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Abstract In this paper, we suggest another accelerated conjugate gradient algorithm
for which both the descent and the conjugacy conditions are guaranteed. The search
direction is selected as a linear combination of the gradient and the previous direction.
The coefficients in this linear combination are selected in such a way that both the
descent and the conjugacy condition are satisfied at every iteration. The algorithm in-
troduces the modified Wolfe line search, in which the parameter in the second Wolfe
condition is modified at every iteration. It is shown that both for uniformly convex
functions and for general nonlinear functions, the algorithm with strong Wolfe line
search generates directions bounded away from infinity. The algorithm uses an accel-
eration scheme modifying the step length in such a manner as to improve the reduc-
tion of the function values along the iterations. Numerical comparisons with some
conjugate gradient algorithms using a set of 75 unconstrained optimization prob-
lems with different dimensions show that the computational scheme outperforms the
known conjugate gradient algorithms like Hestenes and Stiefel; Polak, Ribière and
Polyak; Dai and Yuan or the hybrid Dai and Yuan; CG_DESCENT with Wolfe line
search, as well as the quasi-Newton L-BFGS.
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Author's personal copy

mailto:nandrei@ici.ro


J Optim Theory Appl

1 Introduction

Conjugate gradient algorithm represents an important computational innovation for
continuously differentiable large-scale nonlinear unconstrained optimization, with
strong local and global convergence properties and modest memory requirements.
A history of these algorithms has been given by Golub and O’Leary [1], as well as by
O’Leary [2]. An excellent survey of development of different versions of nonlinear
conjugate gradient methods, with special attention to global convergence properties,
is presented by Hager and Zhang [3]. This family of algorithms includes a lot of
variants, well known in the literature, with important convergence properties and nu-
merical efficiency. Different from the Newton or quasi-Newton methods, the descent
condition plays a crucial role in convergence of the conjugate gradient algorithms.
The searching directions in conjugate gradient algorithms are selected in such a way
that, when applied to minimize a strongly quadratic convex function, two successive
directions are conjugate, subject to the Hessian of the quadratic function. Therefore,
to minimize a convex quadratic function in a subspace spanned by a set of mutu-
ally conjugate directions is equivalent to minimize this function along each conjugate
direction in turn. This is a very good idea, but the performance of these algorithms
is dependent on the accuracy of the line search. When applied to general nonlinear
functions, often, the searching directions in conjugate gradient algorithms are com-
puted using some formulas which do not satisfy the conjugacy condition. However,
by extension we call them conjugate gradient algorithms.

In this paper, we propose a new nonlinear conjugate gradient algorithm where, at
every iteration, both the descent and the conjugacy conditions are satisfied, indepen-
dent by the line search. The structure of the paper is as follows. Section 2 contains
some preliminaries. The search direction, presented in Sect. 3, is selected as a linear
combination of the negative gradient and the previous searching direction, where the
coefficients in this linear combination are selected in such a way that both the descent
and the conjugacy condition are satisfied. In Sect. 4, the modified Wolfe line search
conditions are introduced. Mainly the second Wolfe condition is modified by chang-
ing its parameter, at each iteration, through a specified formula. Some properties of
the algorithm are presented in Sect. 5. The acceleration scheme of the algorithm is
described in Sect. 6. The idea of this computational scheme is to take advantage that
the step lengths in conjugate gradient algorithms are very different from 1. Therefore,
we suggest modifying the step length in such a manner as to improve the reduction
of the function values along the iterations. Section 7 is devoted to presentation of the
algorithm. In Sect. 8, we prove the convergence of the algorithm. It is shown that both
for uniformly convex functions and for general nonlinear functions, the correspond-
ing algorithm with modified strong Wolfe line search generates directions bounded
away from infinity. In Sect. 9, some numerical experiments and performance pro-
files of Dolan–Moré [4] corresponding to this new conjugate gradient algorithm are
given. The performance profiles correspond to a set of 75 unconstrained optimiza-
tion problems presented in [5]. Each problem was tested 10 times, for a gradually
increasing number of variables: 1000,2000, . . . ,10000. It is shown that this new con-
jugate gradient algorithm outperforms the classical Hestenes and Stiefel [6], Dai and
Yuan [7], Polak, Ribière and Polyak [8, 9], hybrid Dai and Yuan [7] (hDY) conjugate
gradient algorithms, the CG_DESCENT conjugate gradient algorithm with Wolfe
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line search [10] and also L-BFGS [11]. To see the performances of the algorithm, in
Sect. 10, a sensitivity study subject to variation of scalar parameters in linear com-
bination defining the searching direction is presented. Numerical experiments prove
that the algorithm is very little sensitive to the variation of these parameters. Lastly, in
Sect. 11, a comparison between our algorithm and CG_DESCENT on some applica-
tions from MINPACK-2 test problems collection [12] is illustrated. All these various
numerical experiments show that our algorithm is one of the fastest and more robust
conjugate gradient algorithms.

2 Preliminaries

For solving large-scale unconstrained optimization problems

min
x∈Rn

f (x), (1)

where f : R
n → R is a continuously differentiable function, bounded from below,

one of the most elegant and probably the simplest is the conjugate gradient method.
For solving this problem, starting from an initial guess x0 ∈ R

n, a nonlinear conjugate
gradient method generates a sequence {xk} as:

xk+1 = xk + αkdk, (2)

where αk > 0 is obtained by line search, and the directions dk are generated as:

dk+1 = −gk+1 + βkdk, d0 = −g0. (3)

In (3) βk is known as the conjugate gradient parameter and gk := ∇f (xk). The search
direction dk , assumed to be descent, plays the main role in these methods. On the
other hand, the step size αk guarantees the global convergence in some cases and is
crucial in efficiency. Different conjugate gradient algorithms correspond to different
choices for the scalar parameter βk . Line search in the conjugate gradient algorithms
often is based on the standard Wolfe conditions [13],

f (xk + αkdk) − f (xk) ≤ ραkg
T
k dk, (4)

g(xk + αkdk)
T dk ≥ σgT

k dk, (5)

where dk is supposed to be a descent direction and 0 < ρ < σ < 1. In our develop-
ments, the following basic assumptions are necessary:

(i) Boundedness Assumption: The level set S := {x ∈ R
n : f (x) ≤ f (x0)} is

bounded, i.e. there exists a positive constant B > 0 such that for all x ∈ S,

‖x‖ ≤ B .
(ii) Lipschitz Continuity Assumption: In a neighborhood N of S, the function f is

continuously differentiable and its gradient is Lipschitz continuous, i.e. there ex-
ists a constant L > 0 such that ‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖, for all x, y ∈ N .

