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Abstract. Two different approaches based on eigenvalues and singular values of the matrix 

representing the search direction in conjugate gradient algorithms are considered. Using a special 

approximation of the inverse Hessian of the objective function, which depends by a positive 

parameter, we get the search direction which satisfies both the sufficient descent condition and the 

Dai-Liao’s conjugacy condition. In the first approach the parameter in the search direction is 

determined by clustering the eigenvalues of the matrix defining it. The second approach uses the 

minimizing the condition number of the matrix representing the search direction. In this case the 

obtained conjugate gradient algorithm is exactly the three-term conjugate gradient algorithm 

proposed by Zhang, Zhou and Li. The global convergence of the algorithms is proved for 

uniformly convex functions. Intensive numerical experiments, using 800 unconstrained 

optimization test problems, prove that both these approaches have similar numerical performances.  

We prove that both algorithms are significantly more efficient and more robust than CG-

DESCENT algorithm by Hager and Zhang. By solving five applications from the MINPACK-2 test 

problem collection, with 
610  variables, we show that the suggested conjugate gradient algorithms 

are top performer versus CG-DESCENT. 
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1. Introduction 
For solving the large-scale unconstrained optimization problem 

                                                              min{ ( ) : },nf x x R                                                          (1) 

where : nf R R  is a continuously differentiable function and bounded below, we consider the 

following very well known algorithm 

                                                                 1 ,k k k kx x d                                                               (2) 

where the stepsize  k  is positive and the direction kd  is computed using the updating formula: 

                                                                1 1 1.k k kd g u                                                              (3) 

Here, ( ),k kg f x  and 1

n

ku R   is a vector to be determined. Usually, in (2), the stepsize k  is 

computed using the Wolfe line search conditions [1,2]: 

                                                   ( ) ( ) T

k k k k k k kf x d f x g d    ,                                              (4) 

                                                   1 ,T T

k k k kg d g d                                                                           (5) 
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where 0 1.     Also, the strong Wolfe line search conditions consisting of (4) and the 

following strengthened version of (5): 

                                                               1 ,T T

k k k kg d g d                                                             (6) 

can be used. 

Observe that (3) is a general updating formula for the search direction computation. The 

following particularizations of (3) can be presented. If 
1 0,ku    then we get the steepest descent 

algorithm. If 2 1

1 1 1( ( ) ) ,k k ku I f x g

     then the Newton method is obtained. Besides, if 
1

1 1 1( ) ,k k ku I B g

     where 
1kB 
 is an approximation of the Hessian 2

1( ),kf x   then we find the 

quasi-Newton methods. On the other hand, if 1 ,k k ku d   where 
k  is a scalar and 0 0 ,d g   the 

family of conjugate gradient algorithms is generated.  

In this paper we focus on conjugate gradient method. This method was introduced by 

Hestenes and Stiefel [3] and Stiefel [4], ( 1 /HS T T

k k k k kg y y d  ), to minimize positive definite 

quadratic objective functions. (Here 1k k ky g g  .) This algorithm for solving positive definite 

linear algebraic systems of equations ,Ax b  ,n nA R   ,nb R  is known as linear conjugate 

gradient. In exact arithmetic the linear conjugate gradient algorithm gives the correct solution in 

at most n  steps (see [5]). In this case this is a direct method. However, in practice, this algorithm 

is regarded as an iterative method (see Reid [6]) because a sufficiently accurate approximation 

solution is often obtained in far fewer then n  steps. In absence of rounding errors, the theoretical 

convergence rate has been studied by many authors. The conclusion is that the rate of 

convergence of linear conjugate gradient depends strongly on the distribution of eigenvalues of 

the matrix .A  Further insights concerning this problem were studied by many researchers, see for 

example: Axelsson [7], Axelsson and Lindskog [8], Strakoš [9], Van der Sluis and Van der Vorst 

[10], Meurant [11], Winther [12]. Later on, the algorithm was generalized to nonlinear conjugate 

gradient in order to minimize arbitrary differentiable nonlinear functions, by Fletcher and Reeves 

[13], (
2 2

1 /FR

k k kg g  ), Polak and Ribière [14] and Polyak [15], (
2

1 /PRP T

k k k kg y g  ),  Dai 

and Yuan [16], (
2

1 /DY T

k k k kg y d  ), Dai and Liao [17], ( 1( ) / ,DL T T

k k k k k kg y ts y d    0t  ), 

and  many others. Here .  stands for the Euclidean norm. An impressive number of nonlinear 

conjugate gradient algorithms have been established, and a lot of papers have been published on 

this subject insisting both on theoretical and computational aspects. An excellent survey of 

conjugate gradient methods is that given by Hager and Zhang [18].  

 

In the following we consider another approach to generate an efficient and robust 

conjugate gradient algorithm. We suggest a procedure for 1ku   computation by minimizing the 

quadratic approximation of the function f  in 1kx   and by using a special representation of the 

inverse Hessian which depends on a positive parameter. The parameter in the matrix representing 

the search direction is determined in two different ways. The first one is based on the eigenvalues 

analysis of the matrix by trying to minimize the largest eigenvalue. This idea, taken from the 

linear conjugate gradient, is to cluster the eigenvalues of the matrix representing the search 

direction. The second way to determine the value of the parameter is based on the fact that if the 

matrix defining the search direction is ill-conditioned, then, even for small relative errors in the 

gradient, the relative errors in the search direction may be large. Therefore, the second way is to 

use the singular value analysis by minimizing the condition number of the matrix representing the 

search direction of the algorithm.  

