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	Abstract. An adaptive conjugate gradient algorithm is presented. The search direction is computed as the sum of the negative gradient and a vector determined by minimizing the quadratic approximation of objective function at the current point. Using a special approximation of the inverse Hessian of the objective function, which depends by a positive parameter, we get the search direction which satisfies both the sufficient descent condition and the Dai-Liao’s conjugacy condition. The parameter in the search direction is determined in an adaptive manner by clustering the eigenvalues of the matrix defining it. The global convergence of the algorithm is proved for uniformly convex functions. Using a set of 800 unconstrained optimization test problems we prove that our algorithm is significantly more efficient and more robust than CG-DESCENT algorithm. By solving five applications from the MINPACK-2 test problem collection, with 
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 variables, we show that the suggested adaptive conjugate gradient algorithm is top performer versus CG_DESCENT.
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1. Introduction

For solving the large-scale unconstrained optimization problem
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where 
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 is a continuously differentiable function, we consider the following algorithm

                                                                 
[image: image4.wmf]1

,

kkkk

xxd

a

+

=+

                                                            (2)

where the step size  
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 is positive and the directions 
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 are computed using the updating formula:
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Here, 
[image: image8.wmf](),

kk

gfx

=Ñ

 and 
[image: image9.wmf]1

n

k

u

+

Î

¡

 is a vector to be determined. Usually, in (2), the steplength 
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 is computed using the Wolfe line search conditions [32, 33]:
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where 
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 Also, the strong Wolfe line search conditions consisting of (4) and the following strengthened version of (5):
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can be used.

Observe that (3) is a general updating formula for the search direction computation. The following particularizations of (3) can be presented. If 
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 then we get the steepest descent algorithm. If 
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 then the Newton method is obtained. Besides, if 
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 is an approximation of the Hessian 
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 then we find the quasi-Newton methods. On the other hand, if 
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 is a scalar and 
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 the family of conjugate gradient algorithms is generated. 

In this paper we focus on conjugate gradient method. This method was introduced by Hestenes and Stiefel [20] and Stiefel [29], (
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), to minimize positive definite quadratic objective functions. (Here
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.) This algorithm for solving positive definite linear algebraic systems of equations is known as linear conjugate gradient. Later, the algorithm was generalized to nonlinear conjugate gradient in order to minimize arbitrary differentiable nonlinear functions, by Fletcher and Reeves [13], (
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), Polak and Ribière [25] and Polyak [26], (
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),  Dai and Yuan [11], (
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), and  many others. An impressive number of nonlinear conjugate gradient algorithms have been established, and a lot of papers have been published on this subject insisting both on theoretical and computational aspects. An excellent survey of the development of different versions of nonlinear conjugate gradient methods, with special attention to global convergence properties, is presented by Hager and Zhang [19]. 
In this paper we consider another approach to generate an efficient and robust conjugate gradient algorithm. We suggest a procedure for 
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 computation by minimizing the quadratic approximation of the function 
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 and using a special representation of the inverse Hessian which depend by a positive parameter. The parameter in the matrix representing the search direction is determined in an adaptive manner by minimizing the largest eigenvalue of it. The idea, taken from the linear conjugate gradient, is to cluster the eigenvalues of the matrix representing the search direction. 
The algorithm and its properties are presented in section 2. We prove that the search direction used by this algorithm satisfies both the sufficient descent condition and the Dai and Liao conjugacy condition [9]. Using standard assumptions, section 3 presents the global convergence of the algorithm for uniformly convex functions. In section 4 the numerical comparisons of our algorithm versus the CG-DESCENT conjugate gradient algorithm [17] are presented. The computational results, for a set of 800 unconstrained optimization test problems, show that this new algorithm substantially outperform CG-DESCENT, being more efficient and more robust. Considering five applications from the MINPACK-2 test problem collection [4], with 
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 variables, we show that out algorithm is way more efficient and more robust than CG-DESCENT.
2. The algorithm

