
 1

Eigenvalues versus singular values study in conjugate gradient

algorithms for large-scale unconstrained optimization

Neculai Andrei

Research Institute for Informatics,

Center for Advanced Modeling and Optimization

8-10 Averescu Avenue, Bucharest 1, Romania

E-mail: nandrei@ici.ro

August 1, 2016

Abstract. Two different approaches based on eigenvalues and singular values of the matrix

representing the search direction in conjugate gradient algorithms are considered. Using a special

approximation of the inverse Hessian of the objective function, which depends by a positive

parameter, we get the search direction which satisfies both the sufficient descent condition and the

Dai-Liao’s conjugacy condition. In the first approach the parameter in the search direction is

determined by clustering the eigenvalues of the matrix defining it. The second approach uses the

minimizing the condition number of the matrix representing the search direction. In this case the

obtained conjugate gradient algorithm is exactly the three-term conjugate gradient algorithm

proposed by Zhang, Zhou and Li. The global convergence of the algorithms is proved for

uniformly convex functions. Intensive numerical experiments, using 800 unconstrained

optimization test problems, prove that both these approaches have similar numerical performances.

We prove that both algorithms are significantly more efficient and more robust than CG-

DESCENT algorithm by Hager and Zhang. By solving five applications from the MINPACK-2 test

problem collection, with
610 variables, we show that the suggested conjugate gradient algorithms

are top performer versus CG-DESCENT.

Key words: Unconstrained optimization; conjugate gradient algorithms; eigenvalues; singular values;

Wolfe conditions; convergence; sufficient descent condition; conjugacy condition

2000 Mathematics Subject Classification: 49M07; 49M10; 90C06; 65K

1. Introduction
For solving the large-scale unconstrained optimization problem

 min{ () : },nf x x R (1)

where : nf R R is a continuously differentiable function and bounded below, we consider the

following very well known algorithm

 1 ,k k k kx x d   (2)

where the stepsize k is positive and the direction kd is computed using the updating formula:

 1 1 1.k k kd g u     (3)

Here, (),k kg f x and 1

n

ku R  is a vector to be determined. Usually, in (2), the stepsize k is

computed using the Wolfe line search conditions [1,2]:

 () () T

k k k k k k kf x d f x g d    , (4)

 1 ,T T

k k k kg d g d  (5)

mailto:nandrei@ici.ro

 2

where 0 1.    Also, the strong Wolfe line search conditions consisting of (4) and the

following strengthened version of (5):

 1 ,T T

k k k kg d g d   (6)

can be used.

Observe that (3) is a general updating formula for the search direction computation. The

following particularizations of (3) can be presented. If
1 0,ku   then we get the steepest descent

algorithm. If 2 1

1 1 1(()) ,k k ku I f x g

    then the Newton method is obtained. Besides, if
1

1 1 1() ,k k ku I B g

    where
1kB 
 is an approximation of the Hessian 2

1(),kf x  then we find the

quasi-Newton methods. On the other hand, if 1 ,k k ku d  where
k is a scalar and 0 0 ,d g  the

family of conjugate gradient algorithms is generated.

In this paper we focus on conjugate gradient method. This method was introduced by

Hestenes and Stiefel [3] and Stiefel [4], (1 /HS T T

k k k k kg y y d ), to minimize positive definite

quadratic objective functions. (Here 1k k ky g g  .) This algorithm for solving positive definite

linear algebraic systems of equations ,Ax b ,n nA R  ,nb R is known as linear conjugate

gradient. In exact arithmetic the linear conjugate gradient algorithm gives the correct solution in

at most n steps (see [5]). In this case this is a direct method. However, in practice, this algorithm

is regarded as an iterative method (see Reid [6]) because a sufficiently accurate approximation

solution is often obtained in far fewer then n steps. In absence of rounding errors, the theoretical

convergence rate has been studied by many authors. The conclusion is that the rate of

convergence of linear conjugate gradient depends strongly on the distribution of eigenvalues of

the matrix .A Further insights concerning this problem were studied by many researchers, see for

example: Axelsson [7], Axelsson and Lindskog [8], Strakoš [9], Van der Sluis and Van der Vorst

[10], Meurant [11], Winther [12]. Later on, the algorithm was generalized to nonlinear conjugate

gradient in order to minimize arbitrary differentiable nonlinear functions, by Fletcher and Reeves

[13], (
2 2

1 /FR

k k kg g ), Polak and Ribière [14] and Polyak [15], (
2

1 /PRP T

k k k kg y g ), Dai

and Yuan [16], (
2

1 /DY T

k k k kg y d ), Dai and Liao [17], (1() / ,DL T T

k k k k k kg y ts y d   0t ),

and many others. Here . stands for the Euclidean norm. An impressive number of nonlinear

conjugate gradient algorithms have been established, and a lot of papers have been published on

this subject insisting both on theoretical and computational aspects. An excellent survey of

conjugate gradient methods is that given by Hager and Zhang [18].

In the following we consider another approach to generate an efficient and robust

conjugate gradient algorithm. We suggest a procedure for 1ku  computation by minimizing the

quadratic approximation of the function f in 1kx  and by using a special representation of the

inverse Hessian which depends on a positive parameter. The parameter in the matrix representing

the search direction is determined in two different ways. The first one is based on the eigenvalues

analysis of the matrix by trying to minimize the largest eigenvalue. This idea, taken from the

linear conjugate gradient, is to cluster the eigenvalues of the matrix representing the search

direction. The second way to determine the value of the parameter is based on the fact that if the

matrix defining the search direction is ill-conditioned, then, even for small relative errors in the

gradient, the relative errors in the search direction may be large. Therefore, the second way is to

use the singular value analysis by minimizing the condition number of the matrix representing the

search direction of the algorithm.

