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Abstract. An adaptive nonlinear conjugate gradient algorithm based on clustering the singular 

values of the search direction matrix and on the inexact Wolfe line search is presented. The search 

direction is dependent to a positive parameter. The value of this parameter is selected in such a way 

that the singular values of the matrix defining the search direction are clustered around 1. We prove 

that for general nonlinear functions and independent of the line search procedure the search 

direction satisfies both the sufficient descent condition and the Dai and Liao conjugacy condition. 

According to the value of the parameter, the algorithm uses the suggested search direction, or it 

triggers to the Hestenes and Stiefel direction. Under classical assumptions, for uniformly convex 

functions, we prove that the algorithm is globally convergent. Using a set of 800 unconstrained 

optimization test problems we prove that our algorithm is significantly more efficient and more 

robust than CG-DESCENT algorithm and slightly more efficient and more robust than ADCG 

algorithm. By solving five applications from the MINPACK-2 test problem collection, with 
610  

variables, we show that the suggested adaptive conjugate gradient algorithm is top performer 

versus CG_DESCENT. 
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clustering; sufficient descent condition 

 

1. Introduction 

Let us consider the unconstrained optimization problem 

                                                               min{ ( ), },nf x x R                                                       (1.1) 

where : nf R R  is continuously differentiable and bounded below. For solving this problem 

we suggest a nonlinear conjugate gradient algorithm, where the iterates ,kx  0,1,k   are 

generated as 

                                                                 1 ,k k k kx x d                                                            (1.2) 

the stepsize k  is positive and the search directions kd  are computed as: 

                                                     1 1 ,N

k k k kd g s      0 0 ,d g                                              (1.3) 

                                                     

2

1 1 ,
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kN k k k k
k kT T T

k k k k k k

yy g s g

y s y s y s
                                                 (1.4) 

where .  is Euclidian norm, ( )k kg f x , 1 ,k k ky g g   1k k ks x x   and k  is a positive 

parameter which follows to be determined. Observe that (1.4) is very close to the conjugate 

gradient parameter of Hager and Zhang conjugate gradient algorithm [22], where 2.k   In this 

paper we are interested to determine a value for the parameter k  in such a way to get an 
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efficient and robust conjugate gradient algorithm able to solve large-scale unconstrained 

optimization problems. 

 Observe that, if f  is a quadratic function and the step length 
k  is selected to achieve 

the exact minimum of f  in the direction ,kd  then 1 0,T

k ks g    i.e., the formula (1.4) for N

k  

reduces to the Hestenes and Stiefel [24] (HS) scheme. However, in this paper we consider general 

nonlinear functions and inexact line search based on Wolfe conditions [33, 34]: 

                                                    ( ) ( ) ,T

k k k k k k kf x d f x g d                                               (1.5) 

                                                                 1 ,T T

k k k kg d g d                                                           (1.6) 

where 0 1.     

We see that the parameter N

k  defined in (1.4) can be viewed as a modification of the HS 

conjugate gradient algorithm. Observe that if the step length 
k  is computed according to the 

Wolfe line search conditions (1.5) and (1.6), then 0.T

k ky s   Therefore, along the iterations, when 

the step 
ks  is small (in norm), the factor 

ky  in the numerator of 1 /HS T T

k k k k ky g y s   tends to 

zero. On the other hand, when the step 
ks  is small, again the factor 

ky  in the numerator the 

second term of N

k  tends to zero. Hence, N

k  becomes small and the new search direction 
1kd 
 is 

essentially a small alteration of the steepest descent direction 1.kg   In other words our method 

automatically adjust N

k  to avoid or at least to attenuate jamming, which is the main defect of the 

steepest descent direction. 

 

It is worth saying that a conjugate gradient method related to our computational scheme (1.3) and 

(1.4) is that given by Dai and Liao [12], in which the parameter N

k  in (1.3) is replaced by: 

                                                        1

1
( ) ,DL T

k k k kT

k k

y ts g
y s

                                                    (1.7) 

where 0t   is a constant parameter. For different choices of ,t  the computational scheme of Dai 

and Liao generates different results. An optimal value for t  in this algorithm is not known (see 

[3]). Observe that the method (1.3) and (1.4) can be viewed as an adaptive version of (1.7) where 

,t  at each iteration, is updated as 
2

/ ( ).T

k k k kt y y s   

The purpose of this paper is to find a value of the parameter ,k  in such a way to get an 

efficient and robust conjugate gradient algorithm. For this we suggest using the structure of the 

singular values of the matrix associated to the search direction (1.3) and (1.4). 

