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Abstract. Another conjugate gradient algorithm, based on an improvement of the Perry’s 

method, is presented. In this algorithm the computation of the search direction is based on the 

quasi-Newton condition rather than the conjugacy one. The idea of Perry to compute the 

conjugate gradient parameter by equating the conjugate gradient direction with the quasi-

Newton one is modified by an appropriate scaling of the conjugate gradient direction. The value 

of this scaling parameter is determined in such a way to ensure the sufficient descent condition 

of the search direction. The global convergence of the algorithm is proved for uniformly convex 

functions. Numerical experiments, using 800 unconstrained optimization test problems, prove 

that this algorithm is more efficient and more robust than CG-DESCENT. Using five 

applications from the MINPACK-2 collection with 
610  variables, we show that the suggested 

conjugate gradient algorithm is top performer versus CG-DESCENT. 
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1. Introduction 
 

For solving large scale unconstrained optimization problem 

                                                                      min ( ),f x                                                                  (1) 

where : nf R R  is a continuously differentiable function, bounded from below, one of the most 

elegant, efficient and simplest methods is conjugate gradient. By modest storage requirements, 

this method represents a significant improvement over the steepest descent algorithms, being very 

well suited for solving large-scale problems. Besides the corresponding algorithms are not 

complicated, offering the possibility to be very easy integrated in some other complex industrial 

and economic applications. 

Starting from an initial guess 0 ,nx R  a nonlinear conjugate gradient algorithm generates a 

sequence { }kx  as: 

                                                                 1 ,k k k kx x d                                                               (2) 

where 0k   is obtained by line search, and the directions kd  are computed as: 

                                                      1 1 ,k k k kd g s      0 0.d g                                                  (3) 

In (3), k  is known as the conjugate gradient parameter, 1k k ks x x   and ( ).k kg f x   In (2) 

the search direction ,kd  assumed to be descent, plays the main role. On the other hand, the step 

size k  guarantees the global convergence in some cases and is crucial in efficiency of the 

algorithm. Usually, the line search in the conjugate gradient algorithms is based on the standard 

Wolfe conditions [31, 32]: 
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                                                   ( ) ( ) ,T

k k k k k k kf x d f x g d                                                  (4) 

                                                           ( ) ,T T

k k k k k kg x d d g d                                                    (5) 

where 
kd  is supposed to be a descent direction and 0 1/ 2 1.      Also, the strong Wolfe 

line search conditions consisting of (4) and the following strengthened version of (5): 

                                                               1

T T

k k k kg d g d                                                              (6) 

can be used. 

Different conjugate gradient algorithms correspond to different choices for the scalar 

parameter 
k  used to generate the search direction (3). Some conjugate gradient methods like 

Fletcher and Reeves (FR) [14], Dai and Yuan (DY) [11] and Conjugate descent (CD) proposed by 

Fletcher [13]: 

1 1 ,
T

FR k k
k T

k k

g g

g g
      1 1 ,

T
DY k k
k T

k k

g g

y s
      1 1 ,

T
CD k k
k T

k k

g g

g s
  


 

have strong convergence properties, but they may have modest computational performance due to 

jamming. On the other hand, the methods of Hestenes and Stiefel (HS) [19], Polak and Ribière 

[26] and Polyak [27] (PRP), or Liu and Storey (LS) [20]: 

1 ,
T

HS k k
k T

k k

g y

y s
     1 ,

T
PRP k k
k T

k k

g y

g g
     1 ,

T
LS k k
k T

k k

g y

g s
 


 

may not generally be convergent, but they often have better computational performances. 