The algorithm and its properties are presented in section 2. We prove that the search 

direction used by these algorithms satisfies both the sufficient descent condition and the Dai and 

Liao conjugacy condition [17]. In section 3 we present an adaptive conjugate gradient algorithm 



 3 

based on the clustering the eigenvalues of the matrix representing the search direction. Section 4 

presents the corresponding conjugate gradient algorithm based on minimizing the condition 

number of the same matrix using the singular values analysis. Using standard assumptions, 

section 5 presents the global convergence of these algorithms for uniformly convex functions. In 

section 6 the numerical comparisons between these two conjugate gradient algorithms and the 

comparisons of these algorithms versus CG-DESCENT conjugate gradient algorithm [19] are 

presented. The purpose was to compare these two approaches of generating conjugate gradient 

algorithms. The computational results, for a set of 800 unconstrained optimization test problems, 

show that both these algorithms substantially outperform CG-DESCENT, being more efficient 

and more robust. On the other hand the algorithm based on the eigenvalues analysis (clustering 

the eigenvalues) is more efficient than the algorithm based on the minimizing the condition 

number. However, the algorithm using the idea of minimizing the condition number is more 

robust than the algorithm based on clustering the eigenvalues. Considering five applications from 

the MINPACK-2 test problem collection [20], with 610  variables, we show that both algorithms 

have similar performances and both are way more efficient and more robust than CG-DESCENT. 

 

2. The basic algorithm 
In this section we describe the basic algorithm and its properties. Let us consider that at the 

thk iteration of the algorithm an inexact Wolfe line search is executed, that is the stepsize 
k  

satisfying (4) and (5) is computed. With these the following elements 1k k ks x x   and 

1k k ky g g   are computed. Now, let us take the quadratic approximation of function f  in 1kx   

as 

                                                  1 1 1 1

1
( ) ,

2

T T

k k k kd f g d d B d                                                    (7) 

where 
1kB 
 is an approximation of the Hessian 2

1( )kf x   of function f  and d  is the direction 

to be determined. The search direction 1kd   is computed as in (3), where 1ku   is computed as 

solution of the following minimizing problem 

                                                                 
1

1 1min ( ).
n

k

k k
u R

d


 


                                                             (8) 

Introducing 1kd   from (3) in the minimizing problem (8), then 1ku   is obtained as 

                                                              1

1 1 1( ) .k k ku I B g

                                                             (9) 

Clearly, using different approximations 1kB   of the Hessian 2

1( )kf x   different search directions 

1kd   can be obtained. In this paper we consider the following expression of 1

1kB

 : 

                                                    1

1 ,
T T T

k k k k k k
k kT T

k k k k

s y y s s s
B I

y s y s





                                              (10) 

where k  is a positive parameter which follows to be determined. Observe that 
1

1



kB  is the sum 

of a skew symmetric matrix with zero diagonal elements ( ) / ,T T T

k k k k k ks y y s y s  and a symmetric 

and positive definite one: ( ) / ( ).T T

k k k k kI s s y s  Since 1

1kB

  is non-symmetric, regardless of its 

effectiveness in terms of numerical performance, it does not seem a natural approximation of the 

Hessian 2

1( ).kf x   However, in this paper we are interested to use this expression of the 1

1kB

  in 

the frame of conjugate gradient algorithms, in order to get search directions satisfying both the 

sufficient descent and conjugacy conditions.  

Again, observe that (10) is a small modification of the memoryless BFGS updating formula used 

by Shanno [21]. Note that under exact line search the search direction 1

1 1 1,k k kd B g

     where 
1

1kB

  is given by (10), reduces to the Hestenes and Stiefel method [3].  
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Now, from (9) we get: 

                                                1 1.
T T T

k k k k k k
k k kT T

k k k k

s y y s s s
u g

y s y s
 

 
  
 

                                            (11) 

Denote 1

1 1.k kH B

   Therefore, using (11) in (3) the search direction can be expressed as: 

                                                                
1 1 1,k k kd H g                                                              (12) 

where  

                                                 1 .
T T T

k k k k k k
k kT T

k k k k

s y y s s s
H I

y s y s



                                                 (13) 

 

Observe that the search direction (12), where 
1kH 
 is given by (13), obtained by using the 

expression (10) of the inverse Hessian ,1

1



kB  is given by: 

                                      1 1 1
1 1 .

T T T

k k k k k k
k k k k kT T T

k k k k k k

y g s g s g
d g s y

y s y s y s
  

 

 
     

 
                               (14) 

 

PROPOSITION 2.1. Consider 0k   and the stepsize 
k  in (2) is determined by the Wolfe line 

search conditions (4) and (5). Then the search direction (14) satisfies the descent condition 

1 1 0.T

k kg d    

 

Proof  By direct computation, since 0,k   we get: 

                                                
2

2 1
1 1 1

( )
0.