Under these assumptions on f , there exists a constant Γ ≥ 0 such that
‖∇f (x)‖ ≤ Γ for all x ∈ S. Besides, ‖sk‖ = ‖xk+1 − xk‖ ≤ ‖xk+1‖ + ‖xk‖ ≤ 2B .
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If the initial direction d0 is selected as d0 = −g0, and the objective function to be
minimized is a strictly convex quadratic function f (x) = 1

2xT Ax + bT x + c and the
exact line searches are used, that is, αk = arg minα>0 f (xk +αdk), then the conjugacy
condition dT

i Adj = 0 holds for all i �= j . This relation is the original condition used
by Hestenes and Stiefel [6] to derive the conjugate gradient algorithms, mainly for
solving symmetric positive-definite systems of linear equations. Let us denote yk :=
gk+1 − gk . For a general nonlinear twice differential function f , by the mean value
theorem, there exists some ξ ∈ (0,1) such that dT

k+1yk = αkd
T
k+1∇2f (xk + ξαkdk)dk .

Therefore, it seems reasonable to replace the original conjugacy condition dT
i Adj =

0(i �= j) with the following one:

dT
k+1yk = 0. (6)

In order to accelerate the conjugate gradient algorithm, Perry [14] (see also Shanno
[15]) extended this conjugacy condition by incorporating the second order informa-
tion. He used the secant condition Hk+1yk = sk , where Hk is a symmetric approxi-
mation to the inverse Hessian and, as usual, sk := xk+1 − xk . Since for quasi-Newton
method the search direction dk+1 is computed as dk+1 = −Hk+1gk+1, it follows that
dT
k+1yk = −(Hk+1gk+1)

T yk = −gT
k+1(Hk+1yk) = −gT

k+1sk , thus obtaining a new
conjugacy condition. This condition can be extended as

dT
k+1yk = −v

(
gT

k+1sk
)
, (7)

where v ≥ 0 is a scalar [16]. In conjugate gradient algorithms we always use inexact
line search. Therefore, it seems more reasonable to consider the conjugacy condition
(7). The conjugate gradient algorithm (2) and (3) with exact line search always will
satisfy the condition gT

k+1dk+1 = −‖gk+1‖2, which is in a direct connection with the
sufficient descent condition

gT
k+1dk+1 ≤ −w‖gk+1‖2, (8)

for some arbitrary positive constant w > 0. The sufficient descent condition has been
used often in the literature to analyze the global convergence of the conjugate gradient
algorithms with inexact line search based on the strong Wolfe conditions. Using (7),
Dai and Liao [16] obtained a new conjugate gradient algorithm

βDL
k = gT

k+1(yk − vsk)

yT
k sk

. (9)

For an exact line search, we see that gk+1 is orthogonal to sk . Therefore, for an exact
line search, the DL method reduces to the Hestenes and Stiefel (HS) method. Hence,
the DL method may not converge for an exact line search. To overcome this and to
ensure convergence, the following formula has been suggested [16]:

βDL+
k = max

{
gT

k+1yk

yT
k sk

,0

}
− v

gT
k+1sk

yT
k sk

. (10)

In this paper, based on these developments, we suggest a new conjugate gradient algo-
rithm in which both the conjugacy condition (7) and the sufficient descent condition
(8) are satisfied, independent of the line search.
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3 Conjugate Gradient Algorithm with Guaranteed Descent and Conjugacy
Conditions

For solving the minimization problem (1) let us consider the following conjugate
gradient algorithm:

xk+1 = xk + αkdk, (11)

where αk > 0 is obtained by a variant of the Wolfe line search below discussed, and
the directions dk are generated as

dk+1 = −θkgk+1 + βksk, (12)

βk = yT
k gk+1 − tks

T
k gk+1

yT
k sk

, (13)

d0 = −g0, where θk and tk are scalar parameters which follows to be determined.
Algorithms of this form, or variations of them, have been studied by many authors.
For example, Andrei [17, 18] considers a preconditioned conjugate gradient algo-
rithm where the preconditioner is a scaled memoryless BFGS matrix and the pa-
rameter scaling the gradient is selected as the spectral gradient. On the other hand,
Birgin and Martínez [19] suggested a spectral conjugate gradient method, where
θk = sT

k sk/s
T
k yk . Yuan and Stoer [20] studied the conjugate gradient algorithm on a

subspace, where the search direction dk+1 is taken from the subspace span{gk+1, dk}.
Observe that, if for every k ≥ 1, θk = 1 and tk = v, then (12) reduces to the Dai and
Liao direction (9).

In our algorithm, for all k ≥ 0, the scalar parameters θk and tk in (12) and (13),
respectively, are determined in such a way that both the descent and the conjugacy
conditions are satisfied. Therefore, from the descent condition (8) we have

−θk‖gk+1‖2 + (yT
k gk+1)(s

T
k gk+1)

yT
k sk

− tk
(sT

k gk+1)
2

yT
k sk

= −w‖gk+1‖2, (14)

and from the conjugacy condition (7)

−θky
T
k gk+1 + yT

k gk+1 − tks
T
k gk+1 = −v

(
sT
k gk+1

)
, (15)

where v > 0 and w > 0 are known scalar parameters. Observe that in (14) we modi-
fied the classical sufficient descent condition (8) with equality. If v = 0, then (15) is
the “pure” conjugacy condition. However, in our algorithm, in order to improve the
algorithm and to incorporate the second order information, we take v > 0. Now, let
us define

	̄k := (
yT
k gk+1

)(
sT
k gk+1

) − ‖gk+1‖2(yT
k sk

)
, (16)

	k := (
sT
k gk+1

)
	̄k, (17)

ak := v
(
sT
k gk+1

) + yT
k gk+1, (18)

bk := w‖gk+1‖2(yT
k sk

) + (
yT
k gk+1

)(
sT
k gk+1

)
. (19)
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Supposing that 	k �= 0 and yT
k gk+1 �= 0,then, from the linear algebraic system given

by (14) and (15), we get

tk = bk(y
T
k gk+1) − ak(y

T
k sk)‖gk+1‖2

	k

, (20)

θk = ak − tk(s
T
k gk+1)

yT
k gk+1

, (21)

with which the parameter βk and the direction dk+1 can immediately be computed.
Observe that, using (20) in (21), we get

θk = ak

yT
k gk+1

[
1 + (yT

k sk)‖gk+1‖2

	̄k

]
− bk

	̄k

. (22)

Again, using (20) in (13), we have

βk = yT
k gk+1

yT
k sk

(
1 − bk

	̄k

)
+ ak

‖gk+1‖2

	̄k

. (23)

Therefore, our conjugate gradient algorithm with guaranteed descent and conjugacy
condition is defined by (11) and (12), where the scalar parameters θk and βk are
given by (22) and (23), respectively, and αk is computed by a variant of the Wolfe
line search we present in the next section.

