysis of numerical computations

with matrices is the matrix condition number. A matrix with a large condition number is called an

ill-conditioned matrix since the computations with this matrix are potentially very sensitive to

changes in data of the problem involving this matrix.

Definition 2.2. For an arbitrary nonsingular matrix ,A the scalar 1()A A A is called the

condition number of .A

Theorem 2.4. [32] If n nA R is a nonsingular matrix with the singular values

1 2 0,n then 1() / .nA

 6

Definition 2.3. The condition number ()A computed as above is called the spectral condition

number.

In our analysis we need to find the singular values of the matrix 1.kH For this, in our

developments we assume that 0,T

k ky s which is guaranteed by the Wolfe line search conditions

(1.5) and (1.6). The structure of the singular values of the matrix 1kH is given by the following

theorem.

Theorem 2.5. Suppose that the step length
k is determined by the Wolfe line search conditions

(1.5) and (1.6). Let
1kH
 be defined by (1.10). Then

1kH
 is a nonsingular matrix and its singular

values consist of 1 (2n multiplicity), 1k

 and 1,k

 where:

 2 2

1

1
(1) (1) (1) (1) ,

2
k k k k k k ka a a a

 (2.6)

 2 2

1

1
(1) (1) (1) (1) ,

2
k k k k k k ka a a a

 (2.7)

and

2 2

2
1.

()

k k

k T

k k

s y
a

y s
 (2.8)

Proof. By the Wolfe line search conditions (1.5) and (1.6) we have that .0k

T

k sy Therefore, the

vectors ky and ks are nonzero vectors. Let V be the vector space spanned by }.,{ kk ys Clearly,

2)dim(V and .2)dim(nV Thus, there exist a set of mutually unit orthogonal vectors

 Vu n

i

i

k

2

1}{ such that

,0 i

k

T

k

i

k

T

k uyus ,2,,1 ni

which from (1.10) leads to

1 ,i i

k k kH u u .2,,1 ni

Therefore, the matrix 1kH has 2n singular values equal to 1. Now, we are interested to find

the rest of the two remaining singular values denoted as 1k

 and 1,k

 respectively. From the

formula of algebra (see for example [31])

det() (1)(1) ()(),T T T T T TI pq uv q p v u p v q u

where ,k

T

k k

s
p

y s
 ,kq y

2

2()

k

k kT

k k

y
u s

y s
 and ,kv s it follows that

2 2

1 2
det() ,

()

k k

k k k kT

k k

s y
H a

y s
 (2.9)

where ka is given by (2.8). Since 0k and 1ka , it follows that 1kH is a nonsingular matrix.

Now, by direct computation we get:

 2 2

1 1() 2 .T

k k k k ktr H H n a a (2.10)

Since
2

1 1 1(),T
k k kF

H tr H H from (2.4) we get

 2 2 2 2
1 1() () .k k k k ka a
 (2.11)

 7

Also, from (2.5) and (2.9) we have

 1 1 .k k k ka
 (2.12)

Now, from (2.11) and (2.12), after some simple algebraic manipulations we obtain:

 2 2
1 1 2 ,k k k k k k ka a a
 (2.13)

Therefore, from (2.12) and (2.13), the remaining singular values 1k

 and 1k

 of 1kH are the

roots of the following quadratic polynomial

 2 2 2 2 0.k k k k k k ka a a a (2.14)

Clearly, the other two singular values of the matrix
1kH
 are determined from (2.14) as (2.6) and

(2.7) respectively. Observe that 1ka follows from Wolfe conditions and the inequality

2

2
.

T
kk k

T

k kk

yy s

y ss

Observe that since 1ka it follows that the singular values 1k

 and 1k

 are well defined by

(2.6) and (2.7), respectively. The following two proposition prove some important properties of

the singular values 1k

 and 1.k

Proposition 2.1. For the singular value 1k

 defined in (2.7), we have 1 1.k

Proof. Observe that if 1,k ka then since 1 1,k k
 from (2.12) we have that 1 1.k

 On

the other hand, if 1,k ka then from (2.6) we have:

 1

1 1
(1) (1) .