 If the initial direction 
0d  is selected as 0 0d g   and the objective function to be 

minimized is a convex quadratic one: 

                                                          
1

( ) ,
2

T Tf x x Ax b x c                                                        (7) 

and the exact line searches are used, that is 

                                                       0argmin ( ),k k kf x d                                                     (8) 

then the conjugacy condition 

                                                                      0T

i jd Ad                                                                  (9) 

holds for all .i j This relation is the original condition used by Hestenes and Stiefel [19] to 

derive the conjugate gradient algorithms, mainly for solving symmetric positive-definite systems 

of linear equations. Let us denote, as usual, 1 .k k ky g g  Then, for general nonlinear twice 

continuously differentiable function ,f  by the mean value theorem, there exists some (0,1)   

such that 

                                                  2

1 1 ( ) .T T

k k k k k k k kd y d f x d d                                                 (10) 

Therefore, is seems reasonable to replace the old conjugacy condition (9) from quadratic case 

with the following one: 

                                                                     1 0.T

k kd y                                                                 (11) 

In order to improve the convergence of the conjugate gradient algorithm, Perry [25] extended the 

conjugacy condition by incorporating the second-order information. In this respect he used the 

quasi-Newton condition also known as secant equation:  

                                                                    1 ,k k kH y s                                                               (12) 

where 1kH   is a symmetric approximation to the inverse Hessian of function .f  Since for the 

quasi-Newton method the search direction is computed as 1 1 1,k k kd H g    it follows that: 

1 1 1 1 1 1( ) ( ) ,T T T T

k k k k k k k k k kd y H g y g H y g s            

thus obtaining a new conjugacy condition. Further on, Dai and Liao [9] extended this condition 

and suggested the following new one as: 
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                                                               1 1( ),T T

k k k kd y u g s                                                         (13) 

where 0u   is a scalar. Observe that if the line search is exact, then (13) reduces to the classical 

conjugacy condition given by (11). 

 Usually, conjugate gradient algorithms are based on conjugacy condition. In this paper, in 

order to compute the multiplier 
k  in (3), our computational scheme relies on the quasi-Newton 

condition (12). Perry [25], considering the HS conjugate gradient algorithm, observed that the 

search direction (3) can be rewritten as: 

                                                   1 1 1 1.
T

HSk k
k k k kT

k k

s y
d I g Q g

y s
   

 
     

 
                                         (14) 

Notice that 1

HS

kQ   in (14) plays the role of an approximation to the inverse Hessian but is not 

symmetric. Besides, it is not a memoryless quasi-Newton update. However, 
1kd 
 in (14) satisfies 

the conjugacy condition (11). In order to improve the approximation to the inverse Hessian given 

by (14), Perry [25] notes that under inexact line search, it is more appropriate to choose the 

approximation to the inverse Hessian to satisfy the quasi-Newton condition (12) rather than 

simply conjugacy condition. The idea of Perry was to equate 1 1k k k kd g s     to 1

1 1,k kB g

   

where 1kB   is an approximation to the Hessian 2

1( ).kf x   Therefore, by the equality 

                                                          1

1 1 1,k k k k kg s B g 

                                                         (15) 

after some simple algebraic manipulations we get the Perry’s choice for k  and the 

corresponding search direction as:  

                                            1 1

T T

k k k k
k T

k k

y g s g

y s
  

                                                                         (16) 

                                            1 1 1 1.
T T

Pk k k k
k k k kT T

k k k k

s y s s
d I g Q g

y s y s
   

 
      

 
                                    (17) 

It is worth saying that if the exact line search is performed, than (17) is identical to the HS 

conjugate gradient algorithm expressed as in (14). More than this, 1

P

kQ   is not symmetric and does 

not satisfy the true quasi-Newton (secant) condition. However, the Perry’s direction (17) satisfies 

the Dai and Liao [9] conjugacy condition (13) with 1.u   

 The purpose of this paper is to improve the Perry’s approach. In section 2 a critical 

development of the Perry’s approach is considered by showing its limits and suggesting a new 

descent conjugate gradient algorithm with quasi-Newton updates. Section 3 is devoted to prove 

the convergence of the corresponding algorithm for uniformly convex functions. In section 4 the 

numerical performances of this algorithm on 800 unconstrained optimization test problems and 

comparisons versus CG-DESCENT [18] are presented. By solving five applications from the 

MINPACK-2 collection [6] with 610  variables we show that our algorithm is top performer 

versus CG-DESCENT. 