 

Using (1.4) in (1.3) the search direction in our algorithm is computed as: 

                                           

2

1 1
1 1 ,

T T
kk k k k

k k k k kT T T

k k k k k k

yy g s g
d g s s

y s y s y s
 

                                       (1.8) 

where k  is a positive parameter. Now, considering the Perry [28] idea the search direction (1.8) 

can be represented as: 

                                                                1 1 1,k k kd H g                                                            (1.9) 

where  

                                                    

2

1 .
T T

kk k k k
k kT T T

k k k k k k

ys y s s
H I

y s y s y s
                                              (1.10) 

Observe that 1kH   is a sum of a symmetric matrix 
2 2[ / ( ) ]T T

k k k k k kI y y s s s  and a non-

symmetric one / ,T T

k k k ks y y s  i.e., 1kH   is a non-symmetric matrix. Therefore, (1.9) represents an 
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ad hoc algebraic expression of the search direction 
1kd 
 in which the non-symmetric matrix 1kH   

is not an approximation to the inverse Hessian 2 1

1( ) .kf x 

  It is this algebraic form of the 

parameter ,N

k  given by (1.4), which leads us to this expression of 
1.kH 

 In other words, strictly 

speaking, (1.9) is not a real, quasi-Newton direction.  

 

In this point, to define the algorithm the only problem we face is to specify a suitable value for 

the positive parameter 
k  in (1.8). The approach used here is to determine the value of the 

parameter 
k  in (1.8) in such a way to minimize the condition number of the iterate matrix 1kH   

in (1.9). In other words, the idea of this paper is to determine the value of the parameter 
k  in 

order to achieve more numerical stability in computation of the search direction (1.9). The effect 

of ill-conditioning of 1kH   on the iterative algorithm (1.2) using the search direction (1.9) can be 

explained as follows (see also [8, 9]). For a vector ,nv R  let us denote 

1( ) [ ( ), , ( )]Tnfl v fl v fl v  as a vector in ,nR  where ( ),ifl v  1, , ,i n  is the nearest floating 

point number to .iv  Using (9) we have 

1 1 1( ) ( ),k k kfl d H fl g     0,1,....k   

Therefore, 

                                            1 1 1 1 1( ) ( ( ) )k k k k kfl d d H fl g g         

                                                                      1 1 1( ) .k k kH fl g g     

Now, if the matrix 1kH   is nonsingular, it follows that 

1 1 1 1 1 1
1 1 1

1 1 1 1 1

( ) ( ) ( )
.

k k k k k k
k

k k k k k

fl g g fl d d fl d d
H

g H d H d

     
  

    

  
 


 

Therefore, the following inequality between the relative errors of 1kd   and 1kg   can be 

established: 

                                          
1 1 1 1

1

1 1

( ) ( )
( ) ,

k k k k
k

k k

fl d d fl g g
H

d g
   



 

 
                                  (1.11) 

where 1
1 1 1( )k k kH H H 
    is the condition number of 1.kH   Therefore, if the iteration matrix 

1kH   is ill-conditioned, then even for small values of the relative error of 1,kg   the relative error 

of the search direction 1kd   may be large. In other words, if 1( )kH   is large, then the system 

(1.9) could be very sensitive to perturbations in 1.kg   The idea of this paper is to select a value 

for the parameter k  in (1.10) in such a way to minimize the condition number of the iteration 

matrix 1.kH   Minimizing the condition number of the iteration matrix in conjugate gradient 

algorithms have also  been considered by Babaie-Kafaki and Ghanbari [8, 9] for Dai-Liao 

nonlinear conjugate gradient algorithm, or by Liu and Xu [25] for Perry descent conjugate 

gradient algorithm, leading them to efficient and robust conjugate gradient algorithms. 

 

The structure of the paper is as follows. The algorithm and its properties are presented in Section 

2. We prove that the search direction used by this algorithm satisfies both the sufficient descent 

condition and the Dai and Liao conjugacy condition, independent of the line search. The 

parameter k  in the search direction (1.8) is determined by minimizing the condition number of 

the iteration matrix 1,kH   i.e., by clustering the singular values of this matrix around to 1. Using 

standard assumptions, Section 3 presents the global convergence of the algorithm for uniformly 

convex functions. In Section 4 the numerical comparisons of our algorithm versus CG-
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DESCENT [23] and ADCG [5] conjugate gradient algorithms are presented. The computational 

results, for a set of 800 unconstrained optimization test problems, show that this new algorithm 

substantially outperforms CG-DESCENT, and is slightly more efficient and more robust than 

ADCG. Considering five applications from the MINPACK-2 test problem collection [7], with 
610  variables, we show that our algorithm is way more efficient and more robust than CG-

DESCENT. 

 

2. The algorithm 

An important property of our conjugate gradient algorithm is that the search direction (1.8) 

always yields descent when 0,T

k ky s   a condition which is satisfied when f  is strongly convex, 

or the step length 
k  is computed according to the Wolfe conditions. The following properties of 

the search direction (1.8) can immediately be proved. 

 

Theorem 2.1. If the step length 
k  in (1.2) is determined by the Wolfe line search conditions 

(1.5) and (1.6)  and 1/ 4,k   then the search direction (1.8) satisfies the sufficient descent 

condition 

                                                    
2

1 1 1

1
1 0.

4

T

k k k

k

g d g


  

 
    

 
                                           (2.1) 

Proof. Since 0 0 ,d g   it follows that 
2

0 0 0 0.Tg d g    From (1.8) we get: 

                               

2 2
2 1 1 1

1 1 1

( )( ) ( )
.