4 Modified Wolfe Line Search Conditions

In the following, in order to define the algorithm, we shall consider a small modifica-
tion of the second Wolfe line search condition (5) as

g(xk + αkdk)
T dk ≥ σkg

T
k dk, (24)

where σk is a sequence of parameters satisfying the condition 0 < ρ < σk < 1, for
all k. Therefore, in our algorithm we consider that the rate of decrease of f in the
direction dk at xk+1 is larger than a fraction σk , which is modified at every iteration,
of the rate of decrease of f in the direction dk at xk . The condition ρ < σk , for all
k ≥ 0, guarantees that (4) and (24) can be satisfied simultaneously. We call (4) and
(24) the modified Wolfe line search conditions. The following propositions can be
proved.

Proposition 4.1 If

1

2
< σk ≤ ‖gk+1‖2

|yT
k gk+1| + ‖gk+1‖2

, (25)

then, for all k ≥ 1, 	̄k < 0.

Proof Observe that

sT
k gk+1 = sT

k yk + sT
k gk < sT

k yk. (26)
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The modified Wolfe condition (24) gives

gT
k+1sk ≥ σkg

T
k sk = −σky

T
k sk + σkg

T
k+1sk. (27)

Since σk < 1, we can rearrange (27) to obtain

gT
k+1sk ≥ −σk

1 − σk

yT
k sk. (28)

Now, combining this lower bound for gT
k+1sk with the upper bound (26), since

yT
k sk > 0 (if ‖gk‖ �= 0), we get

∣∣gT
k+1sk

∣∣ ≤ ∣∣yT
k sk

∣∣max

{
1,

σk

1 − σk

}
. (29)

Since σk > 1/2, from (29) we can write

∣∣gT
k+1sk

∣∣ <
σk

1 − σk

∣∣yT
k sk

∣∣. (30)

If (25) is true, then
σk

1 − σk

∣∣yT
k gk+1

∣∣ ≤ ‖gk+1‖2. (31)

Since yT
k sk > 0 it follows that

σk

1 − σk

∣∣yT
k sk

∣∣∣∣gT
k+1yk

∣∣ ≤ ∣∣yT
k sk

∣∣‖gk+1‖2. (32)

From (30) and (32) we can write

∣∣sT
k gk+1

∣∣∣∣yT
k gk+1

∣∣ <
σk

1 − σk

∣∣yT
k sk

∣∣∣∣yT
k gk+1

∣∣ ≤ ∣∣yT
k sk

∣∣‖gk+1‖2, (33)

i.e. 	̄k < 0 for all k ≥ 1. �

In our algorithm we consider

σk = ‖gk+1‖2

|yT
k gk+1| + ‖gk+1‖2

. (34)

If gk �= 0 for all k ≥ 0,then 0 < σk < 1 for all k ≥ 0.

Proposition 4.2 Suppose that ‖gk‖ ≥ γ > 0 for all k ≥ 0, i.e. the norm of the gra-
dient is bounded away from zero for all k ≥ 0. Then the sequence {σk} is uniformly
bounded away from zero, independent of k.

Proof From the basic assumptions observe that |yT
k gk+1| ≤ ‖yk‖‖gk+1‖ ≤ L‖sk‖Γ ≤

LΓ (2B). Therefore, |σk| = ‖gk+1‖2

|yT
k gk+1|+‖gk+1‖2 ≥ γ 2

2BLΓ +Γ 2 ≡ η > 0. Since |σk| ≥ η for

any k ≥ 0 it follows that {σk} is uniformly bounded away from zero. �
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Proposition 4.3 Suppose that dk satisfies the descent condition gT
k dk = −w‖gk‖2,

where w > 0, and ∇f satisfies the Lipschitz condition ‖∇f (x) − ∇f (xk)‖ ≤ L‖x −
xk‖ for all x on the line segment connecting xk and xk+1, where L is a positive
constant. Besides, assume that ‖gk‖ ≥ γ > 0 for all k ≥ 0. If the line search satisfies
the modified Wolfe conditions (4) and (24), where 0 < σk < 1 for all k ≥ 0, then

αk ≥ (1 − σk)

L

wγ 2

‖dk‖2
≡ ωk. (35)

Proof To prove (35) subtract gT
k dk from both sides of (24) and, using the Lipschitz

condition, we get (σk − 1)gT
k dk ≤ (gk+1 − gk)

T dk ≤ αkL‖dk‖2. However, dk is a
descent direction and σk < 1. From the descent condition we immediately get

αk ≥ (1 − σk)

L

|gT
k dk|

‖dk‖2
= (1 − σk)

L

w‖gk‖2

‖dk‖2
≥ (1 − σk)

L

wγ 2

‖dk‖2
> 0. �

Consider ω = inf{ωk}, where ωk is defined in (35).

5 Some Properties of the Algorithm

In the following, we shall present some properties of the elements which define the
algorithm. We assume that the step length αk is computed by the modified Wolfe line
search conditions.

Proposition 5.1 Suppose that dk satisfies the descent condition gT
k dk = −w‖gk‖2,

where w > 0, and ∇f (x) is Lipschitz continuous on the level set S. Besides, assume
that ‖gk‖ ≥ γ > 0 for all k ≥ 0. Then the sequence {	̄k} given by (16) is uniformly
bounded away from zero, independent of k.

Proof Since gk �= 0 for all k ≥ 0, from (34) it follows that σk < 1 for all k ≥ 1. Ob-
serve that with this value for σk , from (30) it follows that 	̄k < 0 for all k ≥ 1. Now,
from Proposition 4.3, the modified Wolfe condition (24) and the descent condition
gT

k dk = −w‖gk‖2, since σk < 1, for all k ≥ 1, we have

yT
k sk = αky

T
k dk ≥ αk(σk − 1)gT

k dk = −αk(σk − 1)w‖gk‖2 ≥ ωk(1 − σk)wγ 2 > 0.

Therefore, |yT
k sk|‖gk+1‖2 ≥ ωk(1 − σk)wγ 4 > 0, for all k ≥ 1, i.e. (yT

k sk)‖gk+1‖2 is
uniformly bounded away from zero independent of k. We know that dk is a descent
direction for any k ≥ 0, therefore, even that the line search is not exact; however,
the line search based on the modified Wolfe conditions is enough accurate to ensure
that sT

k gk+1 tends to zero along the iterations. Therefore, since |yT
k gk+1| is bounded

as |yT
k gk+1| ≤ 2BLΓ , it follows that (yT

k gk+1)(s
T
k gk+1) → 0. Since 	̄k < 0 for all

k ≥ 1, we find that the sequence {	̄k} is uniformly bounded away from zero indepen-
dent of k. �
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Proposition 5.2 Suppose that dk satisfies the descent condition gT
k dk = −w‖gk‖2,

where w > 0, and ‖gk‖ ≥ γ > 0 for all k ≥ 0. Then the parameter θk defined in (22)
tends to w > 0, i.e. θk → w.