 

 

2. Descent Conjugate Gradient Algorithm with quasi-Newton updates 

 
In order to define the algorithm, in this section, we consider a strategy based on the quasi-Newton 

condition rather than on the conjugacy condition. The advantage of this approach is the inclusion 

of the second order information, contained in the Hessian matrix, into the computational scheme, 

thus hopping to improve the convergence of the corresponding algorithm. 

For the very beginning, observe that the quasi-Newton direction 1

1 1 1k k kd B g

     is a 

linear combination of the columns of an approximation to the inverse Hessian 1

1kB

 , where the 
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coefficients in this linear combination are the negative components of the gradient 1.kg   On the 

other hand, the conjugate search direction 1 1k k k kd g s     mainly is the negative gradient 
1kg 
 

altered by a scaling of the previous search direction. The difference between these two search 

directions is significant and, as we can see, apparently a lot of information given by the inverse 

Hessian is not considered in the search direction of the conjugate gradient algorithm. However, in 

some conjugate gradient algorithms, for example the Hestenes and Stiefel [19], the conjugate 

parameter 
k  in the search direction is obtained by requiring the search direction 

1kd 
 to be 

kB -

conjugate to ,kd  i.e. enforcing the condition 1 0.T

k k kd B d   This is an important property, but this 

condition is involving 
kB  and not its inverse. Using the quasi-Newton condition improves the 

conjugate gradient search direction to take into consideration the information given by the inverse 

Hessian.  

As we have seen the Perry scheme [25] is based on the quasi-Newton condition, i.e. the 

derivation of the k  in (16) is determined by the equating 1 1k k k kd g s     to 1

1 ,k kB g

  where 

1kB   is an approximation of the Hessian. However, if the Newton direction 1

1 1k kB g

   is contained 

into the cone generated by 1kg   and ,ks  then 
k  cannot alone ensure the equality (15). It is 

clear that the above condition (15) guarantees that 1k k kg s   and the quasi-Newton direction 
1

1 1k kB g

   are only collinear [30]. In order to skip over this limitation we introduce an appropriate 

scaling of the conjugate gradient direction and consider the equality: 

                                                    1

1 1 1 1 1,k k k k k k kg s B g   

                                                      (18) 

where 1 0k    is a scaling parameter which follows to be determined. As above, after some 

simple algebraic manipulations on (18) we get a new expression for the conjugate gradient 

parameter k  and the corresponding direction as: 

                                                1 1 1(1/ )
,

T T

k k k k k
k T

k k

y g s g

y s


   

                                                       (19) 

                                                1 1 1 1

1

1
.

T T

k k k k
k k k kT T

k k k k k

s y s s
d I g P g

y s y s
   



 
      

 
                          (20) 

Observe that with 1 1,k    (20) coincides with Perry’s direction (17). On the other hand, when 

1 ,k    then (20) coincides with HS search direction (14). Therefore, (20) provides a general 

frame where a continuous variation between the Hestenss and Stiefel [19] conjugate gradient 

algorithm and the Perry’s one [25] is obtained. Besides, if the line search is exact ( 1 0T

k ks g   ), 

than the algorithm is indifferent to the selection of 1.k   In this case the search direction given by 

(20) is identical with HS strategy. 