T T T
kT k k k k k k

k k k kT T T

k k k k k k

yy g s g s g
g d g

y s y s y s
  

                             (2.2) 

Now, we apply the inequality  2 21

2

Tu v u v   to the second term in (2.2) with 

1

1
( )

2

T

k k k

k

u y s g


    and   12 ( )T

k k k kv s g y   

to obtain 
2 2

2 11 1 1 1
12 2

( )( )( ) ( )( )( ) 1
.

( ) 4 ( )

TT T T T T
k k kk k k k k k k k k k

k kT T T

k k k k k k k

y s gy g s g y g y s s g
g

y s y s y s




   
    

Therefore, introducing this estimation in (2.2) we get (2.1) showing that the search direction (1.8) 

satisfies the sufficient descent condition when 1/ 4.k                                                                 

 

If f is strongly convex or the line search satisfies the Wolfe conditions (1.5) and (1.6), then 

0T

k ky s   and our computational scheme yield descent. Note that if 1/ 4,k   then 1 1

T

k kg d   is 

bounded by 
2

1(1 1/ 4 ) ,k kg   while in some other computational schemes, for example, of Dai 

and Yuan [14, 15] only the negativity of 1 1

T

k kg d   is established. We note in passing that if 

2,k   then from (2.1) 
2

1 1 1

7
,

8

T

k k kg d g    like in [22]. 

 

Another important property of the search direction (1.8) is that it satisfies the Dai and Liao 

conjugacy condition [12], which addresses to the inexact line search, but reduces to the old 

conjugacy condition 0T

k ky d   when the line search is exact. 

 



 5 

Theorem 2.2. Consider 0k   and the step length 
k  in (1.2) is determined by the Wolfe line 

search conditions (1.5) and (1.6). Then the search direction (1.8) satisfies the Dai and Liao 

conjugacy condition 1 1( ),T T

k k k k ky d v s g    where 0.kv   

 

Proof. By direct computation we have 
2

1 1 1( ) ( ),
kT T T

k k k k k k k kT

k k

y
y d s g v s g

y s
  

 
    
  

 

where  

2

.
k

k k T

k k

y
v

y s
  By Wolfe line search conditions (1.5) and (1.6) it follows that 0,T

k ky s   

therefore 0.kv                                                                                                                                 

 

 In the following we are interested to specify a procedure for k  computation in (1.8) 

based on minimizing the condition number of the iterate matrix 1,kH   given by (1.10). For this, 

we briefly present the singular value analysis and the condition number of a matrix. The 

following definitions and theorems, taken from Watkins [32], clarify some aspects of this concept 

of condition number of a matrix. 

 

Theorem 2.3. [32] Let n mA R   be a nonzero matrix with rank .r  Then, mR  has an orthonormal 

basis 1, , ,mv v  nR  has an orthonormal basis 1, , ,nu u  and there exist the scalars 

1 2 0r       such that 

                          
, 1, , ,

0, 1, , ,

i i

i

u i r
Av

i r m

 
 

 
   and   

, 1, , ,

0, 1, , .

i iT

i

v i r
A u

i r n

 
 

 
                 (2.3) 

 

 

Definition 2.1. The scalars 1, , r   from the theorem 2.3 are called the singular values of the 

matrix .A   

 

Based on the Theorem 2.3, for any nonzero matrix n mA R   with rank r  it follows that    

                                                              
2 2 2

1 ,rF
A                                                          (2.4) 

where .
F

 represents the Frobenius norm. If ,r m n   then  

                                                         1 2det( ) .nA                                                        (2.5) 

 

As we mentioned, a very important concept in the sensitivity analysis of numerical computations 

with matrices is the matrix condition number. A matrix with a large condition number is called an 

ill-conditioned matrix since the computations with this matrix are potentially very sensitive to 

changes in data of the problem involving this matrix. 

 

Definition 2.2. For an arbitrary nonsingular matrix ,A  the scalar 1( )A A A   is called the 

condition number of .A   

 

Theorem 2.4. [32] If n nA R   is a nonsingular matrix with the singular values 

1 2 0,n       then 1( ) / .nA     
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Definition 2.3. The condition number ( )A  computed as above is called the spectral condition 

number.  

 

In our analysis we need to find the singular values of the matrix 1.kH   For this, in our 

developments we assume that 0,T

k ky s   which is guaranteed by the Wolfe line search conditions 

(1.5) and (1.6). The structure of the singular values of the matrix 1kH   is given by the following 

theorem. 

 

Theorem 2.5. Suppose that the step length 
k  is determined by the Wolfe line search conditions 

(1.5) and (1.6). Let 
1kH 
 be defined by (1.10). Then 

1kH 
 is a nonsingular matrix and its singular 

values consist of 1 ( 2n   multiplicity), 1k


  and 1,k


  where: 

                                  2 2

1

1
( 1) ( 1) ( 1) ( 1) ,

2
k k k k k k ka a a a  


        
 

                    (2.6) 

                                  2 2

1

1
( 1) ( 1) ( 1) ( 1) ,

2
k k k k k k ka a a a  


        
 

                    (2.7) 

and  

                                                              

2 2

2
1.

