Workshop on Differential Equations and its Applications 15-17 September 2004 Istanbul Technical University

Gradient Flow Method for Nonlinear Least Squares Minimization

Neculai Andrei

Research Institute for Informatics Averescu Avenue, Bucharest 1, Romania E-mail: nandrei@ici.ro

The problem:

$$\min \Phi(x)$$
$$\Phi(x) = \frac{1}{2} ||F(x)||^2,$$

where:

$$F(x) = [f_1(x),...,f_m(x)]: R^n \to R^m$$

is twice continuous differentiable. For practical situations $m \ge n$.

Approaches:

1) Gauss-Newton.

$$x_{k+1} = x_k + d_k,$$

where:

$$(\nabla F(x_k)^T \nabla F(x_k)) d_k = -\nabla F(x_k)^T F(x_k).$$

2) Levenberg-Marquardt.

$$\left(\nabla F(x_{k})^{T} \nabla F(x_{k}) + \mu_{k} I\right) d_{k} = -\nabla F(x_{k})^{T} F(x_{k}),$$

where

 $\mu_k > 0$ controls both the magnitude and direction of d_k .

3) Gradient Flow.

The necessary condition for optimality of x^* is:

$$\nabla\Phi(x^*)=0,$$

where

$$\nabla \Phi(x) = \nabla F(x)^T F(x)$$
.

In order to fulfill this optimality condition the following continuous gradient flow reformulation of the problem is considered:

"Solve the ODE:

$$\frac{dx(t)}{dt} = -\nabla \Phi(x(t)),$$

with the initial condition $x(0) = x_0$."

Theorem 1.

Consider that x^* is a point satisfying $\nabla \Phi(x^*) = 0$ and $\nabla^2 \Phi(x^*)$ is positive definite. If x_0 is sufficiently close to x^* , then x(t), the solution of the above ODE with initial condition x_0 , tends to x^* as t goes to ∞ .

Proof.

The above ODE can be written as $\dot{x} = \Psi(x)$, where $\Psi(x) = -\nabla \Phi(x)$. x^* is an asymptotically stable point for the nonlinear differential equation $\dot{x} = \Psi(x)$ if $\Psi(x)$ is continuously differentiable and the linearized system

$$\dot{y} = \nabla \Psi(x^*) y, \quad y = x - x^*,$$

is *exponentially stable*, i.e. all eigenvalues of $\nabla \Psi(x^*)$ are strictly negative. We have:

$$\frac{dx}{dt} \cong \Psi(x^*) + \nabla \Psi(x^*)(x - x^*) = -[\nabla \Phi(x^*) + \nabla^2 \Phi(x^*)(x - x^*)]$$
$$= -\nabla^2 \Phi(x^*)(x - x^*).$$

But $\nabla^2 \Phi(x^*)$ is positive definite, therefore all its eigenvalues $\lambda > 0$ for all i = 1, ..., n. Hence $\lim_{t \to \infty} y(t) = 0$, or $x(t) \to x^*$ as $t \to \infty$.

Theorem 2.

Let x(t) be the solution of the above ODE with initial condition x_0 . For a fixed $t_0 \ge 0$ if $\nabla \Phi(x(t)) \ne 0$ for all $t > t_0$, then $\Phi(x(t))$ is strictly decreasing with respect to t, for all $t > t_0$.

Proof.

$$\frac{d\Phi(x(t))}{dt} = \nabla\Phi(x(t))^{T} \frac{dx(t)}{dt} = -\nabla\Phi(x(t))^{T} \nabla\Phi(x(t)) = -\|\nabla\Phi(x(t))\|_{2}^{2}.$$

Since $\nabla \Phi(x(t)) \neq 0$ when $t > t_0$, it follows that $d\Phi(x(t)) / dt < 0$, i.e. $\Phi(x(t))$ is strictly decreasing with respect to $t > t_0$.

Conclusion:

Solving the unconstrained optimization problem $\min \Phi(x)$

has been reduced to that of integration of the ODE

$$\frac{dx(t)}{dt} = -\nabla \Phi(x(t)) \quad \text{with} \quad x(0) = x_0.$$

Discretization of the ODE

Let $0 = t_0 < t_1 < \dots < t_k < \dots$ be a sequence of time points for $t \ge t_0$.

