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For minimizing the differentiable function 
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the Newton method is based on the quadratic approximation of the function 
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 and on the exact minimization of this quadratic approximation. Thus, near the current point 
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 the function 
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 is approximated by the truncated Taylor series 
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known as the local quadratic model of 
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 around 
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 Minimizing the right-hand side of (1), the search direction of the Newton method is computed as
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Therefore, the Newton method is defined as:
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where 
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 For the Newton method (3), we see that 
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 is a descent direction if and only if 
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 is a positive definite matrix. If the starting point 
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 is close to 
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 then the sequence 
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 generated by the Newton method converges to 
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 with a quadratic rate.
Notice the an iterative method is called locally convergent if the sequence 
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 generated by it converges to an optimal point 
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 given that the initial point 
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 is close enough to 
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 The quadratic local convergence of the Newton method is given by the following theorem.
Theorem 1 (Quadratic local convergence of the Newton method) Let 
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 be a twice continuously differentiable function defined over 
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 Assume that:

· there exists 
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· there exists 
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 for any 
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Let 
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 be the sequence generated by the Newton method, and let 
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 be the unique minimizer of 
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 over 
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If 
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Proof Firstly, let us prove (6). By the fundamental theorem of calculus, it follows that
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Then,
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For proving (7) observe that for 
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Now, suppose that for an integer 
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 (7) is satisfied, i.e.  
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 Now, let us show that this holds for 
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 We have:
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The interpretation of the condition (4) is as follows. As we know, the Taylor series of 
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 near 
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 is:
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Condition 
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 imposes that the quadratic approximation of 
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 in 
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 is consistent in the sense that the quadratic term in (8) is enough large such that (3) is well defined.
On the other hand, condition 
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 can be rewritten as
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where 
[image: image60.wmf]0.

M

<<¥

 Therefore, this condition tell us that the tensor of the derivative of the third order of 
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 in 
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 is enough small, such that the rest of the Taylor series can be very well neglected.
In conclusion, for working the iterative process (3), both these condition (4) and (5) impose that the quadratic approximation of 
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 in 
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 is a good one.
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