( )

k k

k T

k k

s y
a

y s
                                                         (2.8) 

 

Proof. By the Wolfe line search conditions (1.5) and (1.6) we have that .0k

T

k sy  Therefore, the 

vectors ky  and ks  are nonzero vectors. Let V  be the vector space spanned by }.,{ kk ys  Clearly, 

2)dim( V  and .2)dim(  nV  Thus, there exist a set of mutually unit orthogonal vectors 



 Vu n

i

i

k

2

1}{  such that 

,0 i

k

T

k

i

k

T

k uyus  ,2,,1  ni   

which from (1.10) leads to 

1 ,i i

k k kH u u   .2,,1  ni   

Therefore, the matrix 1kH   has 2n  singular values equal to 1. Now, we are interested to find 

the rest of the two remaining singular values denoted as 1k

  and 1,k



  respectively. From the 

formula of algebra (see for example [31]) 

det( ) (1 )(1 ) ( )( ),T T T T T TI pq uv q p v u p v q u       

where ,k

T

k k

s
p

y s
    ,kq y   

2

2( )

k

k kT

k k

y
u s

y s
  and ,kv s  it follows that  

                                                  

2 2

1 2
det( ) ,

( )

k k

k k k kT

k k

s y
H a

y s
                                                (2.9) 

where ka  is given by (2.8). Since 0k   and 1ka  , it follows that 1kH   is a nonsingular matrix.  

Now, by direct computation we get: 

                                                   2 2

1 1( ) 2 .T

k k k k ktr H H n a a                                                 (2.10) 

Since 
2

1 1 1( ),T
k k kF

H tr H H    from (2.4) we get 

                                                      2 2 2 2
1 1( ) ( ) .k k k k ka a   
                                                 (2.11) 
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Also, from (2.5) and (2.9) we have 

                                                                1 1 .k k k ka   
                                                           (2.12) 

Now, from (2.11) and (2.12), after some simple algebraic manipulations we obtain: 

                                                   2 2
1 1 2 ,k k k k k k ka a a    
                                             (2.13) 

Therefore, from (2.12) and (2.13), the remaining singular values 1k

  and 1k


  of 1kH   are the 

roots of the following quadratic polynomial 

                                               2 2 2 2 0.k k k k k k ka a a a                                               (2.14) 

Clearly, the other two singular values of the matrix 
1kH 
 are determined from (2.14) as (2.6) and 

(2.7) respectively. Observe that 1ka   follows from Wolfe conditions and the inequality 

                                                                   

2

2
.

T
kk k

T

k kk

yy s

y ss
                                                                 

 

Observe that since 1ka   it follows that the singular values 1k

  and 1k


  are well defined by 

(2.6) and (2.7), respectively. The following two proposition prove some important properties of 

the singular values 1k

  and 1.k


  

 

Proposition 2.1. For the singular value 1k

  defined in (2.7), we have 1 1.k


    

 

Proof. Observe that if 1,k ka   then since 1 1,k k  
   from (2.12) we have that 1 1.k


   On 

the other hand, if 1,k ka   then from (2.6) we have: 

                                             1

1 1
( 1) ( 1) .

2 2
k k k k k k ka a a   
                                          (2.15) 

With this, from (2.12) it follows that 1 1.k

                                                                                       

 

Proposition 2.2. For the singular value 1k

  defined in (2.6), we have 1 1.k


    

 

Proof. As in Proposition 2.1 above, if 1,k ka   then from (2.15) we have that 1 1.k

   On the 

other hand, if 1,k ka   then from (2.6) we have 

                                                 1

1 1
( 1) (1 ) 1.

2 2
k k k k ka a  
                                                   

 

Now, since 1,ka   from (2.12) and (2.13) it follows that both 1k

  and 1k


  are positive. 

Therefore, from the above propositions we have 1 10 1 .k k  
     From Theorem 2.4 we have 

that  

                                                                 1
1

1

( ) .k
k

k

H








 


                                                        (2.16) 

 

As we have mentioned in Section 1 in order to enhance the numerical stability in the search 

direction computation, it is reasonable to determine the value of the parameter k  in (1.8) by 

minimizing the condition number of 1.kH   In a simple computational scheme, from (2.16) we see 
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that minimizing 1( )kH   is to minimize the distance between 1k

  and 1.k


  Therefore, the 

optimal value of ,k  denoted *,k  is determined as: 

                                                         *
1 1argmin( ),k k k   
                                                  (2.17) 

thus making 1k

  as close as possible to 1.k


  Since 1 10 1 ,k k  

     it follows that *
k  

solution of (2.17) makes 1( ) 1kH    as close as possible to 1. From (2.6) and (2.7), a 

simple algebraic development shows that 

                                                                      * 1
,k

ka
                                                               (2.18) 

where 1ka   is given by (2.8). Therefore, for 1/k ka   the singular values of 1kH   are 

clustered around 1.  Notice that for 1/k ka   the matrix 1kH   from (1.10) becomes: 

1 2
.