2 2
k k k k k k ka a a
 (2.15)

With this, from (2.12) it follows that 1 1.k

Proposition 2.2. For the singular value 1k

 defined in (2.6), we have 1 1.k

Proof. As in Proposition 2.1 above, if 1,k ka then from (2.15) we have that 1 1.k

 On the

other hand, if 1,k ka then from (2.6) we have

 1

1 1
(1) (1) 1.

2 2
k k k k ka a

Now, since 1,ka from (2.12) and (2.13) it follows that both 1k

 and 1k

 are positive.

Therefore, from the above propositions we have 1 10 1 .k k
 From Theorem 2.4 we have

that

 1
1

1

() .k
k

k

H

 (2.16)

As we have mentioned in Section 1 in order to enhance the numerical stability in the search

direction computation, it is reasonable to determine the value of the parameter k in (1.8) by

minimizing the condition number of 1.kH In a simple computational scheme, from (2.16) we see

 8

that minimizing 1()kH is to minimize the distance between 1k

 and 1.k

 Therefore, the

optimal value of ,k denoted *,k is determined as:

 *
1 1argmin(),k k k
 (2.17)

thus making 1k

 as close as possible to 1.k

 Since 1 10 1 ,k k

 it follows that *
k

solution of (2.17) makes 1() 1kH as close as possible to 1. From (2.6) and (2.7), a

simple algebraic development shows that

 * 1
,k

ka
 (2.18)

where 1ka is given by (2.8). Therefore, for 1/k ka the singular values of 1kH are

clustered around 1. Notice that for 1/k ka the matrix 1kH from (1.10) becomes:

1 2
.

T T

k k k k
k T

k k k

s y s s
H I

y s s

In the following, from Theorem 2.1, we observe that the necessary condition for the sufficient

descent condition of the search direction is 1/ 4.k Therefore, the condition for minimizing

1()kH is 4.ka Now, we can define our algorithm as follows. If 4,ka then we select

1/k ka in (1.8) in order to achieve both the sufficient descent condition and minimizing the

condition number 1().kH Otherwise, the algorithm uses the Hestenes and Stiefel direction.

Since the search direction (1.8) has the property of sufficient descent for any value

1/ 4,k it follows that for any value of ,ka where 1 4 is a parameter, the singular

values of the matrix 1kH are clustered around 1. Therefore, the search direction of our algorithm

is given by (1.3) where the parameter N is computed as:

1 1

2

1

, if ,

, if .

T T

k k k k
kT

k k kN

k
T

k k
kT

k k

y g s g
a

y s s

y g
a

y s

 (2.19)

Our algorithm (1.3) with (2.19) can be considered as an adaptive conjugate gradient algorithm

subject to the parameter 1 4. If ,ka then the search direction is triggered to the HS

direction, otherwise the search direction is that specified in (1.8) with 1/ ,k ka where ka is

given by (2.8). We see that according to the value of the parameter the behavior of our

algorithm is closer to that of the HS algorithm, or to the algorithm given by (1.8) where

1/ .k ka

Observe that our algorithm is a modification of the HS conjugate gradient algorithm

based on the idea of minimizing the condition number of the matrix defined by the search

direction (1.3) and (1.4). The CG-DESCENT algorithm proposed by Hager and Zhang [22] also

is a modification of the HS conjugate gradient algorithm by ex abrupto deleting a term from the

search direction for the memoryless quasi-Newton scheme of Shanno [30]. Again, using this

approach we get a value for the parameter t in the Dai and Liao conjugate gradient parameter

(1.7) for which the condition number of the search matrix is minimized.

 9

Taking into consideration the above developments and using the procedure of

acceleration of conjugate gradient algorithms presented in [2], the following algorithm can be

presented.

NCG Algorithm (New Conjugate Gradient Algorithm)

Step 1. Select a starting point 0

nx and compute:
0(),f x 0 0().g f x Select some

positive values for and used in Wolfe line search conditions. Consider a positive

value for the parameter . (1 4) Set 0 0d g and 0.k

Step 2. Test a criterion for stopping the iterations. If this test is satisfied, then stop; otherwise

continue with step 3.

Step 3. Determine the steplength
k by using the Wolfe line search (1.5) and (1.6).