Define $h_k = t_{k+1} - t_k$ the sequence of time distances.

Consider the following time-steeping discretization of the above ODE:

$$\frac{x_{k+1} - x_k}{h_k} = -[(1 - \theta)\nabla\Phi(x_k) + \theta\nabla\Phi(x_{k+1})],$$

where $\theta \in [0,1]$ is a parameter.

When $\theta = 0$, then we have the *explicit forward Euler's scheme*,

 $\theta = 1$, then we have the *implicit backward Euler's scheme*.

Omitting the higher order terms we get:

$$x_{k+1} = x_k - h_k \left[I + h_k \theta \nabla^2 \Phi(x_k) \right]^{-1} \nabla \Phi(x_k),$$

for any $\theta \in [0,1]$.

Theorem 3.

Let $\{x_k\}$ be the sequence defined by

$$x_{k+1} = x_k - h_k \left[I + h_k \theta \nabla^2 \Phi(x_k) \right]^{-1} \nabla \Phi(x_k)$$

and x^* a solution of the original problem, such that $\nabla^2\Phi(x^*)$ is positive definite. If the initial point x_0 is sufficiently close to x^* , then:

- (i) If $\theta \in [0,1]$ and $h_k > 0$ is sufficiently small, then x_k converges linearly to x^* .
- (ii) If $\theta = 1$ and $h_k \to \infty$, then x_k converges quadratically to x^* .

Proof (i)

After some algebra we get

$$\|e_{k+1}\| \leq \varphi(x_k, \xi_k, \theta, h_k) \|e_k\|,$$

where

$$\varphi(x_k, \xi_k, \theta, h_k) = \left\| I - h_k \left[I + h_k \theta \nabla^2 \Phi(x_k) \right]^{-1} \nabla^2 \Phi(\xi_k) \right\|,$$

$$e_k = x_k - x^*$$
 and $\xi_k \in [x_k, x^*]$.

If $\varphi(x_k, \xi_k, \theta, h_k) < 1$, then e_k converges to zero linearly. Using continuity and the fact that x_0 is close to x^* we can write:

$$\varphi(x_k, \xi_k, \theta, h_k) \leq \left(1 - \frac{h_k \lambda_{\min}^k}{1 + h_k \theta \lambda_{\max}^k}\right) < 1,$$

where λ_{\min}^k and λ_{\max}^k are the minimum and the maximum eigenvalues of $\nabla^2 \Phi(x_k)$, respectively.

Therefore $\lim_{k\to\infty} e_k = 0$ linearly, i.e. $x_k \to x^*$ linearly.

Proof (ii)

Considering $\theta = 1$ we get:

$$\frac{x_{k+1}-x_k}{h_k}=-\left[\nabla\Phi(x_k)+\nabla^2\Phi(x_k)\delta x_k\right],$$

where $\delta x_k = x_{k+1} - x_k$.

When $h_k \to \infty$ the above relation is reduced to:

$$\nabla \Phi(x_k) + \nabla^2 \Phi(x_k) \delta x_k = 0,$$

which is the Newton method applied to $\nabla \Phi(x) = 0$. If x_0 is sufficiently close to x^* , then the convergence of the algorithm is quadratic.

Gradient Flow. Page 4.

Gradient Flow Algorithm (GFA)

Step 1. Consider x_0 , a parameter $\theta \in [0,1]$, a sequence of time step sizes $\{h_k\}$ and an $\varepsilon > 0$ sufficiently small. Set k = 0.

Step 2. Solve for d_k the system:

$$\left[I + h_k \theta \left(\nabla F(x_k)^T \nabla F(x_k) + \sum_{i=1}^m f_i(x_k) \nabla^2 f_i(x_k)\right)\right] d_k = -h_k \nabla F(x_k)^T F(x_k)$$

Step 3. Update the variables: $x_{k+1} = x_k + d_k$.

Step 4. Test for continuation of iterations. If $||F(x_{k+1})|| \le \varepsilon$, STOP, otherwise set k = k+1 and go to step 2. \blacklozenge

To implement GFA algorithm we have

- 1) to compute the gradient and Hessian of the residual functions f_i ,
- 2) to select the value of θ and h_k ,
- 3) to solve a system of linear algebraic equations.