The algorithm and its properties are presented in section 2. We prove that the search

direction used by these algorithms satisfies both the sufficient descent condition and the Dai and

Liao conjugacy condition [17]. In section 3 we present an adaptive conjugate gradient algorithm

 3

based on the clustering the eigenvalues of the matrix representing the search direction. Section 4

presents the corresponding conjugate gradient algorithm based on minimizing the condition

number of the same matrix using the singular values analysis. Using standard assumptions,

section 5 presents the global convergence of these algorithms for uniformly convex functions. In

section 6 the numerical comparisons between these two conjugate gradient algorithms and the

comparisons of these algorithms versus CG-DESCENT conjugate gradient algorithm [19] are

presented. The purpose was to compare these two approaches of generating conjugate gradient

algorithms. The computational results, for a set of 800 unconstrained optimization test problems,

show that both these algorithms substantially outperform CG-DESCENT, being more efficient

and more robust. On the other hand the algorithm based on the eigenvalues analysis (clustering

the eigenvalues) is more efficient than the algorithm based on the minimizing the condition

number. However, the algorithm using the idea of minimizing the condition number is more

robust than the algorithm based on clustering the eigenvalues. Considering five applications from

the MINPACK-2 test problem collection [20], with 610 variables, we show that both algorithms

have similar performances and both are way more efficient and more robust than CG-DESCENT.

2. The basic algorithm
In this section we describe the basic algorithm and its properties. Let us consider that at the

thk iteration of the algorithm an inexact Wolfe line search is executed, that is the stepsize
k

satisfying (4) and (5) is computed. With these the following elements 1k k ks x x  and

1k k ky g g  are computed. Now, let us take the quadratic approximation of function f in 1kx 

as

 1 1 1 1

1
() ,

2

T T

k k k kd f g d d B d       (7)

where
1kB 
 is an approximation of the Hessian 2

1()kf x  of function f and d is the direction

to be determined. The search direction 1kd  is computed as in (3), where 1ku  is computed as

solution of the following minimizing problem

1

1 1min ().
n

k

k k
u R

d


 


 (8)

Introducing 1kd  from (3) in the minimizing problem (8), then 1ku  is obtained as

 1

1 1 1() .k k ku I B g

    (9)

Clearly, using different approximations 1kB  of the Hessian 2

1()kf x  different search directions

1kd  can be obtained. In this paper we consider the following expression of 1

1kB

 :

 1

1 ,
T T T

k k k k k k
k kT T

k k k k

s y y s s s
B I

y s y s





   (10)

where k is a positive parameter which follows to be determined. Observe that
1

1



kB is the sum

of a skew symmetric matrix with zero diagonal elements () / ,T T T

k k k k k ks y y s y s and a symmetric

and positive definite one: () / ().T T

k k k k kI s s y s Since 1

1kB

 is non-symmetric, regardless of its

effectiveness in terms of numerical performance, it does not seem a natural approximation of the

Hessian 2

1().kf x  However, in this paper we are interested to use this expression of the 1

1kB

 in

the frame of conjugate gradient algorithms, in order to get search directions satisfying both the

sufficient descent and conjugacy conditions.

Again, observe that (10) is a small modification of the memoryless BFGS updating formula used

by Shanno [21]. Note that under exact line search the search direction 1

1 1 1,k k kd B g

    where
1

1kB

 is given by (10), reduces to the Hestenes and Stiefel method [3].

 4

Now, from (9) we get:

 1 1.
T T T

k k k k k k
k k kT T

k k k k

s y y s s s
u g

y s y s
 

 
  
 

 (11)

Denote 1

1 1.k kH B

  Therefore, using (11) in (3) the search direction can be expressed as:

1 1 1,k k kd H g    (12)

where

 1 .
T T T

k k k k k k
k kT T

k k k k

s y y s s s
H I

y s y s



   (13)

Observe that the search direction (12), where
1kH 
 is given by (13), obtained by using the

expression (10) of the inverse Hessian ,1

1



kB is given by:

 1 1 1
1 1 .

T T T

k k k k k k
k k k k kT T T

k k k k k k

y g s g s g
d g s y

y s y s y s
  

 

 
     

 
 (14)

PROPOSITION 2.1. Consider 0k  and the stepsize
k in (2) is determined by the Wolfe line

search conditions (4) and (5). Then the search direction (14) satisfies the descent condition

1 1 0.T

k kg d  

Proof By direct computation, since 0,k  we get:

2

2 1
1 1 1

()
0.

T
T k k
k k k k T

k k

g s
g d g

y s
 

      

PROPOSITION 2.2. Consider 0k  and the stepsize k in (2) is determined by the Wolfe line

search conditions (4) and (5). Then the search direction (14) satisfies the Dai and Liao conjugacy

condition 1 1(),T T

k k k k ky d v s g   where 0.kv 

Proof By direct computation we have
2

1 1 1() (),
kT T T

k k k k k k k kT

k k

y
y d s g v s g

y s
  

 
     
  

where

2

.
k

k k T

k k

y
v

y s
  By Wolfe line search conditions (4) and (5) it follows that 0,T

k ky s 

therefore 0.kv  

Although we have considered the expression of the inverse Hessian as that given by (10), which

is a non-symmetric matrix, the search direction (14), obtained in this manner, satisfies both the

descent condition and the Dai and Liao conjugacy condition. Therefore, the search direction (14)

is a genuine conjugate gradient algorithm. The expression (10) of the inverse Hessian is only a

technical argument to get the search direction (14). It is remarkable to say that from (12) our

method can be considered as a quasi-Newton method in which the inverse Hessian, at each

iteration, is expressed by the non-symmetric matrix 1.kH  More than this, the algorithm based on

the search direction given by (14) can be considered as a three-term conjugate gradient algorithm.

 5

In this point, to define the algorithm the only problem we face is to specify a suitable value for

the positive parameter .k In the following two sections of the paper we present a variant of the

algorithm based on the eigenvalues analysis and another variant based on the singular values,

respectively.

3. The algorithm based on clustering the eigenvalues
As we know, generally, in a small neighborhood of the current point, the nonlinear objective

function f in the unconstrained optimization problem (1) behaves like a quadratic one for which

the results from linear conjugate gradient can be applied. But, for faster convergence of linear

conjugate gradient algorithms some approaches can be considered like: the presence of isolated

smallest and/or largest eigenvalues of the matrix 1,kH  as well as gaps inside the eigenvalues

spectrum [8], clustering of the eigenvalues about one point [12] or about several points [22], or

preconditioning [23]. If the matrix has a number of certain distinct eigenvalues contained in m

disjoint intervals of very small length, then the linear conjugate gradient method will produce a

very small residual after m iterations. This is an important property of linear conjugate gradient

method and we try to use it in nonlinear case in order to get efficient and robust nonlinear

conjugate gradient algorithms. Therefore, we consider the extension of the method of clustering

the eigenvalues of the matrix defining the search direction from linear conjugate gradient

algorithm to nonlinear case.