Proof From (12), using the descent condition gT
k dk = −w‖gk‖2, we get

βk(s
T
k gk+1) = (θk −w)‖gk+1‖2 ≥ (θk −w)γ 2. Since dk is a descent direction and the

step length αk is computed by the modified Wolfe line search conditions, it follows
that sT

k gk+1 tends to zero. Therefore, θk tends to w > 0, and hence θk > 0. �

Observe that, since w is a real positive and finite constant, and θk → w, there
exist real arbitrary and positive constants 0 < c1 ≤ w and c2 ≥ w, such that, for any
k ≥ 1, c1 ≤ θk ≤ c2.

Proposition 5.3 Suppose that dk satisfies the descent condition gT
k dk = −w‖gk‖2,

‖gk‖ ≥ γ > 0 for all k ≥ 0 and w > 1. Then the scalar parameter bk given by (19) is
positive, i.e. bk > 0.

Proof By the second Wolfe condition (24) we have yT
k sk = (gk+1 − gk)

T sk ≥
(σk − 1)gT

k sk . However, from the descent condition it follows that gT
k sk = αkg

T
k dk =

−αkw‖gk‖2. From Proposition 4.3 we have yT
k sk ≥ (σk − 1)gT

k sk =
−αk(σk − 1)w‖gk‖2 ≥ ωkw(1 − σk)‖gk‖2 > ωkw(1 − σk)γ

2 > 0. Therefore, by
the modified second Wolfe condition (24), for all k ≥ 0, yT

k sk > 0. On the other
hand, since w > 1, from (33) it follows that w‖gk+1‖2(yT

k sk) ≥ |yT
k gk+1||sT

k gk+1|.
Since dk is a descent direction and the step length αk is computed by the modified
Wolfe line search conditions, it follows that sT

k gk+1 tends to zero along the iterations.
Therefore, from (19), bk > 0 for all k ≥ 0. �

6 Acceleration Scheme

We know that in conjugate gradient algorithms the search directions tend to be poorly
scaled, and as a consequence, the line search must perform more function evalua-
tions in order to obtain a suitable step length αk . Therefore, the research effort was
directed to design procedures for direction computation, which takes the second or-
der information. For example, the algorithms implemented in SCALCG by Andrei
[17, 18] and CONMIN by Shanno and Phua [21] use the BFGS preconditioning with
remarkable results. Basically, the acceleration scheme modifies the step length αk in
a multiplicative manner to improve the reduction of the function values along the it-
erations. As in [22], in the accelerated algorithm, instead of (11), the new estimation
of the minimum point is computed as

xk+1 = xk + ξkαkdk, (36)

where

ξk = − āk

b̄k

, (37)
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āk := αkg
T
k dk, b̄k := −αk(gk − gz)

T dk, gz := ∇f (z), and z = xk + αkdk . Hence, if
b̄k > 0, then the new estimation of the solution is computed as xk+1 = xk + ξkαkdk ,
otherwise xk+1 = xk +αkdk . Observe that b̄k = αk(gz−gk)

T dk = αk(d
T
k ∇2f (x̄k)dk),

where x̄k is a point on the line segment connecting xk and z. Since αk > 0, it follows
that, for convex functions, b̄k ≥ 0. Hence, for convex functions, from the sufficient
descent condition gT

k dk = −w‖gk‖2 we get

ξk = − āk

b̄k

= −αk(g
T
k dk)

αk(d
T
k ∇2f (x̄k)dk)

= w‖gk‖2

dT
k ∇2f (x̄k)dk

≥ 0. (38)

For convex functions there exist constants m > 0 and M < ∞ such that m‖u‖2 ≤
uT ∇2f (x)u ≤ M‖u‖2, for any u �= 0. Supposing that ‖gk‖ ≥ γ > 0 for all k ≥ 0,
(otherwise a stationary point is obtained), then in (36) the step length αk is modified
by a finite and positive value ξk . Consequently, with this modification of the step
length, by Proposition 5.1, the sequence {	̄k} continues to be uniformly bounded
away from zero, independent of k.

7 DESCON Algorithm

Therefore, using the definitions of gk, sk, ykand the above acceleration scheme (36)
and (37), we can present the following conjugate gradient algorithm.

Step 1. Select a starting point x0 ∈ domf and compute: f0 = f (x0) and
g0 = ∇f (x0). Select some positive values for ρ and σ0, and for v and w.
Set d0 = −g0 and k = 0. Select a small positive value: εm

Step 2. Test a criterion for stopping the iterations. If the test is satisfied, then stop;
otherwise continue with step 3

Step 3. Determine the step length αk by the modified Wolfe line search conditions
(4) and (24)

Step 4. Acceleration scheme. Compute: z = xk + αkdk, gz = ∇f (z) and
yk = gk − gz

Step 5. Compute: āk = αkg
T
k dk , and b̄k = −αky

T
k dk

Step 6. If b̄k > 0, then compute ξk = −āk/b̄k and update the variables as
xk+1 = xk + ξkαkdk , otherwise update the variables as xk+1 = xk + αkdk .
Compute fk+1 and gk+1. Compute yk = gk+1 − gk and sk = xk+1 − xk

Step 7. Compute 	̄k as in (16)
Step 8. If |	̄k| ≥ εm, then determine θk and βk as in (22) and (23), respectively,

else set θk = 1 and βk = 0
Step 9. Compute the search direction as: dk+1 = −θkgk+1 + βksk
Step 10. Compute σk = ‖gk+1‖2/(|yT

k gk+1| + ‖gk+1‖2)

Step 11. Restart criterion. If |gT
k+1gk| > 0.2‖gk+1‖2 then set dk+1 = −gk+1

Step 12. Take k = k + 1 and go to step 2

If f is bounded along the direction dk , then there exists a step size αk satisfying
the modified Wolfe line search conditions (4) and (24). In our algorithm, when the
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Powell restart condition is satisfied (step 11), then we restart the algorithm with the
negative gradient −gk+1. Under reasonable assumptions, the modified Wolfe line
search conditions and the Powell restart criterion are sufficient to prove the global
convergence of the algorithm. The first trial of the step length crucially affects the
practical behavior of the algorithm. At every iteration k ≥ 1 the starting guess for the
step αk in the line search is computed as αk−1‖dk−1‖/‖dk‖. This selection was used
for the first time by Shanno and Phua in CONMIN [21] and in SCALCG by Andrei
[17, 18].

The DESCON algorithm can be implemented in some other variants. For exam-
ple in step 8, when |	̄k| ≥ εm is not satisfied, we can set θk = 1 and compute βk

as in classical conjugate gradient algorithms like Hestenes and Stiefel [6], Dai and
Yuan [7], Polak, Ribière and Polyak [8, 9], etc.