In this section we describe the algorithm and its properties. Let us consider that at the 
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iteration of the algorithm an inexact Wolfe line search is executed, that is the step-length 
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 are computed. Now, let us take the quadratic approximate of function 
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where 
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 is an approximation of the Hessian 
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 is the direction to be determined. The search direction 
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Introducing 
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 from (3) in the minimizing problem (8), then 
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Clearly, using different approximations 
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 of the Hessian 
[image: image50.wmf]2

1

()

k

fx

+

Ñ

 different search directions 
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 can be obtained. In this paper we consider the following expression of 
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where 
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 is a positive parameter which follows to be determined. Observe that 
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Now, from (9) we get:
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Denote 
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 Therefore, using (11) in (3) the search direction can be expressed as
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where 
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Observe that the search direction (12), where 
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 is given by (13), obtained by using the expression (10) of the inverse Hessian 
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Proposition 2.1. Consider 
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 and the step length 
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 in (2) is determined by the Wolfe line search conditions (4) and (5). Then the search direction (14) satisfies the descent condition 
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Proof. By direct computation, since 
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Proposition 2.2. Consider 
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 and the step length 
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 in (2) is determined by the Wolfe line search conditions (4) and (5). Then the search direction (14) satisfies the Dai and Liao conjugacy condition 
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Proof. By direct computation we have
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 By Wolfe line search conditions (4) and (5) it follows that 
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Observe that, although we have considered the expression of the inverse Hessian as that given by (10), which is a non-symmetric matrix, the search direction (14), obtained in this manner, satisfies both the descent condition and the Dai and Liao conjugacy condition. Therefore, the search direction (14) leads us to a genuine conjugate gradient algorithm. The expression (10) of the inverse Hessian is only a technical argument to get the search direction (14). It is remarkable to say that from (12) our method can be considered as a quasi-Newton method in which the inverse Hessian, at each iteration, is expressed by the non-symmetric matrix 
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 More than this, the algorithm based on the search direction given by (14) can be considered as a three-term conjugate gradient algorithm.

In this point, to define the algorithm the only problem we face is to specify a suitable value for the positive parameter 
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 As we know, the convergence rate of the nonlinear conjugate gradient algorithms depend on the structure of the eigenvalues of the Hessian and the condition number of this matrix. The standard approach is based on a singular value study on the matrix 
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 (see for example [6]), i.e. the numerical performances and the efficiency of the quasi-Newton methods are based on the condition number of the successive approximations of the inverse Hessian. A matrix with a large condition number is called an ill-conditioned matrix. Ill-conditioned matrices may produce instability in numerical computation with them. Unfortunately, many difficulties occur when applying this approach to general nonlinear optimization problems. Mainly, these difficulties are associated to the condition number computation of a matrix. This is based on the singular values of the matrix, which is a difficult and laborious task. However, if the matrix 
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 is a normal matrix, then the analysis is simplified because the condition matrix of a normal matrix is based on the eigenvalues of it, which are easier to be computed. 
As we know, generally, in a small neighborhood of the current point, the nonlinear objective function in the unconstrained optimization problem (1) behaves like a quadratic one for which the results from linear conjugate gradient can apply. But, for faster convergence of linear conjugate gradient algorithms some approaches can be considered like: the presence of isolated smallest and/or largest eigenvalues of the matrix 
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 as well as gaps inside the eigenvalues spectrum [5], clustering of the eigenvalues about one point [31] or about several points [22], or preconditioning [21]. If the matrix has a number of certain distinct eigenvalues contained in 
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 disjoint intervals of very small length, then the linear conjugate gradient method will produce a very small residual after 
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 iterations. This is an important property of linear conjugate gradient method and we try to use it in nonlinear case in order to get efficient and robust conjugate gradient algorithms. Therefore, we consider the extension of the method of clustering the eigenvalues of the matrix defining the search direction from linear conjugate gradient algorithms to nonlinear case.

The idea is to determine 
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 given by (13), by minimizing the largest eigenvalue of the matrix 
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 from the spectrum of this matrix. The structure of the eigenvalues of the matrix 
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Theorem 2.1. Let 
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and 
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Proof. By the Wolfe line search conditions (4) and (5) we have that 
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which from (13) leads to
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Therefore, the matrix 
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Now, we are interested to find the rest of the two remaining eigenvalues, denoted as 
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But, 
[image: image121.wmf]1

k

a

>

 and 
[image: image122.wmf]0

k

b

³

, therefore, 
[image: image123.wmf]1

k

H

+

 is a nonsingular matrix. 