The idea of this variant of the algorithm is to determine k by clustering the eigenvalues

of 1,kH  given by (13), by minimizing the largest eigenvalue of the matrix 1kH  from the

spectrum of this matrix. The structure of the eigenvalues of the matrix 1kH  is given by the

following theorem.

THEOREM 3.1. Suppose that the stepsize
k is determined by the Wolfe line search conditions

(4) and (5). Let 1kH  be defined by (13). Then 1kH  is a nonsingular matrix and its eigenvalues

consist of 1 (2n  multiplicity), 1k


 and 1,k


 where

 2 2

1

1
(2) 4 4 ,

2
k k k k k kb b a  


     
 

 (15)

 2 2

1

1
(2) 4 4 ,

2
k k k k k kb b a  


     
 

 (16)

and

2 2

2
1,

()

k k

k T

k k

y s
a

y s
 

2

0.
k

k T

k k

s
b

y s
  (17)

Proof By the Wolfe line search conditions (4) and (5) we have that .0k

T

k sy Therefore, the

vectors ky and ks are nonzero vectors. Let V be the vector space spanned by }.,{ kk ys Clearly,

2)dim(V and .2)dim( nV Thus, there exist a set of mutually unit orthogonal vectors



 Vu n

i

i

k

2

1}{ such that

,0 i

k

T

k

i

k

T

k uyus ,2,,1  ni 

which from (13) leads to

1 ,i i

k k kH u u  .2,,1  ni 

Therefore, the matrix 1kH  has 2n eigenvalues equal to 1, which correspond to
2

1}{ 



n

i

i

ku as

eigenvectors.

 6

Now, we are interested to find the rest of the two remaining eigenvalues, denoted as


1k

and 1,k


 respectively. From the formula of algebra (see for example ref. [5])

det() (1)(1) ()(),T T T T T TI pq uv q p v u p v q u     

where ,k k k

T

k k

y s
p

y s


 ,kq s k

T

k k

s
u

y s
  and ,kv y it follows that

2 2 2

1 2
det() .

()

k k k

k k k k kT T

k k k k

s y s
H a b

y s y s
      (18)

But, 1ka  and 0kb  , therefore, 1kH  is a nonsingular matrix.

On the other hand, by direct computation

2

1() .
k

k k k kT

k k

s
tr H n n b

y s
      (19)

By the relationships between the determinant and the trace of a matrix and its eigenvalues, it

follows that the other eigenvalues of 1kH  are the roots of the following quadratic polynomial:

 2 (2) () 0.k k k k kb a b        (20)

Clearly, the other two eigenvalues of the matrix 1kH  are determined from (20) as (15) and (16),

respectively. Observe that 1ka  follows from Wolfe conditions and the inequality:

2

2
.

T
kk k

T

k kk

yy s

y ss
 

In order to have both 1k


 and 1k


 as real eigenvalues, from (15) and (16) the following

condition must be fulfilled 2 2 4 4 0,k k kb a    out of which the following estimation of the

parameter k can be determined:

2 1

.
k

k

k

a

b



 (21)

Since 1,ka  if 0,ks  it follows that the estimation of k given in (21) is well defined.

From (20) we have

 1 1 2 0,k k k kb   

     (22)

 1 1 0.k k k k ka b   

     (23)

Therefore, from (22) and (23) we have that both 1k


 and 1k


 are positive eigenvalues. Since
2 2 4 4 0,k k kb a    from (15) and (16) we have that 1 1.k k  

  By direct computation, from

(15), using (21) we get

 1 1 1 1.k ka

     (24)

A simple analysis of equation (20) shows that 1 11 .k k  

   Therefore, the maximum eigenvalue

of 1kH  is 1k


 and its minimum eigenvalue is 1. Now, we see that if 2n  eigenvalues of 1kH 

are equal to 1, and the remaining two are greater than 1 and they depend by k like in (15) and

(16), then clustering can affect only two eigenvalues. Since the smallest eigenvalue of 1kH  is

equal to 1, the minimization of the largest eigenvalue of this matrix coincides with the clustering

of the eigenvalues.

PROPOSITION 3.1. The largest eigenvalue

 7

 2 2

1

1
(2) 4 4

2
k k k k k kb b a  


     
 

 (25)

gets its minimum 1 1,ka  when
2 1

.
k

k

k

a

b





Proof Observe that 1.ka  By direct computation the minimum of (25) is obtained for

(2 1) / ,k k ka b   for which its minimum value is 1 1.ka  

We see that according to proposition 3.1 when (2 1) /k k ka b   the largest eigenvalue of 1kH 

arrives at the minimum value, i.e. the spectrum of
1kH 
 is clustered. In fact for

(2 1) / ,k k ka b   1 1 1 1.k k ka  

     Therefore, from (17) the following estimation of

k can be obtained:

2

2 1.
T

k k
k k

k

y s
a

s
   (26)

From (17) 1,ka  hence if 0ks  it follows that the estimation of k given by (26) is well

defined. However, we see that the minimum of 1k


 obtained for (2 1) /k k ka b   is given by

1 1.ka  Therefore, if
ka is large, then the largest eigenvalue of the matrix 1kH  will be large.

This motivates the parameter k to be computed as:

2

2

2 1 , if ,

2 1 , otherwise,

T

k k
k

k

k T

k k
k

k

y s
a

s

y s
a

s

 




 


 
 



 (27)

where 1  is a positive constant. Therefore, our algorithm is an adaptive conjugate gradient

algorithm in which the value of the parameter k in the search direction (14) is computed as in

(27) trying to cluster all the eigenvalues of 1kH  defining the search direction of the algorithm.

Using the procedure of acceleration the conjugate gradient algorithms presented in [24],

and taking into consideration the above developments, the following algorithm can be presented.