 

Remark 2.1. An important property of k  given by (19) is that it is also the solution of the 

following one-parameter quadratic model of function f  on :  

1 1

1
min ( ) ( ) ( ),

2

T T

k kg d d B d      

where 1( ) ,k kd g s     the symmetrical and positive definite matrix 1kB   is an approximation 

of the Hessian 2

1( )kf x   such that the generalized quasi-Newton equation 1 1 ,k k k kB s y   with 

1 0,k    is satisfied. Therefore, in other words, the solution of the symmetrical linear algebraic 

system 1 1( )k kB d g    can be expressed as 1 1( ) ,k kd P g     where 1kP  is defined by (20) is 

not a symmetrical matrix. This is indeed a remarkable property (see also [21]).                            
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 In the following, we shall develop a procedure for 1k  computation. The idea is to find 

1k   in such a way to ensure the sufficient descent condition of the search direction (20). 

 

Proposition 2.1. If  

                                                                    1 2
,

T

k k
k

k

y s

y
                                                                (21) 

then the search direction (20) satisfies the sufficient descent condition 

                                                          
2

1 1 1

3
0.

4

T

k k kg d g                                                        (22) 

 

Proof. From (20) we get: 

                                  
2

2 1 1 1
1 1 1

1

( )( ) 1 ( )
.

T T T
T k k k k k k
k k k T T

k k k k k

y g s g s g
g d g

y s y s
  

  



                                (23) 

Now, using the classical inequality 
2 21

,
2

Tu v u v  
 

 where , nu v R  are arbitrary vectors, 

and considering 

1

1
( ) ,

2

T

k k ku y s g    12( )T

k k kv s g y  

we get: 

1 1 1 1

2

( )( ) ( )( )( )

( )

T T T T T

k k k k k k k k k k

T T

k k k k

y g s g y g y s s g

y s y s

    1 1

2

[(1/ 2)( ) ] [ 2( ) ]

( )

T T T

k k k k k k

T

k k

y s g s g y

y s

   

2 22 2

1 1

2

1 1
( ) 2( )

2 2

( )

T T

k k k k k k

T

k k

y s g s g y

y s

 

 
 

 
2

2 21
1 2

1 ( )
.

4 ( )

T

k k
k kT

k k

s g
g y

y s


   

Hence, 
22

2 1
1 1 1

1

3 ( ) 1
.

4

T
kT k k

k k k T T

k k k k k

ys g
g d g

y s y s 


  



 
    

  

 

Obviously, if 1k  is selected as in (21), then the search direction satisfies the sufficient descent 

condition (22).                                                                                                                              

 

It is worth saying that with (21) the search direction (20) is 

                                             

2

1 1
1 1 .

T T
kk k k k

k k kT T T

k k k k k k

yy g s g
d g s

y s y s y s

 
 

 
    

  

                                      (24) 

 

Remark 2.2. From the proof of Proposition 2.1 we see that if  

                                                                    1 2
,

T

k k
k

k

y s

y
                                                               (25) 

then the search direction (20) satisfies a modified sufficient descent condition. However, in our 

numerical experiments the value of the parameter 1k   is computed as in (21).                             
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Proposition 2.2. Suppose that the stepsize k  is determined by the Wolfe line search conditions 

(4) and (5). Then the search direction (24) satisfies the Dai and Liao conjugacy condition 

1 1( ),T T

k k k k ky d v s g    where 
2

/ ( ) 0.T

k k k kv y y s   

 

Proof. By direct computation from (24) we get 
2

1 1 1( ) ( ).
kT T T

k k k k k k kT

k k

y
y d s g v s g

y s
       

Using the Wolfe line search (4) and (5) we have that 0T

k ky s   showing that the Dai and Liao 

conjugacy condition is satisfied by the search direction (24).                                                         

 

The search direction (24) in our algorithm is not very much different by the search direction given 

by Hager and Zhang [17]. It is worth emphasizing that the computational scheme of Hager and 

Zhang is obtained by ex abrupto deleting a term from the search direction for the memoryless 

quasi-Newton scheme of Perry [24] and Shanno [29]. On the other hand, our computational 

scheme (2)-(24) is generated by equating a scaling of the conjugate gradient direction with the 

quasi-Newton direction, where the scaling parameter is determined such as the resulting search 

direction satisfies the sufficient descent condition.  