On the other hand, by direct computation 
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By the relationships between the determinant and the trace of a matrix and its eigenvalues, it follows that the other eigenvalues of 
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 are the roots of the following quadratic polynomial
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Clearly, the other two eigenvalues of the matrix 
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 are determined from (20) as (15) and (16), respectively. Observe that 
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Since 
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From (20) we have
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Therefore, from (22) and (23) we have that both 
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A simple analysis of equation (20) shows that 
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Proposition 2.3. The largest eigenvalue 
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Proof. Observe that 
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We see that according to proposition 2.3 when 
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 Therefore, from (17) the following estimation of 
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From (17) 
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 hence if 
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[image: image170.wmf]k

w

 to be computed as:

                                                   
[image: image171.wmf]21,if,

21,otherwise,

k

k

k

k

k

k

k

y

a

s

y

a

s

tt

w

ì

-³

ï

ï

=

í

ï

-

ï

î

                                             (27)

where 
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 is a positive constant. Therefore, our algorithm is an adaptive conjugate gradient algorithm in which the value of the parameter 
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 in the search direction (14) is computed as in (27) trying to cluster all the eigenvalues of 
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Now, as we know, Powell [28] constructed a three dimensional nonlinear unconstrained optimization problem showing that the PRP and HS methods could cycle infinitely without converging to a solution. Based on the insight gained by his example, Powell [28] proposed a simple  modification of PRP method where the conjugate gradient parameter 
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 Later on, for general nonlinear objective functions Gilbert and Nocedal [14] studied the theoretical convergence and the efficiency of PRP+ method. In the following, to attain a good computational performance of the algorithm we apply the idea of Powell and consider the following modification of the search direction given by (14) as:
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where 
[image: image178.wmf]k

w

 is computed as in (27).
Using the procedure of acceleration of conjugate gradient algorithms presented in [1], and taking into consideration the above developments, the following algorithm can be presented.

NADCG Algorithm (New Adaptive Conjugate Gradient Algorithm)

	Step 1.
	Select a starting point 
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 used in Wolfe line search conditions. Consider a positive value for the parameter 
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	Step 2.
	Test a criterion for stopping the iterations. If this test is satisfied, then stop; otherwise continue with step 3.

	Step 3.
	Determine the steplength 
[image: image188.wmf]k

a

 by using the Wolfe line search (4) and (5).

	Step 4.
	Compute 
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	Step 5.
	Compute: 
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	Step 6.
	Acceleration scheme. If 
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	Step 7.
	Compute 
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 as in (27).

	Step 8.
	Compute the search direction as in (28).

	Step 9.
	Powell restart criterion. If 
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	Step 10.
	Consider 
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 and go to step 2.                                                                             (


If function 
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 is bounded along the direction 
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 then there exists a stepsize 
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 satisfying the Wolfe line search (see for example [12] or [27]). In our algorithm when the Beale-Powell restart condition is satisfied, then we restart the algorithm with the negative gradient 
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 More sophisticated reasons for restarting the algorithms have been proposed in the literature [10], but we are interested in the performance of a conjugate gradient algorithm that uses this restart criterion associated to a direction satisfying both the descent and the conjugacy conditions. Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion are sufficient to prove the global convergence of the algorithm. The first trial of the step length crucially affects the practical behavior of the algorithm. At every iteration 
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 For uniformly convex functions, we can prove the linear convergence of the acceleration scheme used in the algorithm [1]. 

3. Global convergence analysis

Assume that:

(i) The level set 
[image: image209.wmf]{

}

0

:()()

n

Sxfxfx

=Î£

¡
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(ii) In a neighborhood 
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Under these assumptions on 
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 For any conjugate gradient method with strong Wolfe line search the following general result holds [24].