T T

k k k k
k T

k k k

s y s s
H I

y s s
     

 

In the following, from Theorem 2.1, we observe that the necessary condition for the sufficient 

descent condition of the search direction is 1/ 4.k   Therefore, the condition for minimizing 

1( )kH   is 4.ka   Now, we can define our algorithm as follows. If 4,ka   then we select 

1/k ka   in (1.8) in order to achieve both the sufficient descent condition and minimizing the 

condition number 1( ).kH    Otherwise, the algorithm uses the Hestenes and Stiefel direction.  

 

Since the search direction (1.8) has the property of sufficient descent for any value 

1/ 4,k   it follows that for any value of ,ka   where 1 4   is a parameter, the singular 

values of the matrix 1kH   are clustered around 1. Therefore, the search direction of our algorithm 

is given by (1.3) where the parameter N  is computed as: 

                                                

1 1

2

1

, if ,

, if .

T T

k k k k
kT

k k kN

k
T

k k
kT

k k

y g s g
a

y s s

y g
a

y s







 




 


 





                                       (2.19) 

 

Our algorithm (1.3) with (2.19) can be considered as an adaptive conjugate gradient algorithm 

subject to the parameter 1 4.   If ,ka   then the search direction is triggered to the HS 

direction, otherwise the search direction is that specified in (1.8) with 1/ ,k ka   where ka  is 

given by (2.8). We see that according to the value of the parameter   the behavior of our 

algorithm is closer to that of the HS algorithm, or to the algorithm given by (1.8) where 

1/ .k ka    

Observe that our algorithm is a modification of the HS conjugate gradient algorithm 

based on the idea of minimizing the condition number of the matrix defined by the search 

direction (1.3) and (1.4). The CG-DESCENT algorithm proposed by Hager and Zhang [22] also 

is a modification of the HS conjugate gradient algorithm by ex abrupto deleting a term from the 

search direction for the memoryless quasi-Newton scheme of Shanno [30]. Again, using this 

approach we get a value for the parameter t  in the Dai and Liao conjugate gradient parameter 

(1.7) for which the condition number of the search matrix is minimized.  
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Taking into consideration the above developments and using the procedure of 

acceleration of conjugate gradient algorithms presented in [2], the following algorithm can be 

presented. 

 

NCG Algorithm (New Conjugate Gradient Algorithm) 

Step 1. Select a starting point 0

nx   and compute: 
0( ),f x  0 0( ).g f x  Select some 

positive values for   and   used in Wolfe line search conditions. Consider a positive 

value for the parameter .  (1 4  ) Set 0 0d g   and 0.k   

Step 2. Test a criterion for stopping the iterations. If this test is satisfied, then stop; otherwise 

continue with step 3. 

Step 3. Determine the steplength 
k  by using the Wolfe line search (1.5) and (1.6). 

Step 4. Compute ,k k kz x d   ( )zg f z  and .k k zy g g   

Step 5. Compute: T

k k z ka g d  and .T

k k k kb y d   

Step 6. Acceleration scheme. If 0,kb   then compute /k k ka b    and update the variables 

as 1 ,k k k k kx x d     otherwise update the variables as 1 .k k k kx x d    

Step 7. Compute 
ka  as in (2.8). 

Step 8. Compute the search direction as in (1.3) where N

k  is computed as in (2.19). 

Step 9. Powell restart criterion. If 
2

1 10.2 ,T

k k kg g g   then set 1 1.k kd g    

Step 10. Consider 1k k   and go to step 2.                                                                              

 

If function f  is bounded along the direction ,kd  then there exists a stepsize 
k  satisfying the 

Wolfe line search (see for example [17] or [29]). In our algorithm when the Beale-Powell restart 

condition is satisfied, then we restart the algorithm with the negative gradient 1.kg   More 

sophisticated reasons for restarting the algorithms have been proposed in the literature [13], but 

we are interested in the performance of a conjugate gradient algorithm that uses this restart 

criterion associated to a direction which satisfies both the descent and the conjugacy conditions. 

Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion are sufficient 

to prove the global convergence of the algorithm. The first trial of the step length crucially affects 

the practical behavior of the algorithm. At every iteration 1k   the starting guess for the step k  

in the line search is computed as 1 1 / .k k kd d    For uniformly convex functions the linear 

convergence of the acceleration scheme used in the algorithm NCG is proved in [2]. Clearly, the 

acceleration scheme improves the performances of the algorithm [2]. Numerical comparisons 

may drastically change by introducing acceleration. However, we are interested to see the 

performances of this algorithm equipped with an acceleration scheme.   

 

3. Global convergence analysis 
The global convergence analysis of the above algorithms is based on bounding the norm of the 

search direction, (see Gilbert and Nocedal, [19], Nocedal, [27] or Dai, et al [16]). In this section 

we prove the global convergence of the above algorithms under the following assumptions: 

Assume that: 

(i) The level set  0: ( ) ( )nS x R f x f x    is bounded.  