Step 4. Compute ,k k kz x d ()zg f z and .k k zy g g

Step 5. Compute: T

k k z ka g d and .T

k k k kb y d

Step 6. Acceleration scheme. If 0,kb then compute /k k ka b and update the variables

as 1 ,k k k k kx x d otherwise update the variables as 1 .k k k kx x d

Step 7. Compute
ka as in (2.8).

Step 8. Compute the search direction as in (1.3) where N

k is computed as in (2.19).

Step 9. Powell restart criterion. If
2

1 10.2 ,T

k k kg g g then set 1 1.k kd g

Step 10. Consider 1k k and go to step 2.

If function f is bounded along the direction ,kd then there exists a stepsize
k satisfying the

Wolfe line search (see for example [17] or [29]). In our algorithm when the Beale-Powell restart

condition is satisfied, then we restart the algorithm with the negative gradient 1.kg More

sophisticated reasons for restarting the algorithms have been proposed in the literature [13], but

we are interested in the performance of a conjugate gradient algorithm that uses this restart

criterion associated to a direction which satisfies both the descent and the conjugacy conditions.

Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion are sufficient

to prove the global convergence of the algorithm. The first trial of the step length crucially affects

the practical behavior of the algorithm. At every iteration 1k the starting guess for the step k

in the line search is computed as 1 1 / .k k kd d For uniformly convex functions the linear

convergence of the acceleration scheme used in the algorithm NCG is proved in [2]. Clearly, the

acceleration scheme improves the performances of the algorithm [2]. Numerical comparisons

may drastically change by introducing acceleration. However, we are interested to see the

performances of this algorithm equipped with an acceleration scheme.

3. Global convergence analysis
The global convergence analysis of the above algorithms is based on bounding the norm of the

search direction, (see Gilbert and Nocedal, [19], Nocedal, [27] or Dai, et al [16]). In this section

we prove the global convergence of the above algorithms under the following assumptions:

Assume that:

(i) The level set 0: () ()nS x R f x f x is bounded.

(ii) In a neighborhood N of S the function f is continuously differentiable and its

gradient is Lipschitz continuous, i.e. there exists a constant 0L such that

() () ,f x f y L x y for all , .x y N

 10

Since { ()}kf x is a decreasing sequence, it is clear that the sequence { }kx generated by the

proposed algorithm NCG is contained in .S Under these assumptions on f there exists a

constant 0 such that ()f x for all .x S Notice that the assumption that the function

f is bounded below is weaker that the usual assumption that the level set is bounded.

Although the search directions generated by the algorithm are always descent directions,

to ensure convergence of the algorithm we need to constrain the choice of the step-length .k

The following proposition shows that the Wolfe line search always gives a lower bound for the

stepsize .k

Proposition 3.1. Suppose that
kd is a descent direction and the gradient f satisfies the

Lipschitz condition

() ()k kf x f x L x x

for all x on the line segment connecting kx and 1,kx where L is a positive constant. If the line

search satisfies the Wolfe conditions (1.5) and (1.6), then

2

(1)
.

T

k k

k

k

g d

L d

Proof. Subtracting
T

k kg d from both sides of (1.6) and using the Lipschitz continuity we get

2

1(1) () .T T T

k k k k k k k k k k kg d g g d y d y d L d

Since kd is a descent direction and 1, we get the conclusion of the proposition ■

For any conjugate gradient method with strong Wolfe line search the following general result

holds [27].

Proposition 3.2. Suppose that the above assumptions hold. Consider a conjugate gradient

algorithm in which, for all 0,k the search direction kd is a descent direction and the stepsize

k is determined by the Wolfe line search conditions. If

2

0

1
,

k kd

 (3.1)

then the algorithm converges in the sense that

 liminf 0.k
k

g

 (3.2)

For uniformly convex functions we can prove that the norm of the direction 1kd computed as in

(1.3) with (2.19) is bounded above. Therefore, by proposition 3.2 we can prove the following

result.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm NCG where

the search direction kd is given by (1.3) and N

k is computed as in (2.19). Suppose that k is

computed by the Wolfe line search. Suppose that f is a uniformly convex function on ,S i.e.

there exists a constant 0 such that

2

(() ()) ()Tf x f y x y x y (3.3)

for all , .x y N Then

 11

 lim 0.k
k

g

 (3.4)

Proof. From Lipschitz continuity we have .k ky L s On the other hand, from uniform

convexity it follows that
2
.T

k k ky s s Now, using (2.19) in (1.3) for ,ka we have

1 1

1 1 2

T T

k k k k

k k k kT

k k k

y g s g
d g s s

y s s

2 2

k k k k

k k

y s s s

s s

 2 ,

L

showing that (3.1) is true.