8 Convergence Analysis

In this section, under the basic assumptions, we analyze the convergence of the al-
gorithm (11) and (12), where θk and βk are given by (22) and (23), respectively, and
d0 = −g0. In the following, we consider that gk �= 0 for all k ≥ 1, otherwise a sta-
tionary point is obtained. In order to prove the global convergence, often we assume
that the step size αk in (11) is obtained by the strong Wolfe line search, that is,

f (xk + αkdk) − f (xk) ≤ ραkg
T
k dk, (39)

∣∣g(xk + αkdk)
T dk

∣∣ ≤ σkg
T
k dk, (40)

where ρ and σk are arbitrary positive constants such that 0 < ρ < σk < 1. Observe
that, since ρ in (39) is small enough, the parameter σk in (40) can be selected at each
iteration as in (34), thus satisfying the above condition, 0 < ρ < σk < 1.

Lemma 8.1 Suppose that the basic assumptions (i) and (ii) hold. Consider that the
descent condition gT

k dk < 0 hold for all k ≥ 1 and αk satisfies the first Wolfe line
search (4). Then

∞∑

k=1

−αk

(
gT

k dk

)
< ∞. (41)

Proof By (4) and the descent condition we have

fk+1 − fk ≤ ραk

(
gT

k dk

) ≤ 0, (42)

i.e. {fk} is a decreasing sequence. Therefore, the basic assumptions imply that there
exists a constant f ∗such that limk→∞ fk = f ∗. With this

∞∑

k=1

(fk − fk+1) = lim
n→∞

n∑

k=1

(fk − fk+1) = lim
n→∞(f1 − fn+1) = f1 − f ∗ < ∞.

This, together with (42), implies (41). �
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Lemma 8.2 Suppose that the basic assumptions (i) and (ii) hold. Consider the con-
jugate gradient algorithm (11) and (12), where θk and βk are given by (22) and (23),
respectively; the descent condition gT

k dk < 0 is satisfied for any k ≥ 0 and αk is ob-
tained by the modified Wolfe line search conditions (4) and (24), where 1/2 ≤ σk < 1.
Then

∞∑

k=0

(gT
k dk)

2

‖dk‖2
< +∞. (43)

Proof From (24) and the basic assumptions we have (σk − 1)gT
k dk ≤ (gk+1 −

gk)
T dk ≤ Lαk‖dk‖2. Since 1/2 ≤ σk < 1,it follows that

αk ≥ −(1 − σk)

L

gT
k dk

‖dk‖2
≥ − 1

2L

gT
k dk

‖dk‖2
.

Combining this with the descent condition gT
k dk < 0 we get

∞∑

k=1

(gT
k dk)

2

‖dk‖2
≤ 2L

∞∑

k=1

(−αkg
T
k dk

)
,

which from (41) implies that (43) holds. �

Lemma 8.3 Suppose that the basic assumptions (i) and (ii) hold. Consider the
conjugate gradient algorithm (11) and (12), where θk and βk are given by (22)
and (23), respectively; for all k ≥ 1dk is a descent direction satisfying dT

k+1gk+1 =
−w‖gk+1‖2 < 0, where w > 0, and αk is obtained by the strong Wolfe line search
(39) and (40), where 0 < σk < 1. Then either

lim inf
k→∞ ‖gk‖ = 0 (44)

or
∞∑

k=0

‖gk‖4

‖dk‖2
< ∞. (45)

Proof Observe that in Proposition 5.2 we proved that θk > 0 and θk → w. Now,
squaring the both terms of dk+1 + θkgk+1 = βksk we obtain ‖dk+1‖2 + θ2

k ‖gk+1‖2 +
2θkd

T
k+1gk+1 = β2

k ‖sk‖2. However, dT
k+1gk+1 = −w‖gk+1‖2. Therefore,

‖dk+1‖2 = −(
θ2
k − 2θkw

)‖gk+1‖2 + β2
k ‖sk‖2. (46)

Using Proposition 5.2, observe that for θk ∈]0,2w], θ2
k −2θkw ≤ 0 is bounded below

by −w2. On the other hand, from (12) we have gT
k+1dk+1 −βkg

T
k+1sk = −θk‖gk+1‖2.

Now, using the strong Wolfe line search we have |gT
k+1dk+1| + σk|βk||gT

k sk| ≥
θk‖gk+1‖2. At this time we apply the following inequality: (a + σb)2 ≤ (1 + σ 2) ×
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(a2 + b2), true for all a, b,σ ≥ 0, with a = |gT
k+1dk+1| and b = |βk||gT

k sk|. After
some algebra we get

(
gT

k+1dk+1
)2 + β2

k

(
gT

k sk
)2 ≥ θ2

k

1 + σ 2
k

‖gk+1‖4. (47)

However, from Proposition 5.2 θk ≥ c1. Besides 0 < σk < 1. Therefore θ2
k /(1+σ 2

k ) ≥
c2

1/2. Hence
(
gT

k+1dk+1
)2 + β2

k

(
gT

k sk
)2 ≥ e‖gk+1‖4, (48)

where e = c2
1/2 is a positive constant. Using (46) and (48) we can write

(gT
k+1dk+1)

2

‖dk+1‖2
+ (gT

k sk)
2

‖sk‖2

= 1

‖dk+1‖2

[(
gT

k+1dk+1
)2 + ‖dk+1‖2

‖sk‖2

(
gT

k sk
)2

]

= 1

‖dk+1‖2

[(
gT

k+1dk+1
)2 + (gT

k sk)
2

‖sk‖2

(−(
θ2
k − 2θkw

)‖gk+1‖2 + β2
k ‖sk‖2)

]

≥ 1

‖dk+1‖2

[
e‖gk+1‖4 − (

θ2
k − 2θkw

) (gT
k sk)

2

‖sk‖2
‖gk+1‖2

]

= ‖gk+1‖4

‖dk+1‖2

[
e − (

θ2
k − 2θkw

) (gT
k sk)

2

‖sk‖2

1

‖gk+1‖2

]
. (49)

From Lemma 8.2 observe that the left side of (49) is finite. Now, from Lemma 8.2 we
know that limk→∞(gT

k sk)
2/‖sk‖2 = 0. On the other hand, for θk ∈]0,2w], θ2

k −2θkw

is finite. Therefore, if (44) is not true, it follows that

lim
k→∞

(gT
k sk)

2

‖sk‖2

(θ2
k − 2θkw)

‖gk+1‖2
= 0. (50)

Hence, from (49) we have

(gT
k+1dk+1)

2

‖dk+1‖2
+ (gT

k sk)
2

‖sk‖2
≥ e

‖gk+1‖4

‖dk+1‖2
, (51)

holds for all sufficiently large k. Therefore, by Lemma 8.2 it follows that (45) is
true. �

Using Lemma 8.3 we can prove the following proposition, which has a crucial role
in proving the convergence of our algorithm.