NADCG Algorithm (New Adaptive Conjugate Gradient Algorithm)

Step 1. Select a starting point 0

nx R and compute: 0(),f x 0 0().g f x Select some

positive values for  and  used in Wolfe line search conditions. Consider a positive

value for the parameter . (1 ) Set 0 0d g  and 0.k 

Step 2. Test a criterion for stopping the iterations. If this test is satisfied, then stop; otherwise

continue with step 3.

Step 3. Determine the stepsize k by using the Wolfe line search (4) and (5).

Step 4. Compute ,k k kz x d  ()zg f z and .k k zy g g 

Step 5. Compute: T

k k z ka g d and .T

k k k kb y d 

Step 6. Acceleration scheme. If 0,kb  then compute /k k ka b   and update the variables

as 1 ,k k k k kx x d    otherwise update the variables as 1 .k k k kx x d  

 8

Step 7. Compute
k as in (27).

Step 8. Compute the search direction as in (14).

Step 9. Powell restart criterion. If
2

1 10.2 ,T

k k kg g g  then set
1 1.k kd g  

Step 10. Consider 1k k  and go to step 2. 

If function f is bounded along the direction ,kd then there exists a stepsize
k satisfying the

Wolfe line search (see for example ref. [25] or [26]). In our algorithm when the Beale-Powell

restart condition is satisfied, then we restart the algorithm with the negative gradient 1.kg  More

sophisticated reasons for restarting the algorithms have been proposed in the literature [27], but

we are interested in the performance of a conjugate gradient algorithm that uses this restart

criterion associated to a direction satisfying both the descent and the conjugacy conditions. Under

reasonable assumptions, the Wolfe conditions and the Powell restart criterion are sufficient to

prove the global convergence of the algorithm. The first trial of the stepsize crucially affects the

practical behavior of the algorithm. At every iteration 1k  the starting guess for the step k in

the line search is computed as 1 1 / .k k kd d   For uniformly convex functions, we can prove

the linear convergence of the acceleration scheme used in the algorithm [24].

4. The algorithm based on minimizing the condition number
As we know, the convergence rate of the nonlinear conjugate gradient algorithms depends on the

structure of the eigenvalues of the Hessian and the condition number of this matrix [28] (see also

ref. [29]). Therefore, in this context a possibility to generate conjugate gradient algorithms is

based on minimizing the condition number of the matrix 1kH  (see for example refs. [30,31]).

From (12) we see that the numerical performances and the efficiency of the quasi-Newton

methods are based on the condition number of the successive approximations to the inverse

Hessian. If the matrix 1kH  is ill-conditioned, then, even for small values of the relative error of

1,kg  the relative error of 1kd  may be large. Hence, when the condition number of 1kH  is large,

the system (12) is potentially very sensitive to perturbations in 1.kg  In other words ill-

conditioned matrices 1kH  may produce instability in iterative numerical computation with them.

Therefore, the idea of this variant of the algorithm is to minimize the condition number of the

matrix 1kH  using its singular values. For this, we briefly present the singular value analysis. The

following definitions and theorems, taken from Watkins [32], clarify some aspects of this concept

of condition number of a matrix.

THEOREM 4.1. [32] Let n mA R  be a nonzero matrix with rank .r Then, mR has an

orthonormal basis 1, , ,mv v nR has an orthonormal basis 1, , ,nu u and there exist the scalars

1 2 0r      such that

, 1, , ,

0, 1, , ,

i i

i

u i r
Av

i r m

 
 

 
 and

, 1, , ,

0, 1, , .

i iT

i

v i r
A u

i r n

 
 

 
 (28)

DEFINITION 4.1. The scalars 1, , r  from the theorem 4.1 are called the singular values of

the matrix .A

Based on the Theorem 4.1, for any nonzero matrix n mA R  with rank r it follows that

 9

2 2 2

1 ,rF
A     (29)

where .
F

 represents the Frobenius norm. If ,r m n  then

1 2det() .nA      

As we mentioned, a very important concept in the sensitivity analysis of numerical computations

with matrices is the matrix condition number. A matrix with a large condition number is called an

ill-conditioned matrix since the computations with this matrix are potentially very sensitive to

changes in data of the problem involving this matrix.

DEFINITION 4.2. For an arbitrary nonsingular matrix ,A the scalar 1()A A A  is called

the condition number of .A

THEOREM 4.2. [32] If n nA R  is a nonsingular matrix with the singular values

1 2 0,n      then 1() / .nA  

DEFINITION 4.3. The condition number ()A computed as above is called the spectral

condition number.

In our analysis we need to find the singular values of the matrix 1.kH  For this, in our

developments we assume that 0,T

k ky s  which is guaranteed by the Wolfe line search conditions

(4) and (5).

THEOREM 4.3. Suppose that the stepsize
k is determined by the Wolfe line search conditions

(4) and (5). Let 1kH  be defined by (13). Then 1kH  has 2n  singular values equal to 1 and the

remaining singular values 1k


 and 1k


 are given by

 2

1

1
(2) 4(1) ,

2
k k k k k kb a b  


     
 

 (30)

 2

1

1
(2) 4(1) ,

2
k k k k k kb a b  


     
 

 (31)

where ka and kb are given by (17).

Proof By the Wolfe line search conditions (4) and (5) we have that .0k

T

k sy Therefore, the

vectors ky and ks are nonzero vectors. Since 0,T

k ky s  there exists a set of mutually

orthonormal vectors 2

1{ }i n

k iu 

 such that

,0 i

k

T

k

i

k

T

k uyus ,2,,1  ni 

which from (13) leads to

1 1 ,i T i i

k k k k kH u H u u   .2,,1  ni 

Therefore, the matrix 1kH  has 2n singular values being equal to 1. Next, we are interested to

find the rest of the two remaining singular values, denoted as 1k


 and 1,k


 respectively. But, by

direct computation
2 2

1 1() 2 2 2 .T

k k k k k k ktr H H n b b a       

Since
2

1 1 1(),T

k k kF
H tr H H   from (29) we get

 10

 2 2 2 2

1 1() () 2 2 .k k k k k k kb b a    

     (32)

As above in Theorem 3.1 (see (18)) the determinant of the iteration matrix
1kH 
 is the product of

the singular values
1k




 and 1,k



 i.e.

 1 1 .k k k k ka b   

    (33)

Now, from (32) and (33) the singular values 1k


 and 1k


 are the solution of the following

quadratic equation

 2 2 2 4 4 () 0,k k k k k k k kb b a a b         

expressed as in (30) and (31), respectively. 

