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The problem:

min P(x)
1
d(x) = 5||F(x)

2
9

where:

F(x)=[f,(x),.... [, (x):R" - R"

1s twice continuous differentiable.
For practical situations m = n.

Approaches:

1) Gauss-Newton.
+d

X, =X

k+1 k k>

where:
(DF(x,)0 F(x))& -0 F(x,)'F(x,).

2) Levenberg-Marquardt.

(OF(x)0 FOp) p1)d -0 F(x)'F(x,),
where
U, >0 controls both the magnitude and direction of d, .
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3) Gradient Flow.

The necessary condition for optimality of x” is:

@D (x"F O,
where
@ (xF 0O F(x)" F(x).

In order to fulfill this optimality condition the following continuous gradient
flow reformulation of the problem is considered:

“Solve the ODE:

d
0= -0 (),

with the initial condition x(0)=x,.”

Theorem 1.

Consider that x" is a point satisfying [@ (x'F 0 and °®D(x") is positive
definite. If x, is sufficiently close to x", then x(t), the solution of the above
ODE with initial condition x,, tends to x" as t goes to .

Proof.
The above ODE can be written as x =¥(x), where W(x)=-[® (x). x* is an

asymptotically stable point for the nonlinear differential equation x =W(x) if
W(x) is continuously differentiable and the linearized system
y=® )y, y=x-x,
is exponentially stable, i.e. all eigenvalues of W (x") are strictly negative.
We have:

d.

d—);DLIJ(x*)HIP )x xF-0 (PO P Xx x)
=—[PDO(x")(x= x").

But [*d(x") is positive definite, therefore all its eigenvalues A >0 for all

i=1,...,n. Hence Zlimooy(t):O, or x(1) > x" ast - . W
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Theorem 2.
Let x(t) be the solution of the above ODE with initial condition x,. For a

fixed t, 20 if [@ (x(t)¥ O for all t>t,, then ®(x(t)) is strictly decreasing
with respectto t, forall t >¢,.

Proof.

d¢(X(f)) ( )

=@ (x(t)) = -0 (O (@B @ (x0)]

Since [@ (x(z)¥ 0 when t>¢,, it follows that d®(x(z))/ dt <0, i.e. D(x(¢)) is
strictly decresing with respectto ¢ >7,. B

Conclusion:
Solving the unconstrained optimization problem  min ®(x)

has been reduced to that of integration of the ODE

dx(t)
dt

=-[® (x(2)) with  x(0)=x,.

Discretization of the ODE
Let 0=1, <t, <--<t, <-- be a sequence of time points for  >¢,.

Define 4, =¢,, —t, the sequence of time distances.
Consider the following time-steeping discretization of the above ODE:

2= 10 () @ (6]

9

where 6 [1]0,1] is a parameter.

When 6 =0, then we have the explicit forward Euler’s scheme,
6 =1, then we have the implicit backward Euler’s scheme.

Omitting the higher order terms we get:

Yo =X, = b1+ B 600(x,) @ (x,),

for any 6 [1[0,1].
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Theorem 3.
Let {xk} be the sequence defined by
Xpw1 = Xy _hk[l +h/c9|:|2cb(xk)] _llg) (x,)

and x" a solution of the original problem, such that [I°®(x") is positive
definite. If the initial point x, is sufficiently close to x", then:

@ If 60[0,1] and h, >0 is sufficiently small, then x, converges

linearly to x.
(@) If0=1and h - o, then x, converges quadratically to x".

Proof (i)

After some algebra we get

¢('xk E/c 0 hk)

k +1 k

where

B (x,.&0.0,h)=|1 —h[I +h80O(x,)| D @&,

e,=x,—x and & O[x,,x].
If ¢(x,,¢,,0,h,)<1, then e, converges to zero linearly. Using continuity and
the fact that x, is close to x* we can write:

hk min
$(580.h) < =g

where AL and X
[1°®(x,), respectively.

Therefore lim e, =0 linearly, ie. x, - x" linearly.
k -

are the minimum and the maximum eigenvalues of

Proof (ii)
Considering 6 =1 we get:
X — X

C= @ (x,)r 0 20(x, )&, |,

k
where &, = x,,, — X, .

When 4, — o the above relation is reduced to:
@ (xr 0 *®(x,)az 0,
which is the Newton method applied to [® (xF 0. If x, is sufficiently close to

x", then the convergence of the algorithm is quadratic.
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Gradient Flow Algorithm (GFA)

Step 1. Consider x,, a parameter 6 [1[0,1], a sequence of time step sizes {hk}
and an £ >0 sufficiently small. Set £ =0.

Step 2. Solve for d, the system:

o +hORIF()T FOh S £00) *0s)E =—h OF () F(x,)

Step 3. Update the variables: x,,, =x, +d, .

Step 4. Test for continuation of iterations. If ||F (x| <€, STOP, otherwise set

k =k +1 and go to step 2. ¢

To implement GFA algorithm we have
1) to compute the gradient and Hessian of the residual functions

2) to select the value of 6 and 4, ,
3) to solve a system of linear algebraic equations.

i

The most difficult is the task 1 above: to compute [f(x,) and [° f,(x,).