Proposition 8.1 Suppose that the basic assumptions (i) and (ii) hold. Consider the
conjugate gradient algorithm (11) and (12), where θk and βk are given by (22) and
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(23), respectively, and αk is obtained by the strong Wolfe line search (39) and (40),
where 0 < σk < 1. If

∑

k≥1

1

‖dk‖2
= ∞, (52)

then

lim inf
k→∞ ‖gk‖ = 0. (53)

Proof Suppose by contradiction that there is a positive constant γ such that ‖gk‖ ≥
γ > 0 for all k ≥ 1. Then, from Lemma 8.3 it follows that

∑
k≥1 1/‖dk‖2 ≤

1
γ 4

∑
k≥1 ‖gk‖4/‖dk‖2 < ∞,which is in contradiction with (52). �

Convergence for Uniformly Convex Functions For uniformly convex functions we
can prove that the norm of the direction dk generated by (12), where θk and βk are
given by (22) and (23), respectively, is bounded. Using Proposition 8.1 we can prove
the following result.

Theorem 8.1 Suppose that the assumptions (i) and (ii) hold. Consider the method
(11)–(13) and (16)–(21), where αk is obtained by the strong Wolfe line search (39)
and (40), where 1/2 ≤ σk < 1. If there exists a constant μ > 0 such that

(∇f (x) − ∇f (y)
)T

(x − y) ≥ μ‖x − y‖2 (54)

for all x, y ∈ S, then

lim
k→∞gk = 0. (55)

Proof From (54) it follows that f is a uniformly convex function on S and therefore
yT
k sk ≥ μ‖sk‖2. Again, by Lipschitz continuity ‖yk‖ ≤ L‖sk‖. Using (18) and (19)

in (20) we get

tk = (w − 1)(yT
k sk)‖gk+1‖2(yT

k gk+1)

(sT
k gk+1)	̄k

+ (yT
k gk+1)

2 − v(yT
k sk)‖gk+1‖2

	̄k

.

Observe that since {	̄k} is uniformly bounded away from zero independent of k and
	̄k < 0 for all k ≥ 1, there exists a positive constant c3 such that |	̄k| > c3. Now,
using (28), since 1/2 ≤ σk < 1, we get

|tk| ≤ |1 − w|‖gk+1‖2|yT
k gk+1| + |yT

k gk+1|2 + v|yT
k sk|‖gk+1‖2

c3
.

From the basic assumptions, observe that |yT
k gk+1| ≤ ‖yk‖‖gk+1‖ ≤ L‖sk‖Γ ≤

LΓ (2B) and |yT
k sk| ≤ ‖yk‖‖sk‖ ≤ L‖sk‖2 ≤ L(2B)2. With this we have

|tk| ≤ 2BLΓ 2[|1 − w|Γ + 2B(L + v)]
c3

≡ t,
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where t > 0 is a constant. Now, from (13), using the Lipschitz continuity, we have

|βk| =
∣∣∣∣
yT
k gk+1

yT
k sk

− tk
sT
k gk+1

yT
k sk

∣∣∣∣ ≤ ‖yk‖‖gk+1‖
μ‖sk‖2

+ |tk| ‖sk‖‖gk+1‖
μ‖sk‖2

≤ L‖sk‖‖gk+1‖
μ‖sk‖2

+ t
‖sk‖‖gk+1‖

μ‖sk‖2
= L + t

μ

Γ

‖sk‖ . (56)

Hence, from (12) and Proposition 5.2:

‖dk+1‖ ≤ c2Γ + L + t

μ

Γ

‖sk‖‖sk‖ =
(

c2 + L + t

μ

)
Γ, (57)

which implies that (52) is true. Therefore, by Proposition 8.1 we have (53), which for
uniformly convex functions is equivalent to (55). �

Convergence for General Nonlinear Functions Firstly we prove that under very
mild conditions the direction dk generated by (12), where θk and βk are given by
(22) and (23), respectively, is bounded. Again, by Proposition 8.1 we can prove the
following result.

Theorem 8.2 Suppose that the basic assumptions (i) and (ii) hold and ‖gk‖ ≥ γ > 0
for all k ≥ 0. Consider the conjugate gradient algorithm (11), where the direction
dk+1 given by (12) and (13) satisfies the descent condition gT

k dk = −w‖gk‖2, where
w > 1, and the step length αk is obtained by the strong Wolfe line search (39) and
(40), where 1/2 ≤ σk < 1. Then lim infk→∞ ‖gk‖ = 0.

Proof From (13), using (20) after some algebra, we have

βk = yT
k gk+1

yT
k sk

(
1 − bk

	̄k

)
+ ak

‖gk+1‖2

	̄k

. (58)

From Proposition 4.3, the definition of ω, the modified Wolfe condition (24) and
the descent condition gT

k dk = −w‖gk‖2, since ‖gk‖ ≥ γ > 0 and σk < 1, for all
k ≥ 0, we have yT

k sk ≥ wωk(1 −σk)γ
2 > wω(1 −σk)γ

2 > 0. However, from the ba-
sic assumptions we have |yT

k gk+1|‖sk‖ ≤ ‖yk‖‖gk+1‖‖sk‖ ≤ L‖sk‖2Γ ≤ LΓ (2B)2.
Therefore,

|yT
k gk+1|
|yT

k sk|
≤ LΓ (2B)2

wω(1 − σk)γ 2

1

‖sk‖ = c̄

‖sk‖ , (59)

where c̄ = LΓ (2B)2/wω(1 − σk)γ
2. Now, observe that since for all k ≥ 0, 	̄k < 0

(by Proposition 5.1) and bk > 0 (by Proposition 5.3), it follows that −bk/	̄k > 0.
Besides, from (16) and (19) we can write

− bk

	̄k

= w + (1 + w)
(yT

k gk+1)(s
T
k gk+1)

−	̄k

. (60)
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Since −	̄k > 0 and sT
k gk+1 tends to zero along the iterations, it follows that −bk/	̄k

tends to w > 0. Hence 1 − bk/	̄k tends to 1 + w. Therefore, there exists a positive
constant c4 > 1 such that 1 < 1 − bk/	̄k ≤ c4.

Again, from the basic assumptions we have |yT
k sk|‖sk‖ ≤ ‖yk‖‖sk‖2 ≤ L‖sk‖3 ≤

L(2B)3. Therefore, |yT
k sk| ≤ L(2B)3/‖sk‖. Now, from (18) and (29) we have

|ak| = ∣∣v
(
sT
k gk+1

) + (
yT
k gk+1

)∣∣ ≤ v
∣∣sT

k gk+1
∣∣ + ∣∣yT

k gk+1
∣∣

≤ v
∣∣yT

k sk
∣∣max

{
1,

σk

1 − σk

}
+ ∣∣yT

k gk+1
∣∣

≤ v
L(2B)3

‖sk‖ max

{
1,

σk

1 − σk

}
+ LΓ (2B)2

‖sk‖ . (61)