T
T k k
k k k k T

k k

g s
g d g

y s
 

                                                   

 

PROPOSITION 2.2. Consider 0k   and the stepsize k  in (2) is determined by the Wolfe line 

search conditions (4) and (5). Then the search direction (14) satisfies the Dai and Liao conjugacy 

condition 1 1( ),T T

k k k k ky d v s g    where 0.kv   

 

Proof  By direct computation we have 
2

1 1 1( ) ( ),
kT T T

k k k k k k k kT

k k

y
y d s g v s g

y s
  

 
     
  

 

where  

2

.
k

k k T

k k

y
v

y s
   By Wolfe line search conditions (4) and (5) it follows that 0,T

k ky s   

therefore 0.kv                                                                                                                                 

 

Although we have considered the expression of the inverse Hessian as that given by (10), which 

is a non-symmetric matrix, the search direction (14), obtained in this manner, satisfies both the 

descent condition and the Dai and Liao conjugacy condition. Therefore, the search direction (14) 

is a genuine conjugate gradient algorithm. The expression (10) of the inverse Hessian is only a 

technical argument to get the search direction (14). It is remarkable to say that from (12) our 

method can be considered as a quasi-Newton method in which the inverse Hessian, at each 

iteration, is expressed by the non-symmetric matrix 1.kH   More than this, the algorithm based on 

the search direction given by (14) can be considered as a three-term conjugate gradient algorithm. 
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In this point, to define the algorithm the only problem we face is to specify a suitable value for 

the positive parameter .k  In the following two sections of the paper we present a variant of the 

algorithm based on the eigenvalues analysis and another variant based on the singular values, 

respectively. 

 

3. The algorithm based on clustering the eigenvalues 
As we know, generally, in a small neighborhood of the current point, the nonlinear objective 

function f  in the unconstrained optimization problem (1) behaves like a quadratic one for which 

the results from linear conjugate gradient can be applied. But, for faster convergence of linear 

conjugate gradient algorithms some approaches can be considered like: the presence of isolated 

smallest and/or largest eigenvalues of the matrix 1,kH   as well as gaps inside the eigenvalues 

spectrum [8], clustering of the eigenvalues about one point [12] or about several points [22], or 

preconditioning [23]. If the matrix has a number of certain distinct eigenvalues contained in m  

disjoint intervals of very small length, then the linear conjugate gradient method will produce a 

very small residual after m  iterations. This is an important property of linear conjugate gradient 

method and we try to use it in nonlinear case in order to get efficient and robust nonlinear 

conjugate gradient algorithms. Therefore, we consider the extension of the method of clustering 

the eigenvalues of the matrix defining the search direction from linear conjugate gradient 

algorithm to nonlinear case. 

The idea of this variant of the algorithm is to determine k  by clustering the eigenvalues 

of 1,kH   given by (13), by minimizing the largest eigenvalue of the matrix 1kH   from the 

spectrum of this matrix. The structure of the eigenvalues of the matrix 1kH   is given by the 

following theorem. 

 

THEOREM 3.1. Suppose that the stepsize 
k  is determined by the Wolfe line search conditions 

(4) and (5). Let 1kH   be defined by (13). Then 1kH   is a nonsingular matrix and its eigenvalues 

consist of 1 ( 2n   multiplicity), 1k


  and 1,k


  where 

                                              2 2

1

1
(2 ) 4 4 ,

2
k k k k k kb b a  


     
 

                                       (15) 

                                              2 2

1

1
(2 ) 4 4 ,

2
k k k k k kb b a  


     
 

                                       (16) 

and  

                                               

2 2

2
1,

( )

k k

k T

k k

y s
a

y s
           

2

0.
k

k T

k k

s
b

y s
                                         (17) 

 

Proof By the Wolfe line search conditions (4) and (5) we have that .0k

T

k sy  Therefore, the 

vectors ky  and ks  are nonzero vectors. Let V  be the vector space spanned by }.,{ kk ys  Clearly, 

2)dim( V  and .2)dim(  nV  Thus, there exist a set of mutually unit orthogonal vectors 



 Vu n

i

i

k

2

1}{  such that 

,0 i

k

T

k

i

k

T

k uyus  ,2,,1  ni   

which from (13) leads to 

1 ,i i

k k kH u u   .2,,1  ni   

Therefore, the matrix 1kH   has 2n  eigenvalues equal to 1, which correspond to 
2

1}{ 



n

i

i

ku  as 

eigenvectors.  
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Now, we are interested to find the rest of the two remaining eigenvalues, denoted as 


1k  

and 1,k


  respectively. From the formula of algebra (see for example ref. [5]) 

det( ) (1 )(1 ) ( )( ),T T T T T TI pq uv q p v u p v q u       

where ,k k k

T

k k

y s
p

y s


   ,kq s   k

T

k k

s
u

y s
   and ,kv y  it follows that  

                                          

2 2 2

1 2
det( ) .

( )

k k k

k k k k kT T

k k k k

s y s
H a b

y s y s
                                         (18) 

But, 1ka   and 0kb  , therefore, 1kH   is a nonsingular matrix.  

On the other hand, by direct computation  

                                                   

2

1( ) .
k

k k k kT

k k

s
tr H n n b

y s
                                                  (19) 

By the relationships between the determinant and the trace of a matrix and its eigenvalues, it 

follows that the other eigenvalues of 1kH   are the roots of the following quadratic polynomial: 

                                                   2 (2 ) ( ) 0.k k k k kb a b                                                   (20) 

Clearly, the other two eigenvalues of the matrix 1kH   are determined from (20) as (15) and (16), 

respectively. Observe that 1ka   follows from Wolfe conditions and the inequality: 

                                                                   

2

2
.

T
kk k

T

k kk

yy s

y ss
                                                                 

 

In order to have both 1k


  and 1k


  as real eigenvalues, from (15) and (16) the following 

condition must be fulfilled 2 2 4 4 0,k k kb a     out of which the following estimation of the 

parameter k  can be determined: 

                                                                   
2 1

.
k

k

k

a

b



                                                           (21) 

Since 1,ka   if 0,ks   it follows that the estimation of k  given in (21) is well defined.  