Proposition 3.1. Suppose that the above assumptions hold. Consider a conjugate gradient algorithm in which, for all 
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then the algorithm converges in the sense that
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For uniformly convex functions we can prove that the norm of the direction 
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 computed as in (28) with (27) is bounded above. Therefore, by proposition 3.1 we can prove the following result.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm NADCG where the search direction 
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for all 
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Proof. From Lipschitz continuity we have 
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On the other hand, from (28) we have
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showing that (29) is true. By proposition 3.1 it follows that (30) is true, which for uniformly convex functions is equivalent to (32).                                                                                           (
4. Numerical results and comparisons

The NADCG algorithm was implemented in double precision Fortran using loop unrolling of depth 5 and compiled with f77 (default compiler settings) and run on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained optimization test functions in generalized or extended form presented in [2]. For each test function we have considered 10 numerical experiments with the number of variables increasing as 
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is the maximum absolute component of a vector. 

Since, CG-DESCENT [18] is among the best nonlinear conjugate gradient algorithms proposed in the literature, but not necessarily the best, in the following we compare our algorithm NADCG versus CG-DESCENT. The algorithms we compare in these numerical experiments find local solutions. Therefore, the comparisons of algorithms are given in the following context. Let 
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and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the CPU time of ALG1 was less than the number of iterations, or the number of function-gradient evaluations, or the CPU time corresponding to ALG2, respectively. 


Figure 1 shows the Dolan-Moré’s performance profiles subject to CPU time metric for different values of parameter 
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 Form figure 1, for example for 
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, comparing NADCG versus CG-DESCENT with Wolfe line search (version 1.4), subject to the number of iterations, we see that NADCG was better in 631 problems (i.e. it achieved the minimum number of iterations for solving 631 problems, CG-DESCENT was better in 88 problems and they achieved the same number of iterations in 52 problems, etc. Out of 800 problems, we considered in this numerical study, only for 771 problems does the criterion (33) hold. From figure 1 we see that for different values of the parameter 
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 NADCG algorithm has similar performances versus CG-DESCENT. Therefore, in comparison with CG-DESCENT, on average, NADCG appears to generate the best search direction and the best step-length. We see that this very simple adaptive scheme lead us to a conjugate gradient algorithm which substantially outperform the CG-DESCENT, being way more efficient and more robust. 


From figure 1 we see that NADCG algorithm is very little sensitive to the values of the parameter 
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where 
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 Therefore, since the gradient of the function 
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 tends to zero, showing that along the iterations the search direction is less and less sensitive subject to the value of the parameter 
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Therefore, for example, for larger values of 
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 decreases showing that the NADCG algorithm is very little sensitive to the values of the parameter 
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[image: image268.wmf].