The most difficult is the task 1 above: to compute $\nabla f_i(x_k)$ and $\nabla^2 f_i(x_k)$.

According to theorem 3 above we see that if:

- 1) $f_i(x)$ are convex and positive for all i = 1, ..., m,
- 2) $rank(\nabla F(x)) = n$,
- 3) $\theta = 1$,
- 4) $h_k \rightarrow \infty$,

then the GFA is quadratically convergent to x^* .

Gradient Flow Algorithm with Scalar Approximation of Hessian

The ideea is to consider a scalar approximation of the Hessian matrices $\nabla^2 f_i(x_k)$ of residual functions $f_i(x)$, i = 1, ..., m at point x_k .

In the current point x_k the following approximation of the Hessian $\nabla^2 \Phi(x_k)$ can be considered:

$$\nabla F(x_k)^T \nabla F(x_k) + \delta_k I$$
,

where the scalar δ_k can have the following values:

a)
$$\delta_k = \sum_{i=1}^m f_i(x_k) \gamma_i^k$$
 where $\gamma_i^k = \frac{2}{d_i^T d_k} [f_i(x_{k+1}) - f_i(x_k) - \nabla f_i(x_k)^T d_k].$

 γ_i^k is a scalar approximation of the Hessian matrix of $f_i(x)$ in x_k .

b)
$$\delta_k = \sum_{i=1}^m f_i(x_k)^2 (\gamma_i^k)^2$$
.

c) Procedure δ :
Set $\delta_k = 0$.

For i = 1,...,m, do:
Set $p = f_i(x_k)$, $q = \gamma_i^k$.

If p < 0, then $p = f_i(x_k)^2$.

If q < 0, then $q = (\gamma_i^k)^2$.

Set $\delta_k = \delta_k + pq$.

End For.

d)
$$\delta_k = \sum_{i=1}^m f_i(x_k)^2$$
. $\nabla^2 f_i(x_k) = f_i(x_k) I$ (Dennis and Schnabel, [1983])

Modified Gradient Flow Algorithm (MGFA)

Step 1. Consider x_0 , a parameter $\theta \in [0,1]$, a sequence of time step sizes $\{h_k\}$ and an $\varepsilon > 0$ sufficiently small. Compute $F(x_0)$, $\nabla F(x_0)$ and $\delta_0 = ||F(x_0)||$. Set k = 0.

Step 2. Solve for d_k the system:

$$\left[I + h_k \theta \left(\nabla F(x_k)^T \nabla F(x_k) + \delta_k I\right)\right] d_k = -h_k \nabla F(x_k)^T F(x_k)$$

Step 3. Update the variables: $x_{k+1} = x_k + d_k$.

Step 4. Test for continuation of iterations. If $||F(x_{k+1})|| \le \varepsilon$, STOP, otherwise set k = k + 1 and go to step 5.

Step 5. Compute δ_k using one of the procedures: a), b), c) or d) and go to step 2. \blacklozenge

Theorem 4.

Let $\{x_k\}$ be the sequence defined by:

$$x_{k+1} = x_k - h_k \left[I + h_k \theta \left(\nabla F(x_k)^T \nabla F(x_k) + \delta_k I \right) \right]^{-1} \nabla F(x_k)^T F(x_k)$$

and x^* a solution of the problem such that:

- (a) F(x) is twice continuous differentiable,
- (b) $\nabla F(x)$ is Lipschitz continuous, and
- (c) $rank\nabla F(x^*) = n$.

If the initial point x_0 is sufficiently close to x^* , then:

- (i) If $\theta \in [0,1]$ and $h_k > 0$ is sufficiently small, then x_k converges linearly to x^* .
- (ii) If $\theta = 1$ and $h_k \to \infty$, then x_k converges quadratically to x^* .