From (20) we have 

                                                        1 1 2 0,k k k kb   

                                                          (22) 

                                                        1 1 0.k k k k ka b   

                                                            (23) 

Therefore, from (22) and (23) we have that both 1k


  and 1k


  are positive eigenvalues. Since 
2 2 4 4 0,k k kb a     from (15) and (16) we have that 1 1.k k  

   By direct computation, from 

(15), using (21) we get 

                                                          1 1 1 1.k ka

                                                               (24) 

A simple analysis of equation (20) shows that 1 11 .k k  

    Therefore, the maximum eigenvalue 

of 1kH  is 1k


  and its minimum eigenvalue is 1. Now, we see that if 2n   eigenvalues of 1kH   

are equal to 1, and the remaining two are greater than 1 and they depend by k  like in (15) and 

(16), then clustering can affect only two eigenvalues. Since the smallest eigenvalue of 1kH   is 

equal to 1, the minimization of the largest eigenvalue of this matrix coincides with the clustering 

of the eigenvalues.  

 

PROPOSITION 3.1. The largest eigenvalue  
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                                             2 2

1

1
(2 ) 4 4

2
k k k k k kb b a  


     
 

                                         (25) 

gets its minimum 1 1,ka   when 
2 1

.
k

k

k

a

b



  

 

Proof Observe that 1.ka   By direct computation the minimum of (25) is obtained for 

(2 1) / ,k k ka b    for which its minimum value is 1 1.ka                                                                                            

 

We see that according to proposition 3.1 when (2 1) /k k ka b    the largest eigenvalue of 1kH   

arrives at the minimum value, i.e. the spectrum of 
1kH 
 is clustered. In fact for 

(2 1) / ,k k ka b    1 1 1 1.k k ka  

      Therefore, from (17) the following estimation of 

k  can be obtained: 

                                                              
2

2 1.
T

k k
k k

k

y s
a

s
                                                          (26) 

From (17) 1,ka   hence if 0ks   it follows that the estimation of k  given by (26) is well 

defined. However, we see that the minimum of 1k


  obtained for (2 1) /k k ka b    is given by 

1 1.ka   Therefore, if 
ka  is large, then the largest eigenvalue of the matrix 1kH   will be large. 

This motivates the parameter k  to be computed as: 

                                                     

2

2

2 1 , if ,

2 1 , otherwise,

T

k k
k

k

k T

k k
k

k

y s
a

s

y s
a

s

 




 


 
 



                                         (27) 

where 1   is a positive constant. Therefore, our algorithm is an adaptive conjugate gradient 

algorithm in which the value of the parameter k  in the search direction (14) is computed as in 

(27) trying to cluster all the eigenvalues of 1kH   defining the search direction of the algorithm. 

 

Using the procedure of acceleration the conjugate gradient algorithms presented in [24], 

and taking into consideration the above developments, the following algorithm can be presented. 

 

NADCG Algorithm (New Adaptive Conjugate Gradient Algorithm) 

Step 1. Select a starting point 0

nx R  and compute: 0( ),f x  0 0( ).g f x  Select some 

positive values for   and   used in Wolfe line search conditions. Consider a positive 

value for the parameter .  ( 1  ) Set 0 0d g   and 0.k   

Step 2. Test a criterion for stopping the iterations. If this test is satisfied, then stop; otherwise 

continue with step 3. 

Step 3. Determine the stepsize k  by using the Wolfe line search (4) and (5). 

Step 4. Compute ,k k kz x d   ( )zg f z  and .k k zy g g   

Step 5. Compute: T

k k z ka g d  and .T

k k k kb y d   

Step 6. Acceleration scheme. If 0,kb   then compute /k k ka b    and update the variables 

as 1 ,k k k k kx x d     otherwise update the variables as 1 .k k k kx x d    
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Step 7. Compute 
k  as in (27). 

Step 8. Compute the search direction as in (14). 

Step 9. Powell restart criterion. If 
2

1 10.2 ,T

k k kg g g   then set 
1 1.k kd g    

Step 10. Consider 1k k   and go to step 2.                                                                              

 

If function f  is bounded along the direction ,kd  then there exists a stepsize 
k  satisfying the 

Wolfe line search (see for example ref. [25] or [26]). In our algorithm when the Beale-Powell 

restart condition is satisfied, then we restart the algorithm with the negative gradient 1.kg   More 

sophisticated reasons for restarting the algorithms have been proposed in the literature [27], but 

we are interested in the performance of a conjugate gradient algorithm that uses this restart 

criterion associated to a direction satisfying both the descent and the conjugacy conditions. Under 

reasonable assumptions, the Wolfe conditions and the Powell restart criterion are sufficient to 

prove the global convergence of the algorithm. The first trial of the stepsize crucially affects the 

practical behavior of the algorithm. At every iteration 1k   the starting guess for the step k  in 

the line search is computed as 1 1 / .k k kd d    For uniformly convex functions, we can prove 

the linear convergence of the acceleration scheme used in the algorithm [24].  

 

4. The algorithm based on minimizing the condition number 
As we know, the convergence rate of the nonlinear conjugate gradient algorithms depends on the 

structure of the eigenvalues of the Hessian and the condition number of this matrix [28] (see also 

ref. [29]). Therefore, in this context a possibility to generate conjugate gradient algorithms is 

based on minimizing the condition number of the matrix 1kH   (see for example refs. [30,31]). 

From (12) we see that the numerical performances and the efficiency of the quasi-Newton 

methods are based on the condition number of the successive approximations to the inverse 

Hessian. If the matrix 1kH   is ill-conditioned, then, even for small values of the relative error of 

1,kg   the relative error of 1kd   may be large. Hence, when the condition number of 1kH   is large, 

the system (12) is potentially very sensitive to perturbations in 1.kg   In other words ill-

conditioned matrices 1kH   may produce instability in iterative numerical computation with them. 