REMARK 4.1. It is relatively easy to prove that, for the matrix
1kH 
 defined by (13), 1 1,k k  

 

i.e. the largest eigenvalue of 1kH  given by (15) is strictly smaller than the largest singular value

of 1kH  given by (30). Now, from (24) 11 ,k

 therefore, for 1kH  defined by (13), it follows

that 1 11 .k k  

  

Obviously, 1 1.k k  

  But, 1 1.k


  Therefore 1 1() .k kH  

  By direct computation,

we see that 1()kH  attains its minimum value ka if and only if 0.k  Hence, minimizing the

condition number of the matrix 1kH  given by (13) lead us to the following search direction

 1 1
1 1 .

T T

k k k k
k k k kT T

k k k k

y g s g
d g s y

y s y s

 
     (34)

Observe that (34) is a simple modification of the Hestenes and Stiefel conjugate gradient

algorithm [3]. In fact, this is exactly the search direction of the three-term conjugate gradient

method proposed by Zhang et al. (see ref. [33]).

Using the procedure of acceleration of conjugate gradient algorithms presented in [24],

and taking into consideration the above developments based on singular value study, the

following algorithm can be presented.

SVCG Algorithm (Singular Value Conjugate Gradient Algorithm)

Step 1. Select a starting point 0

nx R and compute: 0(),f x 0 0().g f x Select some

positive values for  and  used in Wolfe line search conditions. Set 0 0d g  and

0.k 

Step 2. Test a criterion for stopping the iterations. If this test is satisfied, then stop; otherwise

continue with step 3.

Step 3. Determine the stepsize k by using the Wolfe line search (4) and (5).

Step 4. Compute ,k k kz x d  ()zg f z and .k k zy g g 

Step 5. Compute: T

k k z ka g d and .T

k k k kb y d 

Step 6. Acceleration scheme. If 0,kb  then compute /k k ka b   and update the variables

as 1 ,k k k k kx x d    otherwise update the variables as 1 .k k k kx x d  

Step 7. Compute the search direction as in (34).

Step 8. Powell restart criterion. If
2

1 10.2 ,T

k k kg g g  then set 1 1.k kd g  

Step 9. Consider 1k k  and go to step 2. 

 11

From (34) we see that
2

1 1 1 ,T

k k kg d g    i.e. the search direction (34) satisfies the sufficient

descent condition. Besides,
2

1 1(/)(),T T T

k k k k k k ky d y y s s g   i.e. the search direction (34) satisfies

the Dai and Liao conjugacy condition.

5. Global convergence analysis
The global convergence analysis of the above algorithms follows the methodology based on

bounding the norm of the search direction, presented by Gilbert and Nocedal [34], Nocedal [35]

or by Dai et al. [36]. In this section we prove the global convergence of the above algorithms

under the following assumptions:

(i) The level set  0: () ()nS x R f x f x   is bounded. (
0x is the starting point of the

iterative method (2).)

(ii) In a neighborhood N of S the function f is continuously differentiable and its

gradient is Lipschitz continuous, i.e. there exists a constant 0L  such that

() () ,f x f y L x y    for all , .x y N

Since { ()}kf x is a decreasing sequence, it is clear that the sequence { }kx generated by the

proposed algorithms NADCG and SVCG is contained in .S Besides, under the above

assumptions on f there exists a constant 0  such that ()f x  for all .x S For any

conjugate gradient method with strong Wolfe line search the following general result holds [35].

PROPOSITION 5.1. Suppose that the assumptions (i) and (ii) hold. Consider a conjugate

gradient algorithm in which, for all 0,k  the search direction kd is a descent direction and the

stepsize k is determined by the Wolfe line search conditions. If

2

0

1
,

k kd

  (35)

then the algorithm converges in the sense that

 liminf 0.k
k

g


 (36)

For uniformly convex functions we can prove that the norm of the direction 1kd  computed as in

(14) with (27) is bounded above. Therefore, by proposition 5.1 we can prove the following result.

THEOREM 5.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm NADCG

where the search direction kd is given by (14) and k is computed as in (27). Suppose that k is

computed by the strong Wolfe line search. Suppose that f is a uniformly convex function on ,S

i.e. there exists a constant 0  such that

2

(() ()) ()Tf x f y x y x y     (37)

for all , .x y N Then

 lim 0.k
k

g


 (38)

Proof From Lipschitz continuity we have .k ky L s On the other hand, from uniform

convexity it follows that
2
.T

k k ky s s Now, from (27)

 12

2 1 2 1 2 1.
k k

k

k k

y L s
L

s s
        

On the other hand, from (14) we have

1 1 1

1 1

T T T

k k k k k k

k k k k k kT T T

k k k k k k

y g s g s g
d g s s y

y s y s y s


  

    

2 2 2
2 1

k k k k k k

k k k

y s s s s y
L

s s s


  

  
      2 2 1 ,

L
L 

 

 
    

showing that (35) is true. By proposition 5.1 it follows that (36) is true, which for uniformly

convex functions is equivalent to (38). 

THEOREM 5.2. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm SVCG

where the search direction kd is given by (34). Suppose that k is computed by the strong Wolfe

line search. Suppose that f is a uniformly convex function on ,S i.e. there exists a constant

0  such that
2

(() ()) ()Tf x f y x y x y     for all , .x y N Then

 lim 0.k
k

g


 (39)

Proof From (34) we have

1 1

1 1

T T

k k k k

k k k kT T

k k k k

y g s g
d g s y

y s y s

 

   
2 2

k k k k

k k

y s s y

s s 

 
    2 ,

L




  

showing that (35) is true. Therefore (36) is true, which for uniformly convex functions is

equivalent to (39). 

REMARK 5.1. Suppose that the assumptions (i) and (ii) are satisfied. Consider the algorithm

NADCG with parameter k defined as in (27). It can be shown that there exists a positive

constant  such that 0 .k  Hence, if the search directions, computed as in (14), are

descent directions and the stepsizes are determined to satisfy the strong Wolfe conditions (4) and

(6), then Theorem 3.6 of Dai and Liao [17] ensures the global convergence of the method for

general objective functions. On the other hand, the convergence of the SVCG algorithm for

general objective functions can be proved following the methodology given by Gilbert and

Nocedal [34] and the Theorem 2.3 of Zhang et al. [33].