Proof (i)

After some algebra we get:

$$\|e_{k+1}\| \leq \varphi(x_k, \xi_k, \theta, \rho_k) \|e_k\|$$

where

$$\varphi(x_k, \xi_k, \theta, \rho_k) = \left\| I - \rho_k \left[I + \rho_k \theta \nabla F(x_k)^T \nabla F(x_k) \right]^{-1} \nabla F(x_k)^T \nabla F(\xi_k) \right\|,$$

$$\rho_k = \frac{h_k}{1 + h_k \theta \delta_k}.$$

When x_k is sufficiently close to x^* and if $\theta \in [0,1]$, by continuity it follows that

$$\varphi(x_k, \xi_k, \theta, \rho_k) \leq \left(1 - \frac{\rho_k \lambda_{\min}^k}{1 + \rho_k \theta \lambda_{\max}^k}\right),$$

where λ_{\min}^k and λ_{\max}^k are the minimum and the maximum eigenvalues of $\nabla F(x_k)^T \nabla F(x_k)$, respectively.

But

$$1 - \frac{\rho_k \lambda_{\min}^k}{1 + \rho_k \theta \lambda_{\max}^k} = 1 - \frac{h_k \lambda_{\min}^k}{1 + h_k \theta (\delta_k + \lambda_{\max}^k)} < 1.$$

Therefore

$$\lim_{k\to\infty}e_{k}=0$$

linearly, i.e. x_k converges to x^* linearly.

Proof (ii)

Considering $\theta = 1$ we get:

$$\frac{x_{k+1} - x_k}{\rho_k} = -\nabla F(x_k)^T \big[F(x_k) + \nabla F(x_k) (x_{k+1} - x_k) \big].$$

But

$$\lim_{h_k\to\infty}\frac{h_k}{1+h_k\delta_k}=\frac{1}{\delta_k}$$

and using, for example

$$\delta_k = \sum_{i=1}^m f_i(x_k)^2 (\gamma_i^k)^2$$

we see that $\lim_{k\to\infty} \delta_k = 0$, i.e. $\lim_{k\to\infty} \rho_k = \infty$.

Having in view that ∇F is of full column rank, we get:

$$\nabla F(x_k)(x_{k+1}-x_k) + F(x_k) = 0$$
,

which is the Newton method applied to F(x) = 0.

Complexity of the algorithm

With $\theta = 1$ we can write:

$$||e_{k+1}|| \le p_{k+1} ||e_0||,$$

where

$$p_{k+1} = \prod_{i=0}^{k} \left(1 - \frac{h_i \lambda_{\min}^i}{1 + h_i (\delta_i + \lambda_{\max}^i)} \right).$$

But $\nabla F(x_i)^T \nabla F(x_i)$ is a positive definite matrix, therefore for all i = 0,...,k,

$$0 < 1 - \frac{h_i \lambda_{\min}^i}{1 + h_i (\delta_i + \lambda_{\max}^i)} < 1.$$

Therefore, p_k is a decreasing sequence in (0,1), i.e. p_k is convergent to zero.

Let

$$a_i = \frac{h_i \lambda_{\min}^i}{1 + h_i (\delta_i + \lambda_{\max}^i)}$$
 and $a_j = \min \{a_i : 0 \le i \le k\}$.

Then

$$p_{k+1} = \prod_{i=0}^{k} (1 - a_i) \le (1 - a_j)^{k+1}$$

i.e.

$$||e_{k+1}|| \le p_{k+1} ||e_0|| \le (1 - a_i)^{k+1} ||e_0||.$$

Therefore the *number of iterations* to get $||e_{k+1}|| = ||x_{k+1} - x^*|| \le \varepsilon$, starting from x_0 is bounded by:

$$\frac{\log(\varepsilon) - \log(\|e_0\|)}{\log(1-a_i)} - 1.$$

Levenberg-Marquardt algorithm

Considering $\delta_k = 0$ in MGF algorithm we get **another** algorithm which is <u>very</u> <u>close</u> to that of Levenberg and Marquardt:

$$x_{k+1} = x_k - h_k \left[I + h_k \theta \left(\nabla F(x_k)^T \nabla F(x_k) \right) \right]^{-1} \nabla F(x_k)^T F(x_k),$$

for which, like in theorem 4 above, for $\theta = 1$, we can prove that

$$||e_{k+1}|| \leq \overline{p}_{k+1}||e_0||,$$

where

$$\overline{p}_{k+1} = \prod_{i=0}^{k} \left(1 - \frac{h_i \lambda_{\min}^i}{1 + h_i \lambda_{\max}^i} \right).$$

Theorem 5.