In conjugate gradient methods the step lengths may differ from 1 in a very unpredictable 

way [23]. They can be larger or smaller than 1 depending on how the problem is scaled. In the 

following we consider an acceleration scheme, we have presented in [3] (see also [2]). Basically 

the acceleration scheme modifies the step length k  in a multiplicative manner to improve the 

reduction of the function values along the iterations. In accelerated algorithm instead of (2) the 

new estimation of the minimum point is computed as  

                                                                1k k k k kx x d    ,                                                     (26) 

where  

                                                                       k
k

k

a

b
   ,                                                             (27) 

,T

k k k ka g d  ( ) ,T

k k k z kb g g d   ( )zg f z  and k k kz x d  . Hence, if 0,kb   then 

the new estimation of the solution is computed as 1k k k k kx x d    , otherwise 

1k k k kx x d   . Using the definitions of g k , ,ks  yk and the above acceleration scheme (26) 

and (27) we can present the following conjugate gradient algorithm. 

 

Algorithm DCGQN 

Step 1. Select the initial starting point 0x dom f  and compute: 0 0( )f f x  and 

0 0( ).g f x  Set 0 0d g   and 0.k   Select 0 1/ 2   and 1/ 2 1   and a 

value for the parameter  . 

Step 2. Test a criterion for stopping the iterations. For example, if kg 

 , then stop; 

otherwise continue with step 3. 

Step 3. Using the Wolfe line search conditions (4) and (5) determine the steplength .k  

Step 4. Compute: k k kz x d  , ( )zg f z  and .k k zy g g   

Step 5. Compute: 
T

k k k ka g d , and 
T

k k k kb y d  . 

Step 6. If 0,kb   then compute /k k ka b    and update the variables as 
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1k k k k kx x d    ; otherwise update the variables as 1k k k kx x d   . Compute 

1kf   and 1.kg   Compute 1k k ky g g   and 1 .k k ks x x   

Step 7. Compute the search direction 1kd  as in (24). 

Step 8. Restart criterion. If the restart criterion of Powell 
2

1 10.2T

k k kg g g   is satisfied, 

then set 1 1k kd g   . 

Step 9. Compute the initial guess  k k k kd d  1 1 / ,  set k k 1 and continue with 

step 2.  

 

If function f  is bounded along the direction kd  then there exists a stepsize k  satisfying the 

Wolfe line search conditions (4) and (5). In our algorithm when the Powell restart condition [28] 

is satisfied, then we restart the algorithm with the negative gradient 1.kg   Some more 

sophisticated reasons for restarting the conjugate gradient algorithms have been proposed in the 

literature [10]. However, in this paper we are interested in the performance of a conjugate 

gradient algorithm that uses this restart criterion of Powell associated to a direction satisfying 

both the descent and the conjugacy conditions. Under reasonable assumptions, the Wolfe 

conditions and the Powell restart criterion are sufficient to prove the global convergence of the 

algorithm. The first trial of the step length crucially affects the practical behavior of the 

algorithm. At every iteration 1k   the starting guess for the step k  in the line search is 

computed as 1 1 / .k k kd d    For uniformly convex functions, we can prove the linear 

convergence of the acceleration scheme given by (26) and (27) [3].  

 

3. Global convergence analysis 
Assume that: 

(i) The level set  0: ( ) ( )nS x R f x f x    is bounded.  

(ii) In a neighborhood N  of S  the function f  is continuously differentiable and its 

gradient is Lipschitz continuous, i.e. there exists a constant 0L   such that 

( ) ( ) ,f x f y L x y     for all , .x y N  

Under these assumptions on f  there exists a constant 0   such that ( )f x   for all .x S  

Notice that the assumption that the function f  is bounded below is weaker that the usual 

assumption that the level set is bounded.  