According to theorem 3 above we see that if:
1) f.(x) are convex and positive for all i =1,...,m,

2) rank(UF(x)F n,
3)0 =1,
4) by — oo,
then the GFA is quadratically convergent to x" .
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Gradient Flow Algorithm with Scalar Approximation of Hessian

The ideea is to consider a scalar approximation of the Hessian matrices
[1* f.(x,) of residual functions f,(x), i=1,...,m at point x, .

In the current point x, the following approximation of the Hessian [J*®(x,) can
be considered:

OF(x)U F(xp) 9,1,

where the scalar 0, can have the following values:

: 2
a) 6k = Zﬁ(xk)yik where yik = m[fi(xkﬂ) - f;(xk) - uf,-(xk)T d/c .

y ! is a scalar approximation of the Hessian matrix of f(x) in x, .

b) &, =3 fi(x ) (i)

c)  Procedure O :
Set 0, =0.
For i=1,...,m, do:
Set p=f(x,), ¢=VY/.
If p<O0, then p= f.(x,).
If ¢ <0, then ¢ :(yik)z.

Set 0, =9, + pgq.
End For.
d) o, = ifi(xk)2 : ? f.(x, ¥ f.(x,)] (Dennis and Schnabel , [1983])
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Modified Gradient Flow Algorithm (MGFA)
Step 1. Consider x,, a parameter 6 [1[0,1], a sequence of time step sizes {hk}

and an € >0 sufficiently small. Compute F(x,), OF(x,) and 9, = ||F (x, )|| Set
k=0.
Step 2. Solve for d, the system:

[1+16(0F ()0 Fxp 80)| = B F(x,) F(x,)

Step 3. Update the variables: x,,, =x, +d, .

Step 4. Test for continuation of iterations. If ||F (x,,,)< €, STOP, otherwise set
k =k +1 and go to step 5.
Step 5. Compute O, using one of the procedures: a), b), c¢) or d) and go to

step 2. ¢

Theorem 4.
Let {xk} be the sequence defined by:

Yo =%, —h [T+, 0(OF(x )0 F(xp S0 F(x,) F(x,)

and x" a solution of the problem such that:
(a) F(x) is twice continuous differentiable,
(b) UF (x) is Lipschitz continuous, and
(¢) rankOF (x" ¥ n.
If the initial point x, is sufficiently close to x", then:
(i If 60][0,1] and h, >0 is sufficiently small, then x, converges
linearly to x".
(i) If60=1and h, - o, then x, converges quadratically to x".

Proof (i)

After some algebra we get:

<P(x,£.0,p)e.]

€
where
0(x.&,.0,p)=|1 - p[I +p60OF(x )T F(x )0 F(xD' F(E),
_ K
Pe=1+1,05, -
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When »x, is sufficiently close to x™ and if 8 [1[0,1], by continuity it follows that

_ pk l;in
¢(xk5€kaeapk)sé 1+ pke){‘:lax%

where A\ and A are the minimum and the maximum eigenvalues of
OF (x,)0 F(x,), respectively.
But
1 _ pk A’;m — 1 _ hk Al;in < 1
1 + pkeA];ax 1 + hke(ak + )flax) .
Therefore
lim e, =0
k - o0

linearly, i.e. x, converges to x~ linearly.

Proof (ii)
Considering 8 =1 we get:

X0 — X, T
#/I = —DF(xk) [F(xk)+ [ F(xk)(xk: xk)] )
But
: b _ 1
lim 1+h0, 0,

h/c — 0

and using, for example
8, =y fix)(v)
we see that lim J, =0, ie. lim p, =co.

— 00 k_;OO

Having in view that [JF' is of full column rank, we get:
DF(‘xk )('xk+l_ xk)l- F(‘xk): O '

which is the Newton method applied to F(x)=0. |
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Complexity of the algorithm

With @ =1 we can write:

S Din

lecall = piale,

bl

where

I -
P = H-Tom6 + 1)

But UOF(x,)00 F(x,) is a positive definite matrix, therefore for all i=0,...,k,

hi Ainin

O<l=13m6 + 1)<t

Therefore, p, is a decreasing sequence in (0,1), i.e. p, is convergent to zero.

Let
—_ hi)\inin — . . .
ai_1+h;(5i+/¥m) and aj—mln{a,..OSsz}.
Then
k

P — D(l _ai) S(l _aj)k+1
1.€.

ek+l S pk+1 eOH S (1 - aj)k+l eO H *

Therefore the number of iterations to get Hek+l :kaﬂ - xH <&, starting from

X, 1s bounded by:

log(e) ~ log(le,)
log(l1-a,) ‘
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Levenberg-Marquardt algorithm

Considering o, =0 in MGF algorithm we get another algorithm which is very
close to that of Levenberg and Marquardt:

Xea =%, =T +168(0F(x,)0 F(x))|0 F(x,) F(x,),

for which, like in theorem 4 above, for 8 =1, we can prove that

— —_ : hi Ainin
o= (8-

ek+l

S l_9k+1 eO

bl

where

Theorem 5.
In the family of algorithms given by

Xea =%, [T+ 6(0F(x,)D F(x S,I)|0 F(x,) F(x,),

the Levenberg-Marquardt algorithm, which correspond to 6 =1 and o, =0,
is the best one.