In the family of algorithms given by

$$x_{k+1} = x_k - h_k \left[I + h_k \theta \left(\nabla F(x_k)^T \nabla F(x_k) + \delta_k I \right) \right]^{-1} \nabla F(x_k)^T F(x_k),$$

the Levenberg-Marquardt algorithm, which correspond to $\theta=1$ and $\delta_k=0$, is the best one.

Proof.

In conditions of the theorem and having in view that $h_k > 0$ we can write:

$$\left[\frac{1}{h_k}I + \nabla F(x_k)^T \nabla F(x_k)\right] d_k = -\nabla F(x_k)^T F(x_k),$$

which is the Levenberg-Marquardt algorithm with $\mu_k = 1/h_k$. Now, since $\nabla F(x_i)^T \nabla F(x_i)$ is positive definite and $\delta_i \ge 0$, it follows that for all i = 0,1,...,k,

$$\frac{h_i \lambda_{\min}^i}{1 + h_i (\delta_i + \lambda_{\max}^i)} \le \frac{h_i \lambda_{\min}^i}{1 + h_i \lambda_{\max}^i}$$

i.e. $p_{k+1} \ge \overline{p}_{k+1}$. Therefore, with $\delta_k = 0$ and $\theta = 1$ the convergence of the algorithm is more rapid.

Numerical Example E1

$$f_1(x) = x_1^2 - 1,$$

 $f_i(x) = (x_{i-1} + x_i)^2 - i, \quad i = 2,...,n.$

Considering $\theta = 1$, $\varepsilon = 10^{-7}$, $x_0 = [1,...,1]$, the *number of iterations* are as follows:

Table 1a $(\delta_k = \sum_{i=1}^m f_i(x_k)^2 (\gamma_i^k)^2)$

n	$h_k = 10$	$h_k = 10^2$	$h_k = 10^3$	$h_{k} = 10^{4}$	$h_{k}=10^{5}$	$h_k = 1 / \ F(x_k)\ ^2$
100	176	43	28	25	25	613
150	274	57	34	30	28	1600
200	378	71	38	34	32	3152

Table 1b (δ_k given by procedure δ)

n	$h_k = 10$	$h_k = 10^2$	$h_k = 10^3$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_k = 1 / \ F(x_k)\ ^2$
100	246	114	99	96	95	681
150	409	192	169	165	164	1732
200	586	279	247	242	241	3357

Table 1c $(\delta_k = \sum_{i=1}^m f_i(x_k)^2)$

n	$h_{k}=10$	$h_k = 10^2$	$h_k = 10^3$	$h_{k} = 10^{4}$	$h_{\scriptscriptstyle k}=10^{\scriptscriptstyle 5}$	$h_k = 1 / \ F(x_k)\ ^2$
100	746	614	599	597	596	1179
150	1824	1607	1584	1581	1580	3145
200	3473	3166	3134	3130	3129	6242

Table 1d $(\delta_k = 0)$

n	$h_k = 10$	$h_k = 10^2$	$h_k = 10^3$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_k = 1 / \ F(x_k)\ ^2$
100	155	23	8	6	6	596
150	249	32	9	7	7	1580
200	350	42	11	7	7	3129

Numerical Example E2 (Circuit Design Problem)

$$f_k(x) = (1 - x_1 x_2) x_3 \left\{ \exp \left[x_5 (g_{1k} - g_{3k} x_7 10^{-3} - g_{5k} x_8 10^{-3}) \right] - 1 \right\} - g_{5k} + g_{4k} x_2,$$

$$k = 1, \dots, 4,$$

$$f_{4+k}(x) = (1 - x_1 x_2) x_4 \left\{ \exp \left[x_6 (g_{1k} - g_{2k} - g_{3k} x_7 10^{-3} - g_{4k} x_9 10^{-3}) \right] - 1 \right\} - g_{5k} x_1 + g_{4k}$$

$$k = 1, \dots, 4,$$

$$f_9(x) = x_1 x_3 - x_2 x_4$$
,

where

$$g = \begin{bmatrix} 0.4850 & 0.7520 & 0.8690 & 0.9820 \\ 0.3690 & 1.2540 & 0.7030 & 1.4550 \\ 5.2095 & 10.0677 & 22.9274 & 20.2153 \\ 23.3037 & 101.7790 & 111.4610 & 191.2670 \\ 28.5132 & 111.8467 & 134.3884 & 211.4823 \end{bmatrix}$$