Although the search directions generated by the algorithm are always descent directions, to 

ensure convergence of the algorithm we need to constrain the choice of the step-length .k  The 

following proposition shows that the Wolfe line search always gives a lower bound for the step-

length .k  

 

Proposition 3.1. Suppose that kd  is a descent direction and the gradient f satisfies the 

Lipschitz condition 

( ) ( ) ,k kf x f x L x x     

for all x  on the line segment connecting kx  and 1,kx   where L  is a positive constant. If the line 

search satisfies the strong Wolfe conditions (4) and (6), then 
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2

(1 )
.

T

k k

k

k

g d

L d





                                                   

Proof. Subtracting 
T

k kg d  from both sides of (6) and using the Lipschitz continuity we get 

2

1( 1) ( ) .T T T

k k k k k k k k k k kg d g g d y d y d L d        

Since kd  is a descent direction and 1,    we get the conclusion of the proposition                    ■ 

 

For any conjugate gradient method with strong Wolfe line search the following general result 

holds [23]. 

 

Proposition 3.2. Suppose that the above assumptions hold. Consider a conjugate gradient 

algorithm in which, for all 0,k   the search direction 
kd  is a descent direction and the 

steplength k  is determined by the Wolfe line search conditions. If 

                                                                   
2

0

1
,

k kd

                                                              (28) 

then the algorithm converges in the sense that 

                                                                  liminf 0.k
k

g


                                                           (29) 

 

For uniformly convex functions we can prove that the norm of the direction 1kd   computed as in 

(24) is bounded above. Therefore, by proposition 3.2 we can prove the following result. 

 

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm DCGQN 

where the search direction kd  is given by (24). Suppose that kd  is a descent direction and k  is 

computed by the Wolfe line search. Suppose that f  is a uniformly convex function on ,S  i.e. 

there exists a constant 0   such that 

                                                 
2

( ( ) ( )) ( )Tf x f y x y x y                                               (30) 

for all , .x y N  Then 

                                                                    lim 0.k
k

g


                                                               (31) 

 

Proof. From Lipschitz continuity we have .k ky L s  On the other hand, from uniform 

convexity it follows that 
2
.T

k k ky s s  Now, using (24) we have 

 
2

1 1

1 1

T T

k k k kk

k k k kT T T

k k k k k k

y g s gy
d g s s

y s y s y s

 

     

2

2 2 2

k k k k k

k k k

y s y s s

s s s  

 
   

2

2
,

L L

 

 
     

 

showing that (28) is true. By proposition 3.2 it follows that (29) is true, which for uniformly 

convex functions is equivalent to (31)                                                                                             
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For general nonlinear functions, having in view that the search direction (24) is close to the 

search direction used in the CG-DESCENT algorithm, the convergence of the algorithm follows 

the same procedure as that used by Hager and Zhang in [17]. 

 

 

4. Numerical results 
The DCGQN algorithm was implemented in double precision Fortran using loop unrolling of 

depth 5 and compiled with f77 (default compiler settings) and run on a Workstation Intel Pentium 

4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained optimization test functions 

in generalized or extended form, of different structure and complexity, presented in [1]. For each 

test function we have considered 10 numerical experiments with the number of variables 

increasing as 1000,2000, ,10000.n   The algorithm uses the Wolfe line search conditions with 

cubic interpolation, 0.0001,   0.8   and the same stopping criterion 610 ,kg 


 where 

.


is the maximum absolute component of a vector.  

 

Since, CG-DESCENT [18] is among the best nonlinear conjugate gradient algorithms 

proposed in the literature, but not necessarily the best, in the first set on numerical experiments 

we compare our algorithm DCGQN versus CG-DESCENT (version 1.4). The algorithms we 

compare in these numerical experiments find local solutions. Therefore, the comparisons of 

algorithms are given in the following context. Let 1ALG

if and 2ALG

if  be the optimal value found 

by ALG1 and ALG2, for problem 1, ,800,i   respectively. We say that, in the particular 

problem ,i  the performance of ALG1 was better than the performance of ALG2 if:  

 

                                                             1 2 310ALG ALG

i if f                                                        (32) 

 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the 

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient 

evaluations, or the CPU time corresponding to ALG2, respectively.  