Proof.
In conditions of the theorem and having in view that 4, >0 we can write:

%}k I+ U0F(x,)UO F(xk)%k =-0F(x,) F(x,),

which is the Levenberg-Marquardt algorithm with u, =1/ 4, .
Now, since OF(x,)0 F(x,) is positive definite and 0, =0, it follows that for
all i=0,,...,k,

hi)\inin < hi)\inin

I.e. p., 2P, - Therefore, with 6, =0 and 6 =1 the converegence of the
algorithm is more rapid. ®
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Numerical Example E1

L) =x —1,
fi(x)=(x_ +x) —i, i=2,..,n.
Considering 6 =1, €=107,x, =[1,...,1], the number of iterations are as

follows:

Table la (3, = Zﬁ(xk)z(vi")z )

n h,=10 | b, =10> | h =10° | A, =10" | h =10° | n =1/[F(x,)

100 | 176 43 28 25 25 613

150 | 274 57 34 30 28 1600

200 | 378 71 38 34 32 3152
Table 1b (9, given by procedure O )

no | k=10 |h =10" | h =10° | h =10° | K =10° |h =1/|F(x,)|?

100 | 246 114 99 96 95 681

150 | 409 192 169 165 164 1732

200 | 586 279 247 242 241 3357
Table I¢ (3, = if,,(xky)

n h,=10 | b, =10> | h =10° | A, =10" | h =10° | n =1/[F(x,)

100 | 746 614 599 597 596 1179

150 | 1824 1607 1584 1581 1580 3145

200 | 3473 3166 3134 3130 3129 6242
Table 1d (5, =0)

no | h=10 | b =10" | b =10° | b, =10* | b, =10° | h, =1/|F(x)|

100 | 155 23 8 6 6 596

150 | 249 32 9 7 7 1580

200 | 350 42 11 7 7 3129
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Numerical Example E2 (Circuit Design Problem)

f/c(x) =(1 _xlxz)xs{exp[xs(glk _gSk'x710_3 _gSch810_3)] _1} —&gse t8ux,,
k=1,....4,

f4+k(x) :(1 _xlxz)x4{exp[x6(glk — 8o _gSk'x710_3 _g4/cx9]‘0_3)] _1} =8 X% 18
k=1,....4,

f9(x) =X Xy T XX,

where

[0.4850 07520 08690  0.9820 [
(003690 12540  0.7030 14550 O
g=52095 100677 229274 202153 B
33037 1017790 1114610 1912670
285132 1118467 134.3884 211.4823[]

The following initial point have been considered:

Xo X, X, X,

0.7 0.65 0.75 0.75
0.5 0.45 0.45 0.45
0.9 0.8 0.9 0.9
1.9 1.8 1.77 1.77
8.1 8.5 8.5 8.9
8.1 8.5 7.5 7.9
59 59 5.5 5.5
1 1.1 1.25 1.35
1.9 1.5 1.88 1.88

Considering 8 =1, € =107, the number of iterations are as follows:
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Table 2a (0, = zﬁ(xk)z(yik)z )

h,=10 | b, =10> | h =10° | A, =10" | h =10° | n =1/[F(x,)|
X, 142 50 40 38 38 27
X; 173 60 47 45 45 56
X, 256 146 133 131 131 132
xi | 600 500 489 487 487 488
Table 2b (O, given by procedure 0 )
h=10 [h =10" [h =10° | h =10" [~ =10° |4 =1/|F(x,)|’
X, 123 32 22 20 20 21
X; 151 39 26 24 24 26
X, 218 108 96 94 94 94
X, 497 397 386 384 384 385
Table 2¢ (5, = if,,(xky)
h,=10 | b, =10> | h =10° | A, =10" | h =10° | n =1/[F(x)
X, 113 22 12 10 10 11
X; 140 27 15 12 12 14
x; | 135 25 13 11 11 12
X, 124 24 14 12 11 13
Table 2d (5, =0)
h=10 [h =10" [h =10° |k =10" [~ =10° [h =1/|F(x,)|’
X, 108 10 6 4 4 10
X; 132 16 7 5 4 12
X, 129 19 6 5 5 11
X 46 15 6 5 5 11
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Conclusion

The Problem:
min P(x)
where:
1 2
CD(x)=5||F(X) ,
F(x)=[f(x),.... [, (x)]:R" - R"
The Algorithm:
X, given,
-1
xkﬂ = xk _hk[l +hke( DF'(xk)7D F(xk-') 5/c[)]D F(xk)TF(xk))
k=0,,...

The best results (Quadratic Convergence) are obtained for:
0=1,

hk - %,

0, =0.

Advantages:

Very easy to implement,

Quadratic convergence,

There is no need to evaluate the Hessians [1° f,(x,) of the residuals,

There is no need to do a linear search along the iterations.

Disadvantages:
A system of linear algebraic equations must be solved at each iteration.
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