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	Abstract. Another conjugate gradient algorithm, based on an improvement of the Perry’s method, is presented. In this algorithm the computation of the search direction is based on the quasi-Newton condition rather than the conjugacy one. The idea of Perry to compute the conjugate gradient parameter by equating the conjugate gradient direction with the quasi-Newton one is modified by an appropriate scaling of the conjugate gradient direction. The value of this scaling parameter is determined in such a way to ensure the sufficient descent condition of the search direction. The global convergence of the algorithm is proved for uniformly convex functions. Numerical experiments, using 800 unconstrained optimization test problems, prove that this algorithm is more efficient and more robust than CG-DESCENT. Using five applications from the MINPACK-2 collection with 
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 variables, we show that the suggested conjugate gradient algorithm is top performer versus CG-DESCENT.
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1. Introduction

For solving large scale unconstrained optimization problem
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 is a continuously differentiable function, bounded from below, one of the most elegant, efficient and simplest methods is the conjugate gradient method. By modest storage requirements, this method represents a significant improvement over the steepest descent algorithms, being very well suited for solving large-scale problems. Besides the corresponding algorithms are not complicated, offering the possibility to be very easy integrated in some other complex industrial and economic applications.
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 a nonlinear conjugate gradient algorithm generates a sequence 
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where 
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 is obtained by line search, and the directions 
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 are computed as:
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In (3), 
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 is known as the conjugate gradient parameter, 
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 In (2) the search direction 
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 assumed to be descent, plays the main role. On the other hand, the step size 
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 guarantees the global convergence in some cases and is crucial in efficiency of the algorithm. Usually, the line search in the conjugate gradient algorithms is based on the standard Wolfe conditions [30, 31]:
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where 
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 is supposed to be a descent direction and 
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 Also, the strong Wolfe line search conditions consisting of (4) and the following strengthened version of (5):
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can be used.

Different conjugate gradient algorithms correspond to different choices for the scalar parameter 
[image: image21.wmf]k
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 used to generate the search direction (3). Some conjugate gradient methods like Fletcher and Reeves (FR) [13], Dai and Yuan (DY) [10] and Conjugate descent (CD) proposed by Fletcher [12]:
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have strong convergence properties, but they may have modest computational performance due to jamming. On the other hand, the methods of Hestenes and Stiefel (HS) [18], Polak and Ribière [25] and Polyak [26] (PRP), or Liu and Storey (LS) [19]:
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may not generally be convergent, but they often have better computational performance.


If the initial direction 
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 is selected as 
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 and the objective function to be minimized is a convex quadratic function:
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and the exact line searches are used, that is
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then the conjugacy condition
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holds for all 
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This relation is the original condition used by Hestenes and Stiefel [18] to derive the conjugate gradient algorithms, mainly for solving symmetric positive-definite systems of linear equations. Let us denote, as usual, 
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Then, for general nonlinear twice differential function 
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 by the mean value theorem, there exists some 
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Therefore, is seems reasonable to replace the old conjugacy condition (9) from quadratic case with the following one:
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In order to improve the convergence of the conjugate gradient algorithm, Perry [24] extended the conjugacy condition by incorporating the second-order information. In this respect he used the quasi-Newton condition also known as secant equation: 
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where 
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 is a symmetric approximation to the inverse Hessian of function 
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 Since for the quasi-Newton method the search direction is computed as 
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it follows that:
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thus obtaining a new conjugacy condition. Later on, Dai and Liao [8] extended this condition and suggested the following new one as:
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 is a scalar. Observe that if the line search is exact, then (13) reduces to the classical conjugacy condition given by (11).


Usually, conjugate gradient algorithms are based on conjugacy condition. In this paper, in order to compute the multiplier 
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 in (3), our computational scheme relies on the quasi-Newton condition (12). Perry [24], considering the HS conjugate gradient algorithm, observed that the search direction (3) can be rewritten as:
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Notice that 
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 in (14) plays the role of an approximation to the inverse Hessian but is not symmetric. Besides, it is not a memoryless quasi-Newton update. However, 
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 in (14) satisfies the conjugacy condition (11). In order to improve the approximation to the inverse Hessian given by (14), Perry [24] notes that under inexact line search, it is more appropriate to choose the approximation to the inverse Hessian to satisfy the quasi-Newton condition (12) rather than simply conjugacy condition. The idea of Perry was to equate 
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 Therefore, by the equality
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after some simple algebraic manipulations we get the Perry’s choice for 
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 and the corresponding search direction as: 

                                            
[image: image56.wmf]11

TT

kkkk

k

T

kk

ygsg

ys

b

++

-

=

                                                                        (16)

                                            
[image: image57.wmf]1111

.