 

 Figure 1 shows the Dolan and Moré’s [12] performance profiles subject to CPU time 

metric. Form Figure 1, comparing DCGQN versus CG-DESCENT with Wolfe line search 

(version 1.4, Wolfe line search, default settings, 610kg 


 ), subject to the number of iterations, 

we see that DCGQN was better in 641 problems (i.e. it achieved the minimum number of 

iterations for solving 641 problems), CG-DESCENT was better in 74 problems and they achieved 

the same number of iterations in 56 problems, etc. Out of 800 problems, we considered in this 

numerical study, only for 771 problems does the criterion (32) hold. Therefore, in comparison 

with CG-DESCENT, on average, DCGQN appears to generate the best search direction and the 

best step-length. We see that this computational scheme based on scaling the conjugate gradient 

search direction and equating it to the quasi-Newton direction lead us to a conjugate gradient 

algorithm which substantially outperforms the CG-DESCENT, being way more efficient and 

more robust.  
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Fig.1. DCGQN versus CG-DESCENT. 

 

 

Remark 4.1. A theoretical justification of this behavior of DCGQN versus CG-DESCENT is as 

follows. The search direction of DCGQN given by (24) can be written as: 

1 1 1,
DCGQN

k k kd P g     

where  

                                                   

2

1 .
T T

kDCGQN k k k k
k T T T

k k k k k k

ys y s s
P I

y s y s y s
                                                (33) 

By the Wolfe line search conditions (4) and (5) we have that 0.T
k ky s   Therefore, the vectors ky  

and ks  are nonzero vectors. Let V  be the vector space spanned by { , }.k ks y  Clearly, dim( ) 2V   

and dim( ) 2.V n    Thus, there exists a set of mutually unit orthogonal vectors 2
1{ }i n

k iu V 
   

such that 0,T i T i
k k k ks u y u   1, , 2,i n   which from (33) leads to 1 ,DCGQN i i

k k kP u u   

1, , 2.i n   Therefore, the matrix 1
DCGQN

kP   has 2n   eigenvalues equal to 1, which 

corresponds to 2
1{ }i n

k iu 
  as eigenvectors. Now, we are interested to find the rest of the two 

remaining eigenvalues, denoted as 1k

  and 1,k


  respectively. After a simple algebra the trace 

and the determinant of 1
DCGQN

kP  are as follows: 

1( ) 1 ,DCGQN
k ktr P n a     

                                                           1det( ) ,DCGQN
k kP a   

where  
2 2

2
.

( )

k k
k T

k k

s y
a

y s
  

Observe that 1.ka   Therefore, the other eigenvalues of 1
DCGQN

kP   are the roots of the following 

quadratic polynomial: 



 11 

2 (1 ) 0,k ka a      

as 1 1k ka
    and 1 1.k


   Therefore the eigenvalues of 1

DCGQN
kP   are {1,1, ,1, }.ka   

On the other hand, the CG-DESCENT search direction [17, 18] is given by: 

1 1 1,
HZ HZ
k k kd P g     

where 

                                                   

2

1 2 .
T T

kHZ k k k k
k T T T

k k k k k k

ys y s s
P I

y s y s y s


 
   
  

                                            (34) 

Using similar arguments as above, the matrix 1
HZ

kP   has 2n   eigenvalues equal to 1 and two 

other denoted as 1k

  and 1.k


  Computing the trace and the determinant of 1

HZ
kP   we get: 

1( ) 1 2 ,HZ
k ktr P n a     

                                                            1det( ) 2 .HZ
k kP a   

Therefore, the other eigenvalues of 1
HZ

kP   are the roots of the quadratic polynomial: 