The following initial point have been considered:

$\boldsymbol{\mathcal{X}}_{0}^{1}$	X_0^2	X_0^3	x_0^4
0.7	0.65	0.75	0.75
0.5	0.45	0.45	0.45
0.9	0.8	0.9	0.9
1.9	1.8	1.77	1.77
8.1	8.5	8.5	8.9
8.1	8.5	7.5	7.9
5.9	5.9	5.5	5.5
1	1.1	1.25	1.35
1.9	1.5	1.88	1.88

Considering $\theta = 1$, $\varepsilon = 10^{-7}$, the *number of iterations* are as follows:

Table 2a $(\delta_k = \sum_{i=1}^m f_i(x_k)^2 (\gamma_i^k)^2)$

	$h_k = 10$	$h_k = 10^2$	$h_k = 10^3$	$h_{k} = 10^{4}$	$h_{k} = 10^{5}$	$h_k = 1/\ F(x_k)\ ^2$
$\boldsymbol{\mathcal{X}}_{0}^{1}$	142	50	40	38	38	27
X_0^2	173	60	47	45	45	56
X_0^3	256	146	133	131	131	132
X_0^4	600	500	489	487	487	488

Table 2b $(\delta_k$ given by procedure δ)

	$h_k = 10$	$h_{k} = 10^{2}$	$h_k = 10^3$	$h_{k} = 10^{4}$	$h_{k}=10^{5}$	$h_k = 1/\ F(x_k)\ ^2$
$\boldsymbol{\mathcal{X}}_{0}^{1}$	123	32	22	20	20	21
x_0^2	151	39	26	24	24	26
X_0^3	218	108	96	94	94	94
\mathcal{X}_0^4	497	397	386	384	384	385

Table 2c $(\delta_k = \sum_{i=1}^m f_i(x_k)^2)$

	$h_k = 10$	$h_{k}=10^{2}$	$h_k = 10^3$	$h_{k}=10^{4}$	$h_{k}=10^{5}$	$h_k = 1 / \ F(x_k)\ ^2$
$\boldsymbol{\mathcal{X}}_{0}^{1}$	113	22	12	10	10	11
X_0^2	140	27	15	12	12	14
X_0^3	135	25	13	11	11	12
X_0^4	124	24	14	12	11	13

Table 2d $(\delta_k = 0)$

	$h_k = 10$	$h_{k}=10^{2}$	$h_k = 10^3$	$h_{k} = 10^{4}$	$h_{k}=10^{5}$	$h_k = 1 / \ F(x_k)\ ^2$
$\boldsymbol{\mathcal{X}}_{0}^{1}$	108	10	6	4	4	10
X_0^2	132	16	7	5	4	12
χ_0^3	129	19	6	5	5	11
x_0^4	46	15	6	5	5	11

Conclusion

The Problem:

 $min \Phi(x)$

where:

$$\Phi(x) = \frac{1}{2} ||F(x)||^2,$$

$$F(x) = [f_1(x), ..., f_m(x)]: R^n \to R^m$$

The Algorithm:

$$x_{0} \text{ given,}$$

$$x_{k+1} = x_{k} - h_{k} \left[I + h_{k} \theta \left(\nabla F(x_{k})^{T} \nabla F(x_{k}) + \delta_{k} I \right) \right]^{-1} \nabla F(x_{k})^{T} F(x_{k}),$$

$$k = 0,1,...$$

The best results (Quadratic Convergence) are obtained for:

$$\theta = 1$$
,

$$h_{k} \to \infty$$
,

$$\delta_k = 0$$
.

Advantages:

Very easy to implement,

Quadratic convergence,

There is no need to evaluate the Hessians $\nabla^2 f_i(x_k)$ of the residuals,

There is no need to do a linear search along the iterations.

Disadvantages:

A system of linear algebraic equations must be solved at each iteration.