6. Numerical results and comparisons
The NADCG and SVCG algorithms were implemented in double precision Fortran using loop

unrolling of depth 5 and compiled with f77 (default compiler settings) and run on a Workstation

Intel Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained optimization

test problems in generalized or extended form presented in [37]. For each test function we have

considered 10 numerical experiments with the number of variables increasing as

1000,2000, ,10000.n  The algorithms use the Wolfe line search conditions with cubic

interpolation [5], 0.0001,  0.8  and the same stopping criterion 610 ,kg 


 where .


is

the maximum absolute component of a vector.

The algorithms we compare in these numerical experiments find local solutions.

Therefore, the comparisons of algorithms are given in the following context. Let 1ALG

if and
2ALG

if be the optimal values found by ALG1 and ALG2, for problem 1, ,800,i  respectively.

 13

We say that, in the particular problem ,i the performance of ALG1 was better than the

performance of ALG2 if:

 1 2 310ALG ALG

i if f   (40)

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient

evaluations, or the CPU time corresponding to ALG2, respectively. The test problems where the

algorithms do not converge to the same function value, according to criterion (40), are discarded

from comparisons.

In the first set of numerical experiments we compare NADCG versus SVCG for different

values of the parameter . Figure 1 shows the Dolan-Moré’s performance profiles subject to CPU

time metric for different values of the parameter . That is, for each method, we plot the fraction

of problems for which the method is within a factor of the best time. The left side of the figures

gives the percentage of the test problems for which a method is the fastest; the right side gives the

percentage of the test problems that are successfully solved by each of the methods. Clearly, the

top curve corresponds to the method that solved the most problems in a time that was within a

factor of the best time.

From Figure 1, for example for 2  , comparing NADCG versus SVCG subject to the number

of iterations, we see that NADCG was better in 192 problems (i.e. it achieved the minimum

number of iterations for solving 192 problems), SVCG was better in 182 problems and they

achieved the same number of iterations in 416 problems, etc. Out of 800 problems, we considered

in this numerical study, only for 790 problems does the criterion (40) hold. From figure 1 we see

that for different values of the parameter 1  SVCG algorithm is more robust than NADCG. On

the other hand, NADCG is way more efficient than SVCG. However, for large values of , both

algorithms seem to have the same efficiency.

From Figure 1 we see that NADCG algorithm is very little sensitive to the values of the

parameter . In fact, for ,ka  from (14) we get:

 1 1

2

1
,

1

T

k k k
k

k

d s g
s

s 

 
 

 
 (41)

where 1.  Therefore, since the gradient of the function f is Lipschitz continuous and the

quantity 1

T

k ks g  is going to zero it follows that along the iterations 1 /kd   tends to zero,

showing that along the iterations the search direction is less and less sensitive subject to the value

of the parameter . For uniformly convex functions, using the assumptions from section 5 we

get:

 1 .
1

kd

 

 


 
 (42)

Therefore, for example, for larger values of  the variation of 1kd  subject to  decreases

showing that the NADCG algorithm is very little sensitive to the values of the parameter . This

is illustrated in Figure 1 where the performance profiles have the same allure for different values

of parameter 1. 

 14

Figure 1. NADCG versus SVCG for different values of .

Since, CG-DESCENT [38] is among the best nonlinear conjugate gradient algorithms

proposed in the literature, but not necessarily the best, in the second set of numerical experiments

we compare our algorithm NADCG versus CG-DESCENT for different values of . Figure 2

presents the Dolan-Moré’s performance profiles subject to CPU time metric for different values

of .

 15

Figure 2. NADCG versus CG-DESCENT for different values of .

From Figure 2 we see that the NADCG is more efficient and more robust than CG-

DESCENT for any values of the parameter 1  considered in this set of numerical experiments.

The NADCG and CG-DESCENT algorithms (and codes) are different in many respects. Since

both of them use the Wolfe line search (however, implemented in different manners), these

algorithms mainly differ in their choice of the search direction. The search direction 1kd  given

by (14) and (27) used in NADCG is more elaborate: it is adaptive and the eigenvalues of the

matrix defined by it are clustered. In addition it satisfies both the descent condition and the

conjugacy condition in a restart environment.

 16

In the third set of numerical experiments we compare SVCG versus CG-DESCENT. Figure 3

shows the Dolan-Moré’s performance profiles subject to CPU time metric.

Figure 3. SVCG versus CG-DESCENT.

We see that, at least for this set of unconstrained optimization test problems, SVCG algorithm is

more efficient and more robust than CG-DESCENT. From Propositions 2.1 and 2.2 we see that

the search direction (34) used in SVCG algorithm satisfies both the sufficient descent condition

and the Dai and Liao conjugacy condition. Even if the search direction (34) is very simple, it is

more elaborate than the CG-DESCENT direction due to the presence of the term involving ky .

In the last set of numerical experiments, we present comparisons between NADCG, SVCG and

CG-DESCENT conjugate gradient algorithms for solving some applications from the

MINPACK-2 test problem collection [20]. In Table 1 we present these applications, as well as the

values of their parameters.

Table 1.

Applications from the MINPACK-2 collection.

A1 Elastic–plastic torsion [39, pp. 41–55], 5c 

A2 Pressure distribution in a journal bearing [40], 10,b  0.1 

A3 Optimal design with composite materials [41], 0.008 

A4 Steady-state combustion [42, pp. 292–299], [43], 5 

A5 Minimal surfaces with Enneper conditions [44, pp. 80–85]

The infinite-dimensional version of these problems is transformed into a finite element

approximation by triangulation. Thus a finite-dimensional minimization problem is obtained

whose variables are the values of the piecewise linear function at the vertices of the triangulation.

The discretization steps are 1,000nx  and 1,000,ny  thus obtaining minimization problems

with 1,000,000 variables. A comparison between NADCG (Powell restart criterion,
6() 10 ,kf x 


  0.0001,  0.8  , 2 ), SVCG (Powell restart criterion,

 17

6() 10 ,kf x 


  0.0001,  0.8 ) and CG-DESCENT (version 1.4, Wolfe line search,

default settings, 6() 10kf x 


 ) for solving these applications is given in Table 2.