(ii) In a neighborhood N  of S  the function f  is continuously differentiable and its 

gradient is Lipschitz continuous, i.e. there exists a constant 0L   such that 

( ) ( ) ,f x f y L x y     for all , .x y N  
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Since { ( )}kf x  is a decreasing sequence, it is clear that the sequence { }kx  generated by the 

proposed algorithm NCG is contained in .S  Under these assumptions on f  there exists a 

constant 0   such that ( )f x   for all .x S  Notice that the assumption that the function 

f  is bounded below is weaker that the usual assumption that the level set is bounded.  

Although the search directions generated by the algorithm are always descent directions, 

to ensure convergence of the algorithm we need to constrain the choice of the step-length .k  

The following proposition shows that the Wolfe line search always gives a lower bound for the 

stepsize .k  

 

Proposition 3.1. Suppose that 
kd  is a descent direction and the gradient f satisfies the 

Lipschitz condition 

( ) ( )k kf x f x L x x     

for all x  on the line segment connecting kx  and 1,kx   where L  is a positive constant. If the line 

search satisfies the Wolfe conditions (1.5) and (1.6), then 

                                                            
2

(1 )
.

T

k k

k

k

g d

L d





                                                   

Proof. Subtracting 
T

k kg d  from both sides of (1.6) and using the Lipschitz continuity we get 

2

1( 1) ( ) .T T T

k k k k k k k k k k kg d g g d y d y d L d        

Since kd  is a descent direction and 1,    we get the conclusion of the proposition                    ■ 

 

For any conjugate gradient method with strong Wolfe line search the following general result 

holds [27]. 

 

Proposition 3.2. Suppose that the above assumptions hold. Consider a conjugate gradient 

algorithm in which, for all 0,k   the search direction kd  is a descent direction and the stepsize 

k  is determined by the Wolfe line search conditions. If 

                                                                   
2

0

1
,

k kd

                                                             (3.1) 

then the algorithm converges in the sense that 

                                                                  liminf 0.k
k

g


                                                          (3.2) 

 

For uniformly convex functions we can prove that the norm of the direction 1kd   computed as in 

(1.3) with (2.19) is bounded above. Therefore, by proposition 3.2 we can prove the following 

result. 

 

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm NCG where 

the search direction kd  is given by (1.3) and N

k  is computed as in (2.19). Suppose that k  is 

computed by the Wolfe line search. Suppose that f  is a uniformly convex function on ,S  i.e. 

there exists a constant 0   such that 

                                                 
2

( ( ) ( )) ( )Tf x f y x y x y                                             (3.3) 

for all , .x y N  Then 
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                                                                    lim 0.k
k

g


                                                             (3.4) 

 

Proof. From Lipschitz continuity we have .k ky L s  On the other hand, from uniform 

convexity it follows that 
2
.T

k k ky s s  Now, using (2.19) in (1.3) for ,ka   we have 

1 1

1 1 2

T T

k k k k

k k k kT

k k k

y g s g
d g s s

y s s

 

   
2 2

k k k k

k k

y s s s

s s

 
    2 ,

L




    

showing that (3.1) is true.  

Again, using (2.19) in (1.3) for 
ka   it follows that 

1

1 1 ,

T

k k

k k kT

k k

y g L
d g s

y s 



 


      

showing that (3.1) is true. By proposition 3.2 it follows that (3.2) is true, which for uniformly 

convex functions is equivalent to (3.4)                                                                                            

 

The convergence analysis for general nonlinear functions follows the developments given by 

Hager and Zhang [22]. If the level set S  is bounded, the Lipschitz condition 

( ) ( )f x f y L x y     holds and the step length satisfies the Wolfe conditions (1.5) and 

(1.6), then for the algorithm (1.2), (1.3) and (2.19) either 0kg   for some k  or 

liminf 0k kg   (see theorem 3.2 in [22]). 

 

4. Numerical results and comparisons 
The NCG algorithm was implemented in double precision Fortran using loop unrolling of depth 5 

and compiled with f77 (default compiler settings) and run on a Workstation Intel Pentium 4 with 

1.8 GHz. We selected a number of 80 large-scale unconstrained optimization test functions in 

generalized or extended form presented in [1]. For each test function we have considered 10 

numerical experiments with the number of variables increasing as 1000,2000, ,10000.n   The 

algorithms compared in this section use the Wolfe line search conditions with cubic interpolation 

[31], 0.0001,   0.8   and the same stopping criterion 610 ,kg 


 where .


is the 

maximum absolute component of a vector.  