Therefore, the idea of this variant of the algorithm is to minimize the condition number of the 

matrix 1kH   using its singular values. For this, we briefly present the singular value analysis. The 

following definitions and theorems, taken from Watkins [32], clarify some aspects of this concept 

of condition number of a matrix. 

 

THEOREM 4.1. [32] Let n mA R   be a nonzero matrix with rank .r  Then, mR  has an 

orthonormal basis 1, , ,mv v  nR  has an orthonormal basis 1, , ,nu u  and there exist the scalars 

1 2 0r       such that 

                          
, 1, , ,

0, 1, , ,

i i

i

u i r
Av

i r m

 
 

 
   and   

, 1, , ,

0, 1, , .

i iT

i

v i r
A u

i r n

 
 

 
                  (28) 

 

 

DEFINITION 4.1. The scalars 1, , r   from the theorem 4.1 are called the singular values of 

the matrix .A   

 

Based on the Theorem 4.1, for any nonzero matrix n mA R   with rank r  it follows that    
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2 2 2

1 ,rF
A                                                           (29) 

where .
F

 represents the Frobenius norm. If ,r m n   then  

1 2det( ) .nA        

 

As we mentioned, a very important concept in the sensitivity analysis of numerical computations 

with matrices is the matrix condition number. A matrix with a large condition number is called an 

ill-conditioned matrix since the computations with this matrix are potentially very sensitive to 

changes in data of the problem involving this matrix. 

 

DEFINITION 4.2. For an arbitrary nonsingular matrix ,A  the scalar 1( )A A A   is called 

the condition number of .A   

 

THEOREM 4.2. [32] If n nA R   is a nonsingular matrix with the singular values 

1 2 0,n       then 1( ) / .nA     

 

DEFINITION 4.3. The condition number ( )A  computed as above is called the spectral 

condition number.  

 

In our analysis we need to find the singular values of the matrix 1.kH   For this, in our 

developments we assume that 0,T

k ky s   which is guaranteed by the Wolfe line search conditions 

(4) and (5). 

 

THEOREM 4.3. Suppose that the stepsize 
k  is determined by the Wolfe line search conditions 

(4) and (5). Let 1kH   be defined by (13). Then 1kH   has 2n   singular values equal to 1 and the 

remaining singular values 1k


  and 1k


  are given by 

                                            2

1

1
( 2) 4( 1) ,

2
k k k k k kb a b  


     
 

                                     (30) 

                                            2

1

1
( 2) 4( 1) ,

2
k k k k k kb a b  


     
 

                                     (31) 

where ka  and kb  are given by (17). 

  

Proof By the Wolfe line search conditions (4) and (5) we have that .0k

T

k sy  Therefore, the 

vectors ky  and ks  are nonzero vectors. Since 0,T

k ky s   there exists a set of mutually 

orthonormal vectors 2

1{ }i n

k iu 

  such that 

,0 i

k

T

k

i

k

T

k uyus  ,2,,1  ni   

which from (13) leads to 

1 1 ,i T i i

k k k k kH u H u u    .2,,1  ni   

Therefore, the matrix 1kH   has 2n  singular values being equal to 1. Next, we are interested to 

find the rest of the two remaining singular values, denoted as 1k


  and 1,k


  respectively. But, by 

direct computation 
2 2

1 1( ) 2 2 2 .T

k k k k k k ktr H H n b b a         

Since 
2

1 1 1( ),T

k k kF
H tr H H    from (29) we get 
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                                               2 2 2 2

1 1( ) ( ) 2 2 .k k k k k k kb b a    

                                             (32) 

As above in Theorem 3.1 (see (18)) the determinant of the iteration matrix 
1kH 
 is the product of 

the singular values 
1k




 and 1,k



  i.e. 

                                                              1 1 .k k k k ka b   

                                                          (33) 

Now, from (32) and (33) the singular values 1k


  and 1k


  are the solution of the following 

quadratic equation 

 2 2 2 4 4 ( ) 0,k k k k k k k kb b a a b           

expressed as in (30) and (31), respectively.                                                                                     

 

REMARK 4.1. It is relatively easy to prove that, for the matrix 
1kH 
 defined by (13), 1 1,k k  

   

i.e. the largest eigenvalue of 1kH   given by (15) is strictly smaller than the largest singular value 

of 1kH   given by (30). Now, from (24) 11 ,k

  therefore, for 1kH   defined by (13), it follows 

that   1 11 .k k  

    

 

Obviously, 1 1.k k  

   But, 1 1.k


    Therefore 1 1( ) .k kH  

   By direct computation, 

we see that 1( )kH   attains its minimum value ka  if and only if 0.k   Hence, minimizing the 

condition number of the matrix 1kH   given by (13) lead us to the following search direction 

                                                 1 1
1 1 .

T T

k k k k
k k k kT T

k k k k

y g s g
d g s y

y s y s

 
                                                (34) 

Observe that (34) is a simple modification of the Hestenes and Stiefel conjugate gradient 

algorithm [3]. In fact, this is exactly the search direction of the three-term conjugate gradient 

method proposed by Zhang et al. (see ref. [33]).  

Using the procedure of acceleration of conjugate gradient algorithms presented in [24], 

and taking into consideration the above developments based on singular value study, the 

following algorithm can be presented. 