Since 1/2 ≤ σk < 1, there exists a positive constant c5 > 0 such that max{1, σk/(1 −
σk)} ≤ c5. Hence,

|ak| ≤
(
vLc5(2B)3 + LΓ (2B)2) 1

‖sk‖ = ĉ

‖sk‖ , (62)

where ĉ = vLc5(2B)3 + LΓ (2B)2. With these, from (58) we can write

|βk| ≤
∣∣∣∣
yT
k gk+1

yT
k sk

∣∣∣∣

∣∣∣∣1 − bk

	̄k

∣∣∣∣ + |ak| ‖gk+1‖2

|	̄k| ≤ c̄c4

‖sk‖ + ĉΓ 2

c3

1

‖sk‖

=
[
c̄c4 + ĉΓ 2

c3

]
1

‖sk‖ . (63)

From (12) we have

‖dk+1‖ ≤ |θk|‖gk+1‖ + |βk|‖sk‖ ≤ c2Γ +
[
c̄c4 + ĉΓ 2

c3

]
1

‖sk‖‖sk‖ ≡ E, (64)

where E is a positive constant. Therefore, for all k ≥ 0,‖dk‖ ≤ E, which im-
plies (52). Therefore, by Proposition 8.1, since dk is a descent direction, we have
lim infk→∞ ‖gk‖ = 0. �

9 Numerical Results and Comparisons

In this section, we report some numerical results obtained with an implementation of
the DESCON algorithm. The code is written in Fortran and compiled with f77 (de-
fault compiler settings) on a Workstation Intel Pentium 4 with 1.8 GHz. DESCON
and the other algorithms considered in this numerical study use the loop unrolling
to a depth of 5. We selected a number of 75 large-scale unconstrained optimiza-
tion test functions in generalized or extended form [5]. For each test function we
have taken ten numerical experiments with the number of variables increasing as
n = 1000,2000, . . . ,10000. The algorithm implements the Wolfe line search condi-
tions with ρ = 0.0001, σ = ‖gk+1‖2/(|yT

k gk+1| + ‖gk+1‖2), and the same stopping
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Fig. 1 DESCON versus
DL(v = 1)

criterion ‖gk‖∞ ≤ 10−6. In DESCON we set w = 7/8 and v = 0.05. In our numer-
ical experiments θk is not restricted in the interval [0,2w]. In all the algorithms we
considered in this numerical study the maximum number of iterations is limited to
10000.

The comparisons of algorithms are given in the following context. Let f ALG1
i and

f ALG2
i be the optimal value found by ALG1 and ALG2, for problem i = 1, . . . ,750,

respectively. We say that in the particular problem i, the performance of ALG1 was
better than the performance of ALG2 if:

∣∣f ALG1
i − f ALG2

i

∣∣ < 10−3 (65)

and the number of iterations (#iter), or the number of function-gradient evaluations
(#fg), or the CPU time of ALG1 was less than the number of iterations, or the number
of function-gradient evaluations, or the CPU time corresponding to ALG2, respec-
tively.

In the first set of numerical experiments we compare DESCON versus Dai and
Liao (v = 1) conjugate gradient algorithm (9). Figure 1 shows the Dolan and Moré
CPU performance profile of DESCON versus DL(v = 1).

When comparing DESCON with DL(v = 1) conjugate gradient algorithm subject
to CPU time metric we see that DESCON is top performer. Comparing DESCON
with DL(v = 1) (see Fig. 1), subject to the number of iterations, we see that DESCON
was better in 580 problems (i.e. it achieved the minimum number of iterations in 580
problems). DL(v = 1) was better in 79 problems and they achieved the same number
of iterations in 40 problems, etc. Out of 750 problems, only for 699 problems does
the criterion (65) hold.

In the second set of numerical experiments we compare DESCON versus
Hestenes and Stiefel (HS) (βHS

k = yT
k gk+1/y

T
k sk) [6], versus Dai and Yuan (DY)

(βDY
k = gT

k+1gk+1/y
T
k sk) [7] and versus Polak–Ribière–Polyak (PRP) (βPRP

k =
yT
k gk+1/g

T
k gk) [8, 9], conjugate gradient algorithms. Figures 2, 3 and 4 present the

Dolan and Moré CPU performance profile of DESCON versus HS, DY, and PRP,
respectively.

In the third set of numerical experiments we compare DESCON versus hy-
brid Dai–Yuan [7], (βhDY

k = max{−cβDY
k ,min{βHS

k , βDY
k }}, c = (1 − σ)/(1 + σ),
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Fig. 2 DESCON versus
Hestenes–Stiefel

Fig. 3 DESCON versus
Dai–Yuan

Fig. 4 DESCON versus
Polak–Ribière–Polyak

σ = 0.8). Figure 5 presents the Dolan and Moré CPU time performance profile of
DESCON versus hDY. The best performance, relative to the CPU time metric, again
was obtained by DESCON, the top curve in Fig. 5.

In the fourth set of numerical experiments we compare DESCON versus CG_
DESCENT. In CG_DESCENT, at every iteration, the direction dk satisfies the suffi-
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Fig. 5 DESCON versus hybrid
Dai–Yuan

Fig. 6 DESCON versus
CG_DESCENT

cient descent condition gT
k dk ≤ −(7/8)‖gk‖2. This is the main reason we considered

w = 7/8 in all our numerical experiments. Figure 6 presents the Dolan and Moré
CPU time performance profile of DESCON versus CG_DESCENT with Wolfe line
search. Again, the best performance, relative to the CPU time metric, was obtained
by DESCON, the top curve in Fig. 6.

Finally, we compare DESCON versus L-BFGS (m = 5) by Liu and Nocedal [11]
as in Fig. 7, where m is the number of pairs (sk, yk) used. Observe that DESCON is
top performer again. The differences are significant. The linear algebra in the L-BFGS
code to update the search direction is very different from the linear algebra used in
DESCON. On the other hand, the step length in L-BFGS is determined at each iter-
ation by means of the line search routine MCVSRCH, which is a slight modification
of the routine CSRCH written by Moré and Thuente [23].

In the following, in Fig. 8, we present the performance profile of DESCON
(w = 7/8, v = 0.05) versus HS, PRP, CG_DESCENT and L-BFGS (m = 5), sub-
ject to CPU time metric. We see that, among these algorithms, DESCON is top per-
former. Concerning the robustness close to DESCON there are CG_DESCENT with
Wolfe line search and L-BFGS (m = 5). In this context HS and PRP have similar
performances, PRP being slightly more robust.
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Fig. 7 DESCON versus
L-BFGS (m = 5)

Fig. 8 DESCON versus HS, PRP, CG_DESCENT and L-BFGS (m = 5)

As a final remark observe that the DESCON algorithm can be implemented in
different versions. For example, in step 8 for θk and βk computation, one version
can implement a truncation mechanism suggested by Hager and Zhang [10] as β+

k =
max{βk, ηk}, where βk is computed as in (23) and ηk = −1/(‖dk‖min{0.1,‖gk‖}).
In this case, subject to CPU time metric, DESCON using (22) and (23) was fastest in
113 problems. On the other hand, DESCON, using (22) and β+

k , was fastest in 107
problems, showing that the truncation mechanism is not very much effective.