Since, CG-DESCENT [23] is among the best nonlinear conjugate gradient algorithms 

proposed in the literature, but not necessarily the best, in the following we compare our algorithm 

NCG versus CG-DESCENT. When the algorithms are compared we can consider at least two 

points of view: the first is based on the optimal point generated by the algorithm, and the second 

one is using the objective function value in this point. Since all the algorithms used and compared 

in this paper generate local solutions, we compare them by using the point of view based on the 

objective function value in the point determined by the algorithms. Therefore, the comparisons of 

algorithms are given in the following context. Let 1ALG

if and 2ALG

if  be the optimal value found 

by ALG1 and ALG2, for problem 1, ,800,i   respectively. We say that, in the particular 

problem ,i  the performance of ALG1 was better than the performance of ALG2 if:  

                                                            1 2 310ALG ALG

i if f                                                        (4.1) 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the 

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient 

evaluations, or the CPU time corresponding to ALG2, respectively. Possibly, some other points 

of view for comparing the algorithms can be used, but in this paper we consider this one. Of 
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course, the test problems where the algorithms do not converge to the same function value, 

according to criterion (4.1), are discarded from comparisons.  

 

  

  

  
Fig. 1. NCG versus CG-DESCENT for different values of .  

 

 

Figure 1 shows the performance profiles of Dolan-Moré [18] subject to CPU time metric 

for different values of parameter .  That is, for each method, we plot the fraction of problems for 

which the method is within a factor of the best time. The left side of the figures gives the 

percentage of the test problems for which a method is the fastest; the right side gives the 

percentage of the test problems that are successfully solved by each of the methods. Clearly, the 

top curve corresponds to the method that solved the most problems in a time that was within a 

factor of the best time.  
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Form figure 1, for example for 1.1,   comparing NCG versus CG-DESCENT with 

Wolfe line search, subject to the number of iterations, we see that NCG was better in 618 

problems (i.e. it achieved the minimum number of iterations for solving 618 problems), CG-

DESCENT was better in 98 problems and they achieved the same number of iterations in 53 

problems, etc. Out of 800 problems, we considered in this numerical study, only for 769 problems 

does the criterion (4.1) hold. From figure 1 we see that for different values of the parameter   

NCG algorithm is more efficient and more robust than CG-DESCENT. In comparison with CG-

DESCENT, on average, NCG appears to generate better search direction. We see that this 

computational scheme based on clustering the singular values of the matrix representing the 

search direction (1.3) and (2.19) lead us to a conjugate gradient algorithm which substantially 

outperforms the CG-DESCENT, being way more efficient and more robust. 

 

In the second set of numerical experiments we compare NCG versus ADCG algorithm 

[5]. The ADCG is an adaptive conjugate gradient algorithm where the search direction is 

computed as the sum of the negative gradient and a vector determined by minimizing the 

quadratic approximation of the function f  at the current point. Using a special approximation to 

the inverse Hessian of the objective function, which depend by a positive parameter, a search 

direction is obtained which satisfies both the sufficient descent condition and the Dai-Liao’s 

conjugacy condition. The parameter in the search direction is determined in an adaptive manner 

by minimizing the largest eigenvalue of the matrix defining it in order to cluster all the 

eigenvalues. The search direction in ADCG algorithm is computed as 

                                                               1 1 1,
ADCG
k k kd Q g                                                          (4.2) 

where  

                                              

2

1 ,
T T T

kk k k k k k
k kT T T

k k k k k k

ys y y s s s
Q I

y s y s y s



                                         (4.3) 

and the parameter k  is determined in such a way to cluster all its eigenvalues. In [5] the 

parameter k  is computed as: 

                                                                   
2

,
T
k k

k k

k

y s
t

y
                                                             (4.4) 

where  

                                                 
2 1 / , if ,

0 otherwise,

k k k
k

y s a
t

   
 


                                        (4.5) 

 

ka  is defined by (2.8), and 1   is a positive constant. Therefore, the ADCG algorithm is based 

on clustering the eigenvalues of the search direction matrix (4.3). On the other hand, the NCD 

algorithm is using the clustering of the singular values of search direction matrix (1.10). Observe 

the differences between 1kH   given by (1.10) used in NCG algorithm and 1kQ   given by (4.3) 

used in ADCG algorithm. We see that 1 1 / .T T
k k k k k kQ H y s y s    Both these matrices 1kH   and 

1kQ   are not symmetric matrices, as usual in quasi-Newton methods. They are used in these 

algorithms in order to find the values of parameter k  to cluster the singular values of 1kH   or 

the eigenvalues of 1kQ  , respectively.  In [5] we have the computational evidence that ADCG is 

not sensitive to the values of the parameter ,  and is way more efficient and more robust than 

CG-DESCENT. In Figure 2 we present the performance profiles of Dolan-Moré subject to CPU 

time metric, of NCG versus ADCG, for different values of the parameters   and .  
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Fig. 2. NCG versus ADCG for different values of   and .  

 

The NCG algorithm is based on minimizing the condition number of the matrix defining the 

search direction, i.e., on clustering the singular values around 1. On the other hand, the ADCG 

algorithm is based on clustering the eigenvalues of the same matrix. In Figure 2 we have the 

computational evidence that NCG algorithm is slightly more efficient and more robust than 

ADCG for any combination of parameters   and .  From Figure 2 we see that both algorithms 

are not sensitive to the values of these parameters. Practically, all performance profiles have the 

same allure for any combination of   and .  Singular values analysis in designing conjugate 

gradient algorithms is more profitable subject to efficiency and robustness, but this is not 
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overwhelming, both concepts (singular values and eigenvalues) leading to very similar results. 