 

SVCG Algorithm (Singular Value Conjugate Gradient Algorithm) 

Step 1. Select a starting point 0

nx R  and compute: 0( ),f x  0 0( ).g f x  Select some 

positive values for   and   used in Wolfe line search conditions. Set 0 0d g   and 

0.k   

Step 2. Test a criterion for stopping the iterations. If this test is satisfied, then stop; otherwise 

continue with step 3. 

Step 3. Determine the stepsize k  by using the Wolfe line search (4) and (5). 

Step 4. Compute ,k k kz x d   ( )zg f z  and .k k zy g g   

Step 5. Compute: T

k k z ka g d  and .T

k k k kb y d   

Step 6. Acceleration scheme. If 0,kb   then compute /k k ka b    and update the variables 

as 1 ,k k k k kx x d     otherwise update the variables as 1 .k k k kx x d    

Step 7. Compute the search direction as in (34). 

Step 8. Powell restart criterion. If 
2

1 10.2 ,T

k k kg g g   then set 1 1.k kd g    

Step 9. Consider 1k k   and go to step 2.                                                                              
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From (34) we see that 
2

1 1 1 ,T

k k kg d g    i.e. the search direction (34) satisfies the sufficient 

descent condition. Besides, 
2

1 1( / )( ),T T T

k k k k k k ky d y y s s g    i.e. the search direction (34) satisfies 

the Dai and Liao conjugacy condition.  

 

 

5. Global convergence analysis 
The global convergence analysis of the above algorithms follows the methodology based on 

bounding the norm of the search direction, presented by Gilbert and Nocedal [34], Nocedal [35] 

or by Dai et al. [36]. In this section we prove the global convergence of the above algorithms 

under the following assumptions: 

(i) The level set  0: ( ) ( )nS x R f x f x    is bounded. (
0x  is the starting point of the 

iterative method (2).) 

(ii) In a neighborhood N  of S  the function f  is continuously differentiable and its 

gradient is Lipschitz continuous, i.e. there exists a constant 0L   such that 

( ) ( ) ,f x f y L x y     for all , .x y N  

Since { ( )}kf x  is a decreasing sequence, it is clear that the sequence { }kx  generated by the 

proposed algorithms NADCG and SVCG is contained in .S  Besides, under the above 

assumptions on f  there exists a constant 0   such that ( )f x   for all .x S  For any 

conjugate gradient method with strong Wolfe line search the following general result holds [35]. 

 

PROPOSITION 5.1. Suppose that the assumptions (i) and (ii) hold. Consider a conjugate 

gradient algorithm in which, for all 0,k   the search direction kd  is a descent direction and the 

stepsize k  is determined by the Wolfe line search conditions. If 

                                                                   
2

0

1
,

k kd

                                                              (35) 

then the algorithm converges in the sense that 

                                                                  liminf 0.k
k

g


                                                           (36) 

 

For uniformly convex functions we can prove that the norm of the direction 1kd   computed as in 

(14) with (27) is bounded above. Therefore, by proposition 5.1 we can prove the following result. 

 

THEOREM 5.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm NADCG 

where the search direction kd  is given by (14) and k  is computed as in (27). Suppose that k  is 

computed by the strong Wolfe line search. Suppose that f  is a uniformly convex function on ,S  

i.e. there exists a constant 0   such that 

                                                 
2

( ( ) ( )) ( )Tf x f y x y x y                                               (37) 

for all , .x y N  Then 

                                                                    lim 0.k
k

g


                                                               (38) 

 

Proof From Lipschitz continuity we have .k ky L s  On the other hand, from uniform 

convexity it follows that 
2
.T

k k ky s s  Now, from (27) 
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2 1 2 1 2 1.
k k

k

k k

y L s
L

s s
          

On the other hand, from (14) we have 

        
1 1 1

1 1

T T T

k k k k k k

k k k k k kT T T

k k k k k k

y g s g s g
d g s s y

y s y s y s


  

      

2 2 2
2 1

k k k k k k

k k k

y s s s s y
L

s s s


  

  
      2 2 1 ,

L
L 

 

 
      

showing that (35) is true. By proposition 5.1 it follows that (36) is true, which for uniformly 

convex functions is equivalent to (38).                                                                                            

 

THEOREM 5.2. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm SVCG 

where the search direction kd  is given by (34). Suppose that k  is computed by the strong Wolfe 

line search. Suppose that f  is a uniformly convex function on ,S  i.e. there exists a constant 

0   such that 
2

( ( ) ( )) ( )Tf x f y x y x y      for all , .x y N  Then 

                                                                    lim 0.k
k

g


                                                               (39) 

 

Proof  From (34) we have 

1 1

1 1

T T

k k k k

k k k kT T

k k k k

y g s g
d g s y

y s y s

 

   
2 2

k k k k

k k

y s s y

s s 

 
    2 ,

L




    

showing that (35) is true. Therefore (36) is true, which for uniformly convex functions is 

equivalent to (39).                                                                                                                            

 

REMARK 5.1. Suppose that the assumptions (i) and (ii) are satisfied. Consider the algorithm 

NADCG with parameter k  defined as in (27). It can be shown that there exists a positive 

constant   such that 0 .k   Hence, if the search directions, computed as in (14), are 

descent directions and the stepsizes are determined to satisfy the strong Wolfe conditions (4) and 

(6), then Theorem 3.6 of Dai and Liao [17] ensures the global convergence of the method for 

general objective functions. On the other hand, the convergence of the SVCG algorithm for 

general objective functions can be proved following the methodology given by Gilbert and 

Nocedal [34] and the Theorem 2.3 of Zhang et al. [33].  