Again, using (2.19) in (1.3) for
ka it follows that

1

1 1 ,

T

k k

k k kT

k k

y g L
d g s

y s

showing that (3.1) is true. By proposition 3.2 it follows that (3.2) is true, which for uniformly

convex functions is equivalent to (3.4)

The convergence analysis for general nonlinear functions follows the developments given by

Hager and Zhang [22]. If the level set S is bounded, the Lipschitz condition

() ()f x f y L x y holds and the step length satisfies the Wolfe conditions (1.5) and

(1.6), then for the algorithm (1.2), (1.3) and (2.19) either 0kg for some k or

liminf 0k kg (see theorem 3.2 in [22]).

4. Numerical results and comparisons
The NCG algorithm was implemented in double precision Fortran using loop unrolling of depth 5

and compiled with f77 (default compiler settings) and run on a Workstation Intel Pentium 4 with

1.8 GHz. We selected a number of 80 large-scale unconstrained optimization test functions in

generalized or extended form presented in [1]. For each test function we have considered 10

numerical experiments with the number of variables increasing as 1000,2000, ,10000.n The

algorithms compared in this section use the Wolfe line search conditions with cubic interpolation

[31], 0.0001, 0.8 and the same stopping criterion 610 ,kg

 where .

is the

maximum absolute component of a vector.

Since, CG-DESCENT [23] is among the best nonlinear conjugate gradient algorithms

proposed in the literature, but not necessarily the best, in the following we compare our algorithm

NCG versus CG-DESCENT. When the algorithms are compared we can consider at least two

points of view: the first is based on the optimal point generated by the algorithm, and the second

one is using the objective function value in this point. Since all the algorithms used and compared

in this paper generate local solutions, we compare them by using the point of view based on the

objective function value in the point determined by the algorithms. Therefore, the comparisons of

algorithms are given in the following context. Let 1ALG

if and 2ALG

if be the optimal value found

by ALG1 and ALG2, for problem 1, ,800,i respectively. We say that, in the particular

problem ,i the performance of ALG1 was better than the performance of ALG2 if:

 1 2 310ALG ALG

i if f (4.1)

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient

evaluations, or the CPU time corresponding to ALG2, respectively. Possibly, some other points

of view for comparing the algorithms can be used, but in this paper we consider this one. Of

 12

course, the test problems where the algorithms do not converge to the same function value,

according to criterion (4.1), are discarded from comparisons.

Fig. 1. NCG versus CG-DESCENT for different values of .

Figure 1 shows the performance profiles of Dolan-Moré [18] subject to CPU time metric

for different values of parameter . That is, for each method, we plot the fraction of problems for

which the method is within a factor of the best time. The left side of the figures gives the

percentage of the test problems for which a method is the fastest; the right side gives the

percentage of the test problems that are successfully solved by each of the methods. Clearly, the

top curve corresponds to the method that solved the most problems in a time that was within a

factor of the best time.

 13

Form figure 1, for example for 1.1, comparing NCG versus CG-DESCENT with

Wolfe line search, subject to the number of iterations, we see that NCG was better in 618

problems (i.e. it achieved the minimum number of iterations for solving 618 problems), CG-

DESCENT was better in 98 problems and they achieved the same number of iterations in 53

problems, etc. Out of 800 problems, we considered in this numerical study, only for 769 problems

does the criterion (4.1) hold. From figure 1 we see that for different values of the parameter

NCG algorithm is more efficient and more robust than CG-DESCENT. In comparison with CG-

DESCENT, on average, NCG appears to generate better search direction. We see that this

computational scheme based on clustering the singular values of the matrix representing the

search direction (1.3) and (2.19) lead us to a conjugate gradient algorithm which substantially

outperforms the CG-DESCENT, being way more efficient and more robust.