10 Sensitivity Analysis

In order to see the performances of the algorithm, we present a sensitivity study of
DESCON subject to the variation of v and w parameters. Both these parameters em-
phasize the importance of the conjugacy condition and the sufficient descent condi-
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Table 1 Sensitivity of the
DESCON subject to v · w = 7/8 v #itert #fgt cput

0 247557 584091 130.35

0.001 248268 582814 129.69

0.005 247696 581850 132.16

0.01 248590 586607 133.66

0.02 249868 585260 138.75

0.05 248580 589644 138.71

0.07 254988 612957 141.33

0.1 246473 580293 133.54

0.2 256726 599135 131.78

0.5 249513 590716 133.38

0.7 254423 591242 128.25

1 247704 580790 133.45

tion, respectively. From (12), (13), and (16)–(21) we have

∂dk+1

∂w
= (yT

k sk)‖gk+1‖2

	̄k

(
gk+1 − yT

k gk+1

yT
k sk

sk

)
, (66)

∂dk+1

∂v
= − (sT

k gk+1)

	̄k

((
sT
k gk+1

)
gk+1 − ‖gk+1‖2sk

)
. (67)

Observe that if the line search is exact (sT
k gk+1 = 0), then from (67) we see that

the algorithm is not sensitive to the variation of v. However, in our algorithm the line
search is not exact.

Table 1 presents the total number of iterations (#itert), the total number of function
and its gradient evaluations (#fgt) and the total CPU time (cput) for solving the above
set of 750 unconstrained optimization test problems for w = 7/8 and for different val-
ues of v. For example, for solving the set of 750 problems with w = 7/8 and v = 0,
the total number of iteration is 247557, the total number of function and its gradi-
ent evaluations is 584091 and the total CPU time is 130.35 seconds, etc. In Table 1
we have the computational evidence concerning the sensitivity of DESCON, corre-
sponding to a set of 12 numerical experiments, subject to the variation of v parameter.
Subject to the CPU time metric the average of the total CPU time corresponding to
these 12 numerical experiments, for solving 750 problems in each experiment, is
1605.0/12 = 133.75 seconds. The largest deviation is 7.58 seconds and corresponds
to the numerical experiment in which v = 0.07. Therefore, in all these 12 numerical
experiments the maximum deviation is of 7.58/750 = 0.01 seconds per problem.

In the following, we present the sensitivity of DESCON subject to the variation
of w parameter. Table 2 presents the total number of iterations, the total number of
function and its gradient evaluations, and the total CPU time for solving the above
set of 750 unconstrained optimization test problems for v = 0.7 and for six different
values of w.

The best results corresponding to this set of six numerical experiments are ob-
tained for w = 0.9. Subject to CPU time metric for solving 750 problems in each
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Table 2 Sensitivity of the
DESCON subject to w · v = 0.7 w #itert #fgt Cput

0.5 264322 631141 155.45

0.6 263076 615079 141.80

0.7 257098 603704 138.01

0.8 261982 626266 147.05

0.9 248710 586730 134.21

1 260475 616134 148.99

Table 3 Applications from
MINPACK-2 collection A1 Elastic-Plastic Torsion [24, pp. 41–55], c = 5

A2 Pressure Distribution in a Journal Bearing [25], b = 10,
ε = 0.1

A3 Optimal Design with Composite Materials [26], λ = 0.008

A4 Steady-State Combustion [27, pp. 292–299], [28], λ = 5

A5 Minimal Surfaces with Enneper conditions [29, pp. 80–85]

of these six numerical experiments, the total CPU time difference is of 155.45 −
134.21 = 21.24 seconds. Therefore, in all these six numerical experiments the max-
imum deviation is of 21.24/750 = 0.028 seconds per problem. Observe that the av-
erage of the total CPU time corresponding to these six numerical experiments is
865.51/6 = 144.25 seconds. The largest deviation is of 155.45 − 144.25 = 11.20
seconds. Therefore, in all these six numerical experiments the maximum deviation
is of 11.20/750 = 0.0149 seconds per problem. Practically, DESCON is very little
sensitive to the variation of w.

11 Solving MINPACK-2 Applications

We now present comparisons between DESCON and CG_DESCENT conjugate gra-
dient algorithms for solving some applications from MINPACK-2 test problem col-
lection [12]. In Table 3, we present these applications, as well as the values of their
parameters. The infinite-dimensional version of these problems is transformed into a
finite element approximation by triangulation. The discretization steps are nx = 1000
and ny = 1000, thus obtaining minimization problems with 1,000,000 variables.

A comparison between DESCON (v = 0.05,w = 0.875, Powell restart criterion,
‖∇f (xk)‖∞ ≤ 10−6, ρ = 10−4) and CG_DESCENT (Wolfe line search, default set-
tings, ‖∇f (xk)‖∞ ≤ 10−6) for solving these applications is given in Table 4.

Form Table 4 we see that subject to the CPU time metric the DESCON algorithm
is top performer again, and the difference is significant, about 2807.65 seconds for
solving all these five applications. Observe that DESCON is faster and more robust
than CG_DESCENT for solving real large-scale unconstrained optimization applica-
tions.

Author's personal copy



J Optim Theory Appl

Table 4 Performance of DESCON and CG_DESCENT. 1,000,000 variables. cpu seconds

DESCON CG_DESCENT

#iter #fg cpu #iter #fg cpu

A1 1113 2257 324.45 1145 2291 450.08

A2 2833 5694 930.37 3368 6737 1462.38

A3 4734 9506 2069.76 4841 9684 2975.02

A4 1413 2864 1282.27 1806 3613 2358.35

A5 1279 2580 516.39 1226 2453 685.06

Total 11372 22901 5123.24 12386 24778 7930.89

12 Conclusions

For solving large scale unconstrained optimization problems we have presented an
accelerated conjugate gradient algorithm that, for all k ≥ 0, both the descent and the
conjugacy conditions are guaranteed. In our algorithm the search direction is selected
as a linear combination of −gk+1 and sk , where the coefficients in this linear combi-
nation are selected in such a way that both the descent and the conjugacy condition
are satisfied at every step. The algorithm uses the modified Wolfe line search, where
in the second Wolfe condition the parameter σ is modified at every iteration. Besides,
the step length is modified by an acceleration scheme, which proved to be very effi-
cient in reducing the values of the minimizing function along the iterations. For a test
set consisting of 750 problems with dimensions ranging between 1000 and 10,000,
the CPU time performance profiles of DESCON was higher than those of HS, PRP,
DY, hDY, CG_DESCENT with Wolfe line search and limited memory quasi-Newton
method L-BFGS (m = 5). A number of five applications from MINPACK2 prob-
lems collection, with 106 variables, illustrate the performances of DESCON versus
CG_DESCENT. At present, from the above test problems and applications we have
computational evidence that DESCON is one of the fastest and the most robust con-
jugate gradient algorithm.
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