 

6. Numerical results and comparisons 
The NADCG and SVCG algorithms were implemented in double precision Fortran using loop 

unrolling of depth 5 and compiled with f77 (default compiler settings) and run on a Workstation 

Intel Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained optimization 

test problems in generalized or extended form presented in [37]. For each test function we have 

considered 10 numerical experiments with the number of variables increasing as 

1000,2000, ,10000.n   The algorithms use the Wolfe line search conditions with cubic 

interpolation [5], 0.0001,   0.8   and the same stopping criterion 610 ,kg 


 where .


is 

the maximum absolute component of a vector.  

The algorithms we compare in these numerical experiments find local solutions. 

Therefore, the comparisons of algorithms are given in the following context. Let 1ALG

if and 
2ALG

if  be the optimal values found by ALG1 and ALG2, for problem 1, ,800,i   respectively. 
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We say that, in the particular problem ,i  the performance of ALG1 was better than the 

performance of ALG2 if:  

                                                            1 2 310ALG ALG

i if f                                                         (40) 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the 

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient 

evaluations, or the CPU time corresponding to ALG2, respectively. The test problems where the 

algorithms do not converge to the same function value, according to criterion (40), are discarded 

from comparisons.  

In the first set of numerical experiments we compare NADCG versus SVCG for different 

values of the parameter .  Figure 1 shows the Dolan-Moré’s performance profiles subject to CPU 

time metric for different values of the parameter .  That is, for each method, we plot the fraction 

of problems for which the method is within a factor of the best time. The left side of the figures 

gives the percentage of the test problems for which a method is the fastest; the right side gives the 

percentage of the test problems that are successfully solved by each of the methods. Clearly, the 

top curve corresponds to the method that solved the most problems in a time that was within a 

factor of the best time. 

From Figure 1, for example for 2  , comparing NADCG versus SVCG subject to the number 

of iterations, we see that NADCG was better in 192 problems (i.e. it achieved the minimum 

number of iterations for solving 192 problems), SVCG was better in 182 problems and they 

achieved the same number of iterations in 416 problems, etc. Out of 800 problems, we considered 

in this numerical study, only for 790 problems does the criterion (40) hold. From figure 1 we see 

that for different values of the parameter 1   SVCG algorithm is more robust than NADCG. On 

the other hand, NADCG is way more efficient than SVCG. However, for large values of ,  both 

algorithms seem to have the same efficiency. 

From Figure 1 we see that NADCG algorithm is very little sensitive to the values of the 

parameter .  In fact, for ,ka   from (14) we get: 

                                                         1 1

2

1
,

1

T

k k k
k

k

d s g
s

s 

 
 

 
                                                  (41) 

where 1.   Therefore, since the gradient of the function f  is Lipschitz continuous and the 

quantity 1

T

k ks g  is going to zero it follows that along the iterations 1 /kd    tends to zero, 

showing that along the iterations the search direction is less and less sensitive subject to the value 

of the parameter .  For uniformly convex functions, using the assumptions from section 5 we 

get: 

                                                               1 .
1

kd

 

 


 
                                                           (42) 

Therefore, for example, for larger values of   the variation of 1kd   subject to   decreases 

showing that the NADCG algorithm is very little sensitive to the values of the parameter .  This 

is illustrated in Figure 1 where the performance profiles have the same allure for different values 

of parameter 1.   
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Figure 1. NADCG versus SVCG for different values of .  

 

Since, CG-DESCENT [38] is among the best nonlinear conjugate gradient algorithms 

proposed in the literature, but not necessarily the best, in the second set of numerical experiments 

we compare our algorithm NADCG versus CG-DESCENT for different values of .  Figure 2 

presents the Dolan-Moré’s performance profiles subject to CPU time metric for different values 

of .  



 15 

  

  

  
Figure 2. NADCG versus CG-DESCENT for different values of .  

 

From Figure 2 we see that the NADCG is more efficient and more robust than CG-

DESCENT for any values of the parameter 1   considered in this set of numerical experiments. 

The NADCG and CG-DESCENT algorithms (and codes) are different in many respects. Since 

both of them use the Wolfe line search (however, implemented in different manners), these 

algorithms mainly differ in their choice of the search direction. The search direction 1kd   given 

by (14) and (27) used in NADCG is more elaborate: it is adaptive and the eigenvalues of the 

matrix defined by it are clustered. In addition it satisfies both the descent condition and the 

conjugacy condition in a restart environment.  
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In the third set of numerical experiments we compare SVCG versus CG-DESCENT. Figure 3 

shows the Dolan-Moré’s performance profiles subject to CPU time metric. 

 

 
Figure 3. SVCG versus CG-DESCENT. 

 

We see that, at least for this set of unconstrained optimization test problems, SVCG algorithm is 

more efficient and more robust than CG-DESCENT. From Propositions 2.1 and 2.2 we see that 

the search direction (34) used in SVCG algorithm satisfies both the sufficient descent condition 

and the Dai and Liao conjugacy condition. Even if the search direction (34) is very simple, it is 

more elaborate than the CG-DESCENT direction due to the presence of the term involving ky .  

 

In the last set of numerical experiments, we present comparisons between NADCG, SVCG and 

CG-DESCENT conjugate gradient algorithms for solving some applications from the 

MINPACK-2 test problem collection [20]. In Table 1 we present these applications, as well as the 

values of their parameters.  

 
Table 1.  

Applications from the MINPACK-2 collection. 