(see also [4]). 

In the following, in the third set of numerical experiments, we present comparisons 

between NCG and CG-DESCENT conjugate gradient algorithms for solving some real 

applications from the MINPACK-2 test problem collection [7]. In Table 1 we present these 

applications, as well as the values of their parameters.  

 

 
Table 1  

Applications from the MINPACK-2 collection. 

A1 Elastic–plastic torsion ([20], pp. 41–55), 5c   

A2 Pressure distribution in a journal bearing [11], 10,b   0.1   

A3 Optimal design with composite materials [21], 0.008   

A4 Steady-state combustion ([6], pp. 292–299), [10], 5   

A5 Minimal surfaces with Enneper conditions ([26], pp. 80–85) 

 

 

The infinite-dimensional version of these problems is transformed into a finite element 

approximation by triangulation. Thus a finite-dimensional minimization problem is obtained 

whose variables are the values of the piecewise linear function at the vertices of the triangulation. 

The discretization steps are 1,000nx   and 1,000,ny   thus obtaining minimization problems 

with 1,000,000 variables. A comparison between NCG (Powell restart criterion, 
6( ) 10 ,kf x 


   0.0001,  0.8  , 4  ) and CG-DESCENT (version 1.4, Wolfe line 

search, default settings, 6( ) 10 ,kf x 


  ) for solving these applications is given in Table 2.  

 

Table 2  

Performance of NCG versus CG-DESCENT. 1,000,000 variables. 4,   CPU seconds.  

 NCG CG-DESCENT 

 #iter #fg cpu #iter #fg cpu 

A1 1113 2257 351.62 1145 2291 474.64 

A2 2843 5714 1143.97 3370 6741 1835.51 

A3 4725 9494 2754.26 4814 9630 3949.71 

A4 1413 2864 2014.17 1802 3605 3786.25 

A5 1270 2566 571.45 1225 2451 753.75 

TOTAL 11364 22895 6835.47 12356 24718 10799.86 

 

 

Form Table 2, we see that, subject to the CPU time metric, the NCG algorithm is top performer 

and the difference is significant, about 3964.39 seconds for solving all these five applications. It 

is worth saying that intensive numerical experiments for solving the applications from 

MINPACK-2 collection with different values of the parameter 1 4   mainly yield similar 

results concerning the numerical performances of NCG algorithm. In all cases, for all these 

numerical experiments, NCG was top performer versus CG-DESCENT. 

The NCG and CG-DESCENT algorithms (and codes) are different in many respects. 

Since both of them use the Wolfe line search (however, implemented in different manners), these 

algorithms mainly differ in their choice of the search direction. The search direction 1kd   given 

by (1.3) where the parameter N

k  is computed as in (2.19) is more elaborate: it is adaptive and the 

singular values of the matrix defined by it are clustered around 1. In addition it satisfies both the 

descent condition and the conjugacy condition in a restart environment.  
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5. Conclusions 

A new adaptive conjugate gradient algorithm based on singular values study of the search 

direction matrix has been presented. The idea of this paper is to generalize the search direction of 

CG-DESCENT conjugate gradient algorithm of Hager and Zhang [22] by introducing a positive 

parameter k  instead of constant 2 used in conjugate gradient parameter .HZ
k  At the same time, 

the paper contains a development for a value of the positive parameter t  used in conjugate 

gradient parameter DL
k  from the Dai-Liao’s conjugate gradient algorithm [12]. The value of this 

parameter is computed in such a way that the condition number of the matrix defining the search 

direction is minimized. Mainly, in our algorithm, minimizing the condition number of the 

iteration matrix defining the search direction reduces to determine the value of the parameter to 

minimize the distance between the singular values of the corresponding matrix, i.e., to cluster the 

singular values around 1. It is proved that the search direction satisfies both the sufficient descent 

condition and the Dai-Liao’s conjugacy condition. Thus, the algorithm is a conjugate gradient 

one. To satisfy both the clustering of the singular values and the sufficient descent condition an 

adaptive scheme is used which depend by a positive parameter. The algorithm is not sensitive to 

the value of this parameter. The stepsize is computed using the classical Wolfe line search 

conditions with a special initialization. In order to improve the reducing the values of the 

objective function to be minimized an acceleration scheme is used. For uniformly convex 

functions, under classical assumptions, the algorithm is globally convergent. Numerical 

experiments and intensive comparisons using 800 unconstrained optimization problems of 

different dimensions and complexity proved that this conjugate gradient algorithm is way more 

efficient and more robust than CG-DESCENT algorithm [23], and slightly more efficient and 

more robust than ADCG algorithm [5]. In an effort to see the performances of this conjugate 

gradient algorithm we solved five large-scale real nonlinear optimization applications from 

MINPACK-2 collection, up to 610  variables, showing that NCG is clearly more efficient and 

more robust than CG-DESCENT. 
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