TT

P

kkkk

kkkk

TT

kkkk

syss

dIgQg

ysys

++++

éù

=--+º-

êú

ëû

                                    (17)
It is worth saying that if the exact line search direction is performed, than (17) is identical to the HS conjugate gradient algorithm expressed as in (14). More than this 
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 is not symmetric and does not satisfy the true quasi-Newton (secant) condition. However, the Perry’s direction (17) satisfies the Dai and Liao [8] conjugacy condition (13) with 
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The purpose of this paper is to improve the Perry’s approach. In section 2 a critical development of the Perry’s approach is considered by showing its limits and suggesting a new descent conjugate gradient algorithm with quasi-Newton updates. Section 3 is devoted to prove the convergence of the corresponding algorithm for uniformly convex functions. In section 4 the numerical performances of this algorithm on 800 unconstrained optimization test problems and comparisons versus CG-DESCENT [17] are presented. By solving five applications from the MINPACK-2 collection [5] with 
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 variables we show that our algorithm is top performer versus CG-DESCENT.
2. Descent Conjugate Gradient Algorithm with quasi-Newton updates
In order to define the algorithm, in this section, we consider a strategy based on the quasi-Newton condition rather than the conjugacy condition. The advantage of this approach is the inclusion of the second order information, contained in the Hessian matrix, into the computational scheme, thus improving the convergence of the corresponding algorithm.

For the very beginning, observe that the quasi-Newton direction 
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 is a linear combination of the columns of an approximation to the inverse Hessian 
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, where the coefficients in this linear combination are the negative components of the gradient 
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 On the other hand, the conjugate search direction 
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 altered by a scaling of the previous search direction. The difference between these two search directions is significant and, as we can see, apparently a lot of information given by the inverse Hessian is not considered in the search direction of the conjugate gradient algorithm. However, in some conjugate gradient algorithms, for example the Hestenes and Stiefel [18], the conjugate parameter 
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 in the search direction is obtained by requiring the search direction 
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 This is an important property, but this condition is involving 
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 and not its inverse. Using the quasi-Newton condition improves the conjugate gradient search direction to take into consideration the information given by the inverse Hessian. 
As we have seen the Perry scheme [24] is based on the quasi-Newton condition, i.e. the derivation of the 
[image: image72.wmf]k

b

 in (16) is determined by the equating 
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 cannot alone ensure the equality (15). It is clear that the above condition (15) guarantees that 
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 are only collinear [29]. In order to skip over this limitation, as in [29], we introduce an appropriate scaling of the conjugate gradient direction and consider the equality:
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where 
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 is a scaling parameter which follows to be determined. As above, after some simple algebraic manipulations on (18) we get a new expression for the conjugate gradient parameter 
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 and the corresponding direction as:
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Observe that with 
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 (20) coincides with Perry’s direction (17). On the other hand, with 
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 then (20) coincides with HS search direction (14). Therefore, (20) provides a general frame where a continuous variation between the Hestenss and Stiefel [18] conjugate gradient algorithm and Perry’s one [24] is obtained. Besides, if the line search is exact (
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 In this case the search direction given by (20) is identical with HS strategy.
Remark 2.1. An important property of 
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 given by (19) is that it is also the solution of the following one-parameter quadratic model of function 
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where 
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 the symmetrical and positive definite matrix 
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 such that the generalized quasi-Newton equation 
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 is satisfied. Therefore, with other words, the solution of the symmetrical linear algebraic system 
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is defined by (20) is not a symmetrical matrix. This is indeed a remarkable property (see also [20]).                           (

In the following, we shall develop a procedure for 
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computation. The idea is to find 
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 in such a way to ensure the sufficient descent condition of the search direction (20).
Proposition 2.1. If 
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then the search direction (20) satisfies the sufficient descent condition
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Proof. From (20) we get:
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Now, using the classical inequality 
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we get:
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Hence,
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Obviously, if 
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is selected as in (21), then the search direction satisfies the sufficient descent condition (22).                                                                                                                             (
It is worth saying that with (21) the search direction (20) is
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It is worth saying that if 
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then the search direction (24) satisfies a modified sufficient descent condition. In our numerical experiments the value of the parameter 
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 is computed as in (21). 

Proposition 2.2. The search direction (24) satisfies the Dai and Liao conjugacy condition 
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Proof. By direct computation from (24) we get
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Using the Wolfe line search (4) and (5) we have that 
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 showing that the Dai and Liao conjugacy condition is satisfied by the search direction (24).                                                        (
The search direction (24) in our algorithm is not very much different by the search direction given by Hager and Zhang [16]. It is worth emphasizing that the computational scheme of Hager and Zhang is obtained by ex abrupto deleting a term from the search direction for the memoryless quasi-Newton scheme of Perry [23] and Shanno [28]. On the other hand, our computational scheme (2)-(24) is generated by equating a scaling of the conjugate gradient direction with the quasi-Newton direction, where the scaling parameter is determined such as the resulting search direction satisfies the sufficient descent condition. 

In conjugate gradient methods the step lengths may differ from 1 in a very unpredictable manner [22]. They can be larger or smaller than 1 depending on how the problem is scaled. In the following we consider an acceleration scheme we have presented in [3] (see also [2]). Basically the acceleration scheme modifies the step length 
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 in a multiplicative manner to improve the reduction of the function values along the iterations. In accelerated algorithm instead of (2) the new estimation of the minimum point is computed as 
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Algorithm DCGQN

	Step 1.
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	Step 2.
	Test a criterion for stopping the iterations. For example, if 
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, then stop; otherwise continue with step 3.