Table 2.

Performance of NADCG, SVCG and CG-DESCENT. 1,000,000 variables. CPU seconds.

 NADCG SVCG CG-DESCENT

 #iter #fg cpu #iter #fg cpu #iter #fg cpu

A1 1113 2257 352.55 1111 2253 349.89 1145 2291 474.64

A2 2845 5718 1141.93 2845 5718 1137.32 3370 6741 1835.51

A3 4700 9437 2764.84 4372 8763 2570.41 4814 9630 3949.71

A4 1413 2864 2037.50 1413 2864 2023.98 1802 3605 3786.25

A5 1285 2606 581.92 1291 2607 580.91 1225 2451 753.75

Total 11356 22882 6878.74 11032 22205 6662.51 12356 24718 10799.86

From Table 2, we see that, subject to the CPU time metric, both NADCG and SVCG algorithms

have similar performances, SVCG being slightly faster. Observe that subject to CPU time metric

NADCG algorithm is top performer versus CG-DESCENT and the difference is significant, about

3921.12 seconds for solving all these five applications. Similarly, SVCG algorithm is top

performer versus CG-DESCENT with a difference of 4137.35 seconds for solving the

applications considered in this numerical study.

7. Conclusions
A theoretical development and a numerical study of two approaches based on eigenvalue analysis

and singular values, respectively was presented in the context of conjugate gradient algorithms.

The search direction is computed as the sum of the negative gradient and an arbitrary vector

which was determined by minimizing the quadratic approximation of objective function at the

current point. The solution of this quadratic minimization problem is a function of the inverse

Hessian. In this paper we introduce a special expression of the inverse Hessian of the objective

function which depends by a positive parameter .k For any nonnegative values of this parameter

the search direction satisfies both the sufficient descent condition and the Dai-Liao’s conjugacy

condition. Thus, the algorithm is a conjugate gradient one. The parameter in the search direction

is determined by using two different approaches.

The first one is based on clustering the spectrum of the matrix defining the search direction. This

idea is taken from the linear conjugate gradient, where clustering the eigenvalues of the matrix is

very benefic with respect to the convergence. Mainly, in our nonlinear case, clustering the

eigenvalues reduces to determine the value of the parameter k to minimize the largest

eigenvalue of the matrix. The adaptive computation of the parameter k in the search direction is

subject to a positive constant which has a very little impact on the performances of our algorithm.

The second approach is based on minimizing the condition number of the matrix defining the

search direction. In this case the minimum value of the condition number is obtained for 0.k 

The corresponding search direction is very simple, being a modification of the Hestenes and

Stiefel’s conjugate gradient algorithm [3] or being exactly the three-term conjugate gradient

algorithm suggested by Zhang et al [33]. Both these approaches are dependent by the expression

of the inverse Hessian approximation.

The stepsize is computed using the classical Wolfe line search conditions with a special

initialization. In order to improve the reducing the values of the objective function to be

minimized an acceleration scheme is used. Under classical assumptions, both algorithms are

 18

globally convergent. Numerical experiments and intensive comparisons using 800 unconstrained

optimization test problems, of different dimensions and complexity, proved that both algorithms

have similar performances, the adaptive conjugate gradient algorithm based on eigenvalue

clustering being slightly more efficient than the corresponding algorithm using the minimizing

the condition number. On the other hand, the algorithm using the idea of minimizing the

condition number is indeed more robust. In an effort to see the performances of these algorithms

we found that both algorithms are more efficient and more robust than CG-DESCENT algorithm.

By solving five large-scale nonlinear optimization applications from MINPACK-2 collection, up

to 610 variables, we prove that both NADCG and SVCG algorithms are obvious more efficient

than CG-DESCENT.

The conclusion is that both these techniques based on eigenvalues clustering or on minimizing the

condition number of the iteration matrix using the singular values are suitable to get efficient and

robust conjugate gradient algorithms. Having in view the Remark 4.1, observe that by minimizing

1k

 we minimize 1.k


 Therefore, these two approaches considered in this paper represent two

different ways to basically pursue similar ideas based on eigenvalues or on singular values of the

iteration matrix, respectively.

It is worth saying that by using some other expressions to the inverse Hessian approximation,

other conjugate gradient algorithms can be obtained. On the other hand, another conjugate

gradient algorithm can also be generated if, instead of clustering the eigenvalues of 1kH  by

minimizing the largest eigenvalue with respect to ,k a different standpoint for eigenvalues

clustering is used, for example by minimizing the trace of 1,kH  subject to some constraints on

.k

References

[1] Wolfe, P., 1969, Convergence conditions for ascent methods. SIAM Review, 11, 226-235.

[2] Wolfe, P., 1971, Convergence conditions for ascent methods. II: Some corrections. SIAM

Review, 13, 185-188.

[3] Hestenes, M.R. and Stiefel, E., 1952, Methods of conjugate gradients for solving linear

systems. J. Research Nat. Bur. Standards Sec. B. 48, 409-436.

[4] Stiefel, E., 1952, Über einige Methoden der Relaxationsrechnung. Z. Angew. Math. Phys., 3,

1-33.

[5] Sun, W. and Yuan, Y.X., 2006, Optimization Theory and Methods. Nonlinear Programming.

(New York: Springer Science + Business Media).

[6] Reid, J.K., 1971, On the method of conjugate gradients for solution of large sparse systems of

linear equations. In: J.K. Reid, (Ed) Large Sparse Sets of Linear Equations (London:

Academic Press), pp. 231-254.

[7] Axelsson, O., 1976, A class of iterative methods for finite element equations. Com. Meth.

Appl. Mech. Eng., 9, 123-137.

[8] Axelsson, O. and Lindskog, G., 1986, On the rate of convergence of the preconditioned

conjugate gradient methods. Numer. Math., 48, 499-523.

[9] Strakoš, Z., 1991, On the real convergence rate of the conjugate gradient method. Linear

Algebra and its Applications, 154-156, 535-549.

[10] Van der Sluis, A. and Van der Vorst, H.A., 1986, The rate of convergence of conjugate

gradients. Numer. Math., 48, 543-560.