t


	[image: image269.png]09

0385

038

075

07

065

+*"CG-DESCENT

NADCG CG-DESCENT =

#iter 631 88 52
#g 483 249 39
cpu 263 213 295

CPU time metric, 771 problems

4 5 8 10 12 14

16




	[image: image270.png]095

09

0385

038

075

07

065

NADCG CG-DESCENT =

#iter 631 86 54
#g 479 251 41
cpu 266 217 288

CPU time metric, 771 problems

4 5 8 10 12 14 16





	[image: image271.png]095

09

0385

NADCG CG-DESCENT

08 #iter 628 87 56
#Mg 477 253 41
cpu 263 219 289
075
07

CPU time metric, 771 problems

065

0 2 4 5 8 10 12 14 16




	[image: image272.png]09

0385

038

075

07

065

*CG-DESCENT

NADCG CG-DESCENT

#iter 632 85 55
#g 471 263 38
cpu 257 225 290

CPU time metric, 772 problems

4 5 8 10 12 14

16





	[image: image273.png]09

0385

038

075

07

065

CG-DESCENT

NADCG CG-DESCENT =

#iter 634 82 53
#g 468 259 42
cpu 263 224 282

CPU time metric, 769 problems

4 5 8 10 12 4

6




	[image: image274.png]095

09

0385

038

075

07

NADCG CG-DESCENT
55

#iter 627 89
#g 468 264 39
cpu 261 230 280

CPU time metric, 771 problems

12 14

10

16

065






Fig. 1. NADCG versus CG-DESCENT for different values of 
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In the following, in the second set of numerical experiments, we present comparisons between NADCG and CG-DESCENT conjugate gradient algorithms for solving some applications from the MINPACK-2 test problem collection [4]. In Table 1 we present these applications, as well as the values of their parameters. 
Table 1. 
Applications from the MINPACK-2 collection.
	A1
	Elastic–plastic torsion [15, pp. 41–55], 
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	A2
	Pressure distribution in a journal bearing [8], 
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	A3
	Optimal design with composite materials [16], 
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	A4
	Steady-state combustion [3, pp. 292–299], [7], 
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	A5
	Minimal surfaces with Enneper conditions [23, pp. 80–85]


The infinite-dimensional version of these problems is transformed into a finite element approximation by triangulation. Thus a finite-dimensional minimization problem is obtained whose variables are the values of the piecewise linear function at the vertices of the triangulation. The discretization steps are 
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) and CG-DESCENT (version 1.4, Wolfe line search, default settings, 
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) for solving these applications is given in Table 2. 

Table 2. 
Performance of NADCG versus CG-DESCENT. 1,000,000 variables. CPU seconds 

	
	NADCG
	CG-DESCENT

	
	#iter
	#fg
	cpu
	#iter
	#fg
	cpu

	A1
	1111
	2253
	352.14
	1145
	2291
	474.64

	A2
	2845
	5718
	1136.67
	3370
	6741
	1835.51

	A3
	4270
	8573
	2497.35
	4814
	9630
	3949.71

	A4
	1413
	2864
	2098.74
	1802
	3605
	3786.25

	A5
	1548
	3116
	695.59
	1225
	2451
	753.75

	TOTAL
	11187
	22524
	6780.49
	12356
	24718
	10799.86


Form Table 2, we see that, subject to the CPU time metric, the NADCG algorithm is top performer and the difference is significant, about 4019.37 seconds for solving all these five applications.

The NADCG and CG-DESCENT algorithms (and codes) are different in many respects. Since both of them use the Wolfe line search (however, implemented in different manners), these algorithms mainly differ in their choice of the search direction. The search direction 
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 given by (27) and (28) used in NADCG is more elaborate: it is adaptive in the sense to cluster the eigenvalues of the matrix defining it and it satisfies both the descent condition and the conjugacy condition in a restart environment. 
5. Conclusions

An adaptive conjugate gradient algorithm has been presented. The idea of this paper is to compute the search direction as the sum of the negative gradient and an arbitrary vector which was determined by minimizing the quadratic approximation of objective function at the current point. The solution of this quadratic minimization problem is a function of the inverse Hessian. In this paper we introduce a special expression of the inverse Hessian of the objective function which depends by a positive parameter 
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 For any positive values of this parameter the search direction satisfies both the sufficient descent condition and the Dai-Liao’s conjugacy condition. Thus, the algorithm is a conjugate gradient one. The parameter in the search direction is determined in an adaptive manner, by clustering the spectrum of the matrix defining the search direction. This idea is taken from the linear conjugate gradient, where clustering the eigenvalues of the matrix is very benefic subject to the convergence. Mainly, in our nonlinear case, clustering the eigenvalues reduces to determine the value of the parameter 
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 to minimize the largest eigenvalue of the matrix. The adaptive computation of the parameter 
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 in the search direction is subject to a positive constant which has a very little impact on the performances of our algorithm. The steplength is computed using the classical Wolfe line search conditions with a special initialization. In order to improve the reducing the values of the objective function to be minimized an acceleration scheme is used. For uniformly convex functions, under classical assumptions, the algorithm is globally convergent. Thus, we get an accelerated adaptive conjugate gradient algorithm. Numerical experiments and intensive comparisons using 800 unconstrained optimization problems of different dimensions and complexity proved that this adaptive conjugate gradient algorithm is way more efficient and more robust than CG-DESCENT algorithm. In an effort to see the performances of this adaptive conjugate gradient we solved five large-scale nonlinear optimization applications from MINPACK-2 collection, up to 
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 variables, showing that NADCG is obvious more efficient and more robust than CG-DESCENT.
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