In the second set of numerical experiments we compare NCG versus ADCG algorithm

[5]. The ADCG is an adaptive conjugate gradient algorithm where the search direction is

computed as the sum of the negative gradient and a vector determined by minimizing the

quadratic approximation of the function f at the current point. Using a special approximation to

the inverse Hessian of the objective function, which depend by a positive parameter, a search

direction is obtained which satisfies both the sufficient descent condition and the Dai-Liao’s

conjugacy condition. The parameter in the search direction is determined in an adaptive manner

by minimizing the largest eigenvalue of the matrix defining it in order to cluster all the

eigenvalues. The search direction in ADCG algorithm is computed as

 1 1 1,
ADCG
k k kd Q g (4.2)

where

2

1 ,
T T T

kk k k k k k
k kT T T

k k k k k k

ys y y s s s
Q I

y s y s y s

 (4.3)

and the parameter k is determined in such a way to cluster all its eigenvalues. In [5] the

parameter k is computed as:

2

,
T
k k

k k

k

y s
t

y
 (4.4)

where

2 1 / , if ,

0 otherwise,

k k k
k

y s a
t

 (4.5)

ka is defined by (2.8), and 1 is a positive constant. Therefore, the ADCG algorithm is based

on clustering the eigenvalues of the search direction matrix (4.3). On the other hand, the NCD

algorithm is using the clustering of the singular values of search direction matrix (1.10). Observe

the differences between 1kH given by (1.10) used in NCG algorithm and 1kQ given by (4.3)

used in ADCG algorithm. We see that 1 1 / .T T
k k k k k kQ H y s y s Both these matrices 1kH and

1kQ are not symmetric matrices, as usual in quasi-Newton methods. They are used in these

algorithms in order to find the values of parameter k to cluster the singular values of 1kH or

the eigenvalues of 1kQ , respectively. In [5] we have the computational evidence that ADCG is

not sensitive to the values of the parameter , and is way more efficient and more robust than

CG-DESCENT. In Figure 2 we present the performance profiles of Dolan-Moré subject to CPU

time metric, of NCG versus ADCG, for different values of the parameters and .

 14

Fig. 2. NCG versus ADCG for different values of and .

The NCG algorithm is based on minimizing the condition number of the matrix defining the

search direction, i.e., on clustering the singular values around 1. On the other hand, the ADCG

algorithm is based on clustering the eigenvalues of the same matrix. In Figure 2 we have the

computational evidence that NCG algorithm is slightly more efficient and more robust than

ADCG for any combination of parameters and . From Figure 2 we see that both algorithms

are not sensitive to the values of these parameters. Practically, all performance profiles have the

same allure for any combination of and . Singular values analysis in designing conjugate

gradient algorithms is more profitable subject to efficiency and robustness, but this is not

 15

overwhelming, both concepts (singular values and eigenvalues) leading to very similar results.

(see also [4]).

In the following, in the third set of numerical experiments, we present comparisons

between NCG and CG-DESCENT conjugate gradient algorithms for solving some real

applications from the MINPACK-2 test problem collection [7]. In Table 1 we present these

applications, as well as the values of their parameters.

Table 1

Applications from the MINPACK-2 collection.

A1 Elastic–plastic torsion ([20], pp. 41–55), 5c

A2 Pressure distribution in a journal bearing [11], 10,b 0.1

A3 Optimal design with composite materials [21], 0.008

A4 Steady-state combustion ([6], pp. 292–299), [10], 5

A5 Minimal surfaces with Enneper conditions ([26], pp. 80–85)

The infinite-dimensional version of these problems is transformed into a finite element

approximation by triangulation. Thus a finite-dimensional minimization problem is obtained

whose variables are the values of the piecewise linear function at the vertices of the triangulation.

The discretization steps are 1,000nx and 1,000,ny thus obtaining minimization problems

with 1,000,000 variables. A comparison between NCG (Powell restart criterion,
6() 10 ,kf x

 0.0001, 0.8 , 4) and CG-DESCENT (version 1.4, Wolfe line

search, default settings, 6() 10 ,kf x

) for solving these applications is given in Table 2.

Table 2

Performance of NCG versus CG-DESCENT. 1,000,000 variables. 4, CPU seconds.