[11] Meurant, G., 1999, Computer Solution of Large Linear Systems. Studies in Mathematics and

its Applications, volume 28, (Amsterdam: North Holland).

[12] Winther, R., 1980, Some superlinear convergence results for the conjugate gradient method.

SIAM J. Numer. Anal., 17, 14-17.

 19

[13] Fletcher, R. and Reeves, C.M., 1964, Function minimization by conjugate gradients.

Computer Journal, 7, 149-154.

[14] Polak, E. and Ribière, G., 1969, Note sur la convergence de directions conjuguée, Rev.

Francaise Informat. Recherche Operationelle, 3e Année, 16, 35-43.

[15] Polyak, B.T., 1969, The conjugate gradient method in extreme problems. USSR Comp. Math.

Math. Phys. 9, 94-112.

[16] Dai, Y.H. and Yuan, Y., 1999, A nonlinear conjugate gradient method with a strong global

convergence property. SIAM J. Optim. 10, 177-182.

[17] Dai, Y.H. and Liao, L.Z., 2001, New conjugacy conditions and related nonlinear conjugate

gradient methods. Appl. Math. Optim. 43, 87-101.

[18] Hager W.W. and Zhang, H., 2006, A survey of nonlinear conjugate gradient methods.

Pacific Journal of Optimization, 2(1), 35-58.

[19] Hager, W.W. and Zhang, H., 2005, A new conjugate gradient method with guaranteed

descent and an efficient line search. SIAM Journal on Optimization, 16, 170-192.

[20] Averick, B.M., Carter, R.G., Moré, J.J. and Xue, G.L., 1992, The MINPACK-2 test problem

collection, Mathematics and Computer Science Division, Argonne National Laboratory,

Preprint MCS-P153-0692.

[21] Shanno, D.F., 1978, Conjugate gradient methods with inexact searches. Mathematics of

Operations Research, 3, 244-256.

[22] Kratzer, D., Parter, S.V. and Steuerwalt, M., 1983, Block splittings for the conjugate gradient

method. Comp. Fluid, 11, 255-279.

[23] Kaporin, I.E., 1994, New convergence results and preconditioning strategies for the

conjugate gradient methods. Numerical Linear Algebra with Applications, 1(2), 179-210.

[24] Andrei, N., 2009, Acceleration of conjugate gradient algorithms for unconstrained

optimization. Applied Mathematics and Computation, 213, 361-369.

[25] Dennis, J.E. and Schnabel, R.B., 1983, Numerical Methods for Unconstrained Optimization

and Nonlinear Equations. (Englewood Cliffs, NJ: Prentice-Hall, Inc.).

[26] Polyak, B.T., 1987, Introduction to Optimization. (New York: Optimization Software, Inc.,

Publications Division).

[27] Dai, Y.H., Liao, L.Z. and Duan, Li, 2004, On restart procedures for the conjugate gradient

method. Numerical Algorithms, 35, 249-260.

[28] Nocedal, J. and Wright, S.J., 2006, Numerical optimization. (2
nd

 ed.). Springer Series in

Optimizations Research. (New York: Springer Science+Business Media).

[29] Luenberger, D.G. and Ye, Y., 2008, Linear and Nonlinear Programming. International

Series in Operations Research & Management Science 116. (New York: Springer

Science+Business Media).

[30] Babaie-Kafaki, S. and Ghanbari, R., 2014, A modified scaled conjugate gradient method

with global convergence for nonconvex functions. Bulletin of the Belgian Mathematical

Society-Simon Stevin, 21(3), 465-47.

[31] Babaie-Kafaki, S. and Ghanbari, R., 2014, The Dai-Liao nonlinear conjugate gradient

method with optimal parameter choices. European Journal of Operational Research, 234,

625-630.

[32] Watkins, D.S., 2002, Fundamentals of Matrix Computations. (2
nd

 ed.). (New York: John

Wiley and Sons, Inc.).

[33] Zhang, L., Zhou, W. and Li, D.H., 2007, Some descent three-term conjugate gradient

methods and their global convergence. Optimization Methods and Software, 22(4), 697-711.

[34] Gilbert, J.C. and Nocedal, J., 1992, Global convergence properties of conjugate gradient

methods for optimization. SIAM Journal on Optimization, 2(1), 21-42.

[35] Nocedal, J., 1996, Conjugate gradient methods and nonlinear optimization. In: Adams, L.

and Nazareth, J.L., (Eds) Linear and Nonlinear Conjugate Gradient Related Methods, SIAM,

9-23.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=zQDZIzsAAAAJ&citation_for_view=zQDZIzsAAAAJ:qxL8FJ1GzNcC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=zQDZIzsAAAAJ&citation_for_view=zQDZIzsAAAAJ:qxL8FJ1GzNcC

 20

[36] Dai, Y., Han, J., Liu, G., Sun, D., Yin, H. and Yuan, Y-X., 1999, Convergence properties of

nonlinear conjugate gradient methods. SIAM Journal on Optimization, 10(2), 345-358.

[37] Andrei, N., 2013, Another collection of large-scale unconstrained optimization test

functions. Technical Report January 30, Center for Advanced Modeling and Optimization,

Bucharest.

[38] Hager, W.W. and Zhang, H., 2006, Algorithm 851: CG-DESCENT, a conjugate gradient

method with guaranteed descent. ACM Trans. Math. Softw. 32, 113-137.

[39] Glowinski, R., 1984, Numerical Methods for Nonlinear Variational Problems (Berlin:

Springer-Verlag).

[40] Cimatti, G., 1977, On a problem of the theory of lubrication governed by a variational

inequality, Applied Mathematics and Optimization 3, 227–242.

[41] Goodman, J., Kohn, R. and Reyna, L., 1986, Numerical study of a relaxed variational

problem from optimal design, Computer Methods in Applied Mechanics and Engineering 57,

107–127.

[42] Aris, R., 1975, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts

(Oxford).

[43] Bebernes, J. and Eberly, D., 1989, Mathematical Problems from Combustion Theory, In:

Applied Mathematical Sciences, vol. 83, (Berlin: Springer-Verlag).

[44] Nitsche, J.C.C., 1989, Lectures on Minimal Surfaces, vol. 1, (Cambridge University Press).

---oooOooo---