	Step 3.
	Using the Wolfe line search conditions (4) and (5) determine the steplength 
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	Compute: 
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	Step 7.
	Compute the search direction 
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as in (24).

	Step 8.
	Restart criterion. If the restart criterion of Powell 
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If function 
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 satisfying the Wolfe line search conditions (4) and (5). In our algorithm when the Powell restart condition [27] is satisfied, then we restart the algorithm with the negative gradient 
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 Some more sophisticated reasons for restarting the conjugate gradient algorithms have been proposed in the literature [9]. However, in this paper we are interested in the performance of a conjugate gradient algorithm that uses this restart criterion of Powell associated to a direction satisfying both the descent and the conjugacy conditions. Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion are sufficient to prove the global convergence of the algorithm. The first trial of the step length crucially affects the practical behavior of the algorithm. At every iteration 
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 For uniformly convex functions, we can prove the linear convergence of the acceleration scheme given by (26) and (27) [3]. 

3. Global convergence analysis

Assume that:

(i) The level set 
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(ii) In a neighborhood 
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Under these assumptions on 
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 Notice that the assumption that the function 
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 is bounded below is weaker that the usual assumption that the level set is bounded. 

Although the search directions generated by the algorithm are always descent directions, to ensure convergence of the algorithm we need to constrain the choice of the step-length 
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 The following proposition shows that the Wolfe line search always gives a lower bound for the step-length 
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Proposition 3.1. Suppose that 
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Since 
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For any conjugate gradient method with strong Wolfe line search the following general result holds [22].

Proposition 3.2. Suppose that the above assumptions hold. Consider a conjugate gradient algorithm in which, for all 
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then the algorithm converges in the sense that
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For uniformly convex functions we can prove that the norm of the direction 
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 computed as in (24) is bounded above. Therefore, by proposition 3.2 we can prove the following result.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm DCGQN where the search direction 
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Proof. From Lipschitz continuity we have 
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showing that (28) is true. By proposition 3.2 it follows that (29) is true, which for uniformly convex functions is equivalent to (31)                                                                                            (
For general nonlinear functions, having in view that the search direction (24) is very close to the search direction used in CG-DESCENT algorithm, the convergence of the algorithm follows the same procedure as that used by Hager and Zhang in [16].
4. Numerical results

The DCGQN algorithm was implemented in double precision Fortran using loop unrolling of depth 5 and compiled with f77 (default compiler settings) and run on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained optimization test functions in generalized or extended form, of different structure and complexity, presented in [1]. For each test function we have considered 10 numerical experiments with the number of variables increasing as 
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 The algorithm uses the Wolfe line search conditions with cubic interpolation, 
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is the maximum absolute component of a vector. 

Since, CG-DESCENT [17] is among the best nonlinear conjugate gradient algorithms proposed in the literature, but not necessarily the best, in the following we compare our algorithm DCGQN versus CG-DESCENT. The algorithms we compare in these numerical experiments find local solutions. Therefore, the comparisons of algorithms are given in the following context. Let 
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 respectively. We say that, in the particular problem 
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 the performance of ALG1 was better than the performance of ALG2 if: 
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and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the CPU time of ALG1 was less than the number of iterations, or the number of function-gradient evaluations, or the CPU time corresponding to ALG2, respectively. 


Figure 1 shows the Dolan and Moré’s [11] performance profiles subject to CPU time metric. Form figure 1, comparing DCGQN versus CG-DESCENT with Wolfe line search, subject to the number of iterations, we see that DCGQN was better in 641 problems (i.e. it achieved the minimum number of iterations for solving 641 problems), CG-DESCENT was better in 74 problems and they achieved the same number of iterations in 56 problems, etc. Out of 800 problems, we considered in this numerical study, only for 771 problems does the criterion (32) hold. Therefore, in comparison with CG-DESCENT, on average, DCGQN appears to generate the best search direction and the best step-length. We see that this computational scheme based on scaling the conjugate gradient search direction and equating it to quasi-Newton direction lead us to a conjugate gradient algorithm which substantially outperforms the CG-DESCENT, being way more efficient and more robust. 
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Fig.1. DCGQN versus CG-DESCENT.
In the following, in the second set of numerical experiments, we present comparisons between DCGQN and CG-DESCENT conjugate gradient algorithms for solving some applications from the MINPACK-2 test problem collection [5]. In Table 1 we present these applications, as well as the values of their parameters. 
Table 1. 
Applications from the MINPACK-2 collection.
	A1
	Elastic–plastic torsion [14, pp. 41–55], 
[image: image228.wmf]5

c

=



	A2
	Pressure distribution in a journal bearing [7], 
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	A3
	Optimal design with composite materials [15], 
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	A4
	Steady-state combustion [4, pp. 292–299], [6], 
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	A5
	Minimal surfaces with Enneper conditions [21, pp. 80–85]


The infinite-dimensional version of these problems is transformed into a finite element approximation by triangulation. Thus a finite-dimensional minimization problem is obtained whose variables are the values of the piecewise linear function at the vertices of the triangulation. The discretization steps are 
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 thus obtaining minimization problems with