 NCG CG-DESCENT

 #iter #fg cpu #iter #fg cpu

A1 1113 2257 351.62 1145 2291 474.64

A2 2843 5714 1143.97 3370 6741 1835.51

A3 4725 9494 2754.26 4814 9630 3949.71

A4 1413 2864 2014.17 1802 3605 3786.25

A5 1270 2566 571.45 1225 2451 753.75

TOTAL 11364 22895 6835.47 12356 24718 10799.86

Form Table 2, we see that, subject to the CPU time metric, the NCG algorithm is top performer

and the difference is significant, about 3964.39 seconds for solving all these five applications. It

is worth saying that intensive numerical experiments for solving the applications from

MINPACK-2 collection with different values of the parameter 1 4 mainly yield similar

results concerning the numerical performances of NCG algorithm. In all cases, for all these

numerical experiments, NCG was top performer versus CG-DESCENT.

The NCG and CG-DESCENT algorithms (and codes) are different in many respects.

Since both of them use the Wolfe line search (however, implemented in different manners), these

algorithms mainly differ in their choice of the search direction. The search direction 1kd given

by (1.3) where the parameter N

k is computed as in (2.19) is more elaborate: it is adaptive and the

singular values of the matrix defined by it are clustered around 1. In addition it satisfies both the

descent condition and the conjugacy condition in a restart environment.

 16

5. Conclusions

A new adaptive conjugate gradient algorithm based on singular values study of the search

direction matrix has been presented. The idea of this paper is to generalize the search direction of

CG-DESCENT conjugate gradient algorithm of Hager and Zhang [22] by introducing a positive

parameter k instead of constant 2 used in conjugate gradient parameter .HZ
k At the same time,

the paper contains a development for a value of the positive parameter t used in conjugate

gradient parameter DL
k from the Dai-Liao’s conjugate gradient algorithm [12]. The value of this

parameter is computed in such a way that the condition number of the matrix defining the search

direction is minimized. Mainly, in our algorithm, minimizing the condition number of the

iteration matrix defining the search direction reduces to determine the value of the parameter to

minimize the distance between the singular values of the corresponding matrix, i.e., to cluster the

singular values around 1. It is proved that the search direction satisfies both the sufficient descent

condition and the Dai-Liao’s conjugacy condition. Thus, the algorithm is a conjugate gradient

one. To satisfy both the clustering of the singular values and the sufficient descent condition an

adaptive scheme is used which depend by a positive parameter. The algorithm is not sensitive to

the value of this parameter. The stepsize is computed using the classical Wolfe line search

conditions with a special initialization. In order to improve the reducing the values of the

objective function to be minimized an acceleration scheme is used. For uniformly convex

functions, under classical assumptions, the algorithm is globally convergent. Numerical

experiments and intensive comparisons using 800 unconstrained optimization problems of

different dimensions and complexity proved that this conjugate gradient algorithm is way more

efficient and more robust than CG-DESCENT algorithm [23], and slightly more efficient and

more robust than ADCG algorithm [5]. In an effort to see the performances of this conjugate

gradient algorithm we solved five large-scale real nonlinear optimization applications from

MINPACK-2 collection, up to 610 variables, showing that NCG is clearly more efficient and

more robust than CG-DESCENT.

References

[1] N. Andrei, An unconstrained optimization test functions collection. Advanced Modeling and

Optimization, 10 (2008) 147-161.

[2] N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization.

Applied Mathematics and Computation, 213 (2009) 361-369.

[3] N. Andrei, Open problems in conjugate gradient algorithms for unconstrained optimization.

Bulletin of the Malaysian Mathematical Sciences Society, 34 (2011) 319-330.

[4] N. Andrei, Eigenvalues versus singular values study in conjugate gradient algorithms for

large-scale unconstrained optimization. ICI Technical Report, December 3, 2015.

[5] N. Andrei, An adaptive conjugate gradient algorithm for large-scale unconstrained

optimization. Journal of Computational and Applied Mathematics 292 (2016) 83-91.

[6] R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Oxford,

1975.

[7] B.M. Averick, R.G., Carter, J.J., Moré, G.L., Xue, The MINPACK-2 test problem collection,

Mathematics and Computer Science Division, Argonne National Laboratory, Preprint MCS-

P153-0692, June 1992.