A1 Elastic–plastic torsion [39, pp. 41–55], 5c   

A2 Pressure distribution in a journal bearing [40], 10,b   0.1   

A3 Optimal design with composite materials [41], 0.008   

A4 Steady-state combustion [42, pp. 292–299], [43], 5   

A5 Minimal surfaces with Enneper conditions [44, pp. 80–85] 

 

 

The infinite-dimensional version of these problems is transformed into a finite element 

approximation by triangulation. Thus a finite-dimensional minimization problem is obtained 

whose variables are the values of the piecewise linear function at the vertices of the triangulation. 

The discretization steps are 1,000nx   and 1,000,ny   thus obtaining minimization problems 

with 1,000,000 variables. A comparison between NADCG (Powell restart criterion, 
6( ) 10 ,kf x 


   0.0001,  0.8  , 2  ), SVCG (Powell restart criterion, 
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6( ) 10 ,kf x 


   0.0001,  0.8  ) and CG-DESCENT (version 1.4, Wolfe line search, 

default settings, 6( ) 10kf x 


  ) for solving these applications is given in Table 2.  

 

 
Table 2. 

Performance of NADCG, SVCG and CG-DESCENT. 1,000,000 variables. CPU seconds.  

 NADCG SVCG CG-DESCENT 

 #iter #fg cpu #iter #fg cpu #iter #fg cpu 

A1 1113 2257 352.55 1111 2253 349.89 1145 2291 474.64 

A2 2845 5718 1141.93 2845 5718 1137.32 3370 6741 1835.51 

A3 4700 9437 2764.84 4372 8763 2570.41 4814 9630 3949.71 

A4 1413 2864 2037.50 1413 2864 2023.98 1802 3605 3786.25 

A5 1285 2606 581.92 1291 2607 580.91 1225 2451 753.75 

Total 11356 22882 6878.74 11032 22205 6662.51 12356 24718 10799.86 

 

 

From Table 2, we see that, subject to the CPU time metric, both NADCG and SVCG algorithms 

have similar performances, SVCG being slightly faster. Observe that subject to CPU time metric 

NADCG algorithm is top performer versus CG-DESCENT and the difference is significant, about 

3921.12 seconds for solving all these five applications. Similarly, SVCG algorithm is top 

performer versus CG-DESCENT with a difference of 4137.35 seconds for solving the 

applications considered in this numerical study.  

 

7. Conclusions 
A theoretical development and a numerical study of two approaches based on eigenvalue analysis 

and singular values, respectively was presented in the context of conjugate gradient algorithms. 

The search direction is computed as the sum of the negative gradient and an arbitrary vector 

which was determined by minimizing the quadratic approximation of objective function at the 

current point. The solution of this quadratic minimization problem is a function of the inverse 

Hessian. In this paper we introduce a special expression of the inverse Hessian of the objective 

function which depends by a positive parameter .k  For any nonnegative values of this parameter 

the search direction satisfies both the sufficient descent condition and the Dai-Liao’s conjugacy 

condition. Thus, the algorithm is a conjugate gradient one. The parameter in the search direction 

is determined by using two different approaches.  

The first one is based on clustering the spectrum of the matrix defining the search direction. This 

idea is taken from the linear conjugate gradient, where clustering the eigenvalues of the matrix is 

very benefic with respect to the convergence. Mainly, in our nonlinear case, clustering the 

eigenvalues reduces to determine the value of the parameter k  to minimize the largest 

eigenvalue of the matrix. The adaptive computation of the parameter k  in the search direction is 

subject to a positive constant which has a very little impact on the performances of our algorithm.  

The second approach is based on minimizing the condition number of the matrix defining the 

search direction. In this case the minimum value of the condition number is obtained for 0.k   

The corresponding search direction is very simple, being a modification of the Hestenes and 

Stiefel’s conjugate gradient algorithm [3] or being exactly the three-term conjugate gradient 

algorithm suggested by Zhang et al [33]. Both these approaches are dependent by the expression 

of the inverse Hessian approximation.  

The stepsize is computed using the classical Wolfe line search conditions with a special 

initialization. In order to improve the reducing the values of the objective function to be 

minimized an acceleration scheme is used. Under classical assumptions, both algorithms are 
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globally convergent. Numerical experiments and intensive comparisons using 800 unconstrained 

optimization test problems, of different dimensions and complexity, proved that both algorithms 

have similar performances, the adaptive conjugate gradient algorithm based on eigenvalue 

clustering being slightly more efficient than the corresponding algorithm using the minimizing 

the condition number. On the other hand, the algorithm using the idea of minimizing the 

condition number is indeed more robust. In an effort to see the performances of these algorithms 

we found that both algorithms are more efficient and more robust than CG-DESCENT algorithm. 

By solving five large-scale nonlinear optimization applications from MINPACK-2 collection, up 

to 610  variables, we prove that both NADCG and SVCG algorithms are obvious more efficient 

than CG-DESCENT.  

The conclusion is that both these techniques based on eigenvalues clustering or on minimizing the 

condition number of the iteration matrix using the singular values are suitable to get efficient and 

robust conjugate gradient algorithms. Having in view the Remark 4.1, observe that by minimizing 

1k

  we minimize 1.k


  Therefore, these two approaches considered in this paper represent two 

different ways to basically pursue similar ideas based on eigenvalues or on singular values of the 

iteration matrix, respectively. 

It is worth saying that by using some other expressions to the inverse Hessian approximation, 

other conjugate gradient algorithms can be obtained. On the other hand, another conjugate 

gradient algorithm can also be generated if, instead of clustering the eigenvalues of 1kH   by 

minimizing the largest eigenvalue with respect to ,k  a different standpoint for eigenvalues 

clustering is used, for example by minimizing the trace of 1,kH   subject to some constraints on 

.k  
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