2 (1 2 ) 2 0,k ka a      

as 1 2 1k ka
    and 1 1.k


   Therefore the eigenvalues of 1

HZ
kP   are {1,1, ,1,2 }.ka  

As we know, the rate of convergence of conjugate gradient depends strongly by the distribution 

of eigenvalues of the iterate matrix (in our case 1
DCGQN

kP   or 1
HZ

kP  ) (see [4]).  We see that the 

eigenvalues of 1
DCGQN

kP   are better clustered around 1 than the eigenvalues of 1
HZ

kP  . This is the 

reason why DCGQN algorithm is top performer versus CG-DESCENT.                                       

 

In the following, in the second set of numerical experiments, we present comparisons 

between DCGQN and CG-DESCENT conjugate gradient algorithms for solving five applications 

from the MINPACK-2 test problem collection [6]. In Table 1 we present these applications, as 

well as the values of their parameters.  

 

 
Table 1.  

Applications from the MINPACK-2 collection. 

A1 Elastic–plastic torsion [15, pp. 41–55], 5c   

A2 Pressure distribution in a journal bearing [8], 10,b   0.1   

A3 Optimal design with composite materials [16], 0.008   

A4 Steady-state combustion [5, pp. 292–299], [7], 5   

A5 Minimal surfaces with Enneper conditions [22, pp. 80–85] 

 

 

The infinite-dimensional version of these problems is transformed into a finite element 

approximation by triangulation. Thus, a finite-dimensional minimization problem is obtained 

whose variables are the values of the piecewise linear function at the vertices of the triangulation. 

The discretization steps are 1,000nx   and 1,000,ny   thus obtaining minimization problems 

with 1,000,000 variables. A comparison between DCGQN (Powell restart criterion, 
6( ) 10 ,kf x 


   0.0001,  0.8  ) and CG-DESCENT (version 1.4, Wolfe line search, 

default settings, 6( ) 10kf x 


  ) for solving these applications is given in Table 2.  
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Table 2.  

Performance of DCGQN versus CG-DESCENT. 1,000,000 variables. CPU seconds  

 DCGQN CG-DESCENT 

 #iter #fg cpu #iter #fg cpu 

A1 1113 2257 355.84 1145 2291 481.40 

A2 2845 5718 1141.47 3370 6741 1869.77 

A3 4770 9636 2814.16 4814 9630 3979.26 

A4 1413 2864 2110.20 1802 3605 3802.37 

A5 1279 2587 575.62 1225 2451 756.96 

TOTAL 11420 23062 6997.29 12356 24718 10889.76 

 

Form Table 2, we see that, subject to the CPU time metric, the DCGQN algorithm is top 

performer and the difference is significant, about 3892.47 seconds for solving all these five 

applications.  

 

5. Conclusions 
Plenty of conjugate gradient algorithms are known in the literature. In this paper we have 

presented another one based on the quasi-Newton condition. The search direction is computed by 

equating a scaling of the classical conjugate gradient search direction with the quasi-Newton one. 

The scaling parameter is determined in such a way that the resulting search direction of the 

algorithm satisfies the sufficient descent condition. In our algorithm the step length is computed 

using the classical Wolfe line search conditions. The updating formulas (2) and (24) are not 

complicated and we proved that it satisfies the sufficient descent condition 
3

,
4

T

k k kg d g   

independent of the line search procedure as long as 0.T

k ky s   For uniformly convex function the 

convergence of the algorithm was proved under classical assumptions. As a by product, we 

proved once again that the rate of convergence of the conjugate gradient algorithms depends 

strongly by the distribution of the eigenvalues of the iterate matrix defining the search direction. 

In numerical experiments the algorithm DCGQN proved to be more efficient and more robust 

versus CG-DESCENT on a large number of unconstrained optimization test problems of different 

structures and complexities. For solving large-scale nonlinear engineering optimization from 

MINPACK-2 collection the implementation of our algorithm proves to be way more efficient 

than the CG-DESCENT implementation. 
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