[8] S. Babaie-Kafaki, R. Ghanbari, The Dai-Liao nonlinear conjugate gradient method with

optimal parameter choices. European Journal of Operational Research, 234 (2014) 625-630.

[9] S. Babaie-Kafaki, R. Ghanbari, Two optimal Dai-Liao conjugate gradient methods.

Optimization, 64 (2014) 2277-2287.

[10] J. Bebernes, D. Eberly, Mathematical Problems from Combustion Theory. In: Applied

Mathematical Sciences, 83, Springer-Verlag, 1989.

 17

[11] G. Cimatti, On a problem of the theory of lubrication governed by a variational inequality,

Applied Mathematics and Optimization 3 (1977) 227–242.

[12] Y.H. Dai, L.Z. Liao, New conjugate conditions and related nonlinear conjugate gradient

methods. Appl. Math. Optim., 43 (2001) 87-101.

[13] Y.H. Dai, L.Z. Liao, Duan, Li, On restart procedures for the conjugate gradient method.

Numerical Algorithms 35 (2004) 249-260.

[14] Y.H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence

property. SIAM J. Optim., 10 (1999) 177-182.

[15] Y.H. Dai, Y. Yuan, An efficient hybrid conjugate gradient method for unconstrained

optimization. Annals of Operations Research, 103 (2001) 33-47.

[16] Y.H. Dai, J. Han, G. Liu, D. Sun, H. Yin, Y. Yuan, Convergence properties of nonlinear

conjugate gradient methods. SIAM Journal on Optimization, 10 (1999) 345-358.

[17] J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and

Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jeresy, 1983.

[18] E. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles. Math.

Programming, 91 (2002) 201-213.

[19] J.C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods for

optimization. SIAM Journal on Optimization, 2 (1992), 21-42.

[20] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag,

Berlin, 1984.

[21] J. Goodman, R. Kohn, L. Reyna, Numerical study of a relaxed variational problem from

optimal design, Computer Methods in Applied Mechanics and Engineering 57 (1986) 107–

127.

[22] W.W. Hager, H. Zhang, A new conjugate gradient method with guaranteed descent and an

efficient line search. SIAM Journal on Optimization, 16 (2005) 170-192.

[23] W.W. Hager, H. Zhang, Algorithm 851: CG-DESCENT, a conjugate gradient method with

guaranteed descent. ACM Trans. Math. Softw. 32 (2006) 113-137.

[24] M.R. Hestenes, E. Stiefel, Metods of conjugate gradients for solving linear systems. J.

Research Nat. Bur. Standards Sec. B. 48 (1952) 409-436.

[25] D. Liu, G. Xu, Symmetric Perry conjugate gradient method. Computational Optimization

and Applications, 56 (2013) 317-341.

[26] J.C.C. Nitsche, Lectures on Minimal Surfaces, Vol. 1, Cambridge University Press, 1989.

[27] J. Nocedal, Conjugate gradient methods and nonlinear optimization. In: Adams, L.,

Nazareth, J.L., (Eds.) Linear and Nonlinear Conjugate Gradient Related Methods, SIAM,

(1996) 9-23.

[28] J.M. Perry, A class of conjugate gradient algorithms with a two step variable metric memory.

Discussion paper 269, Center for Mathematical Studies in Economics and Management

Science. Northwestern University, 1977.

[29] B.T. Polyak, Introduction to Optimization. Optimization Software, Inc., Publications

Division, New York, 1987.

[30] D.F. Shanno, On the convergence of a new conjugate gradient algorithm. SIAM J. Numer.

Anal., 15 (1978) 1247-1257.

[31] W. Sun, Y. Yuan, Optimization Theory and Methods. Nonlinear Programming. Springer

Science + Business Media, New York, 2006.

[32] D.S. Watkins, Fundamentals of Matrix Computations. (2
nd

 ed.). New York: John Wiley and

Sons, Inc., 2002.

[33] P. Wolfe, Convergence conditions for ascent methods. SIAM Review, 11 (1969) 226-235.

[34] P. Wolfe, Convergence conditions for ascent methods. II: Some corrections. SIAM Review,

13 (1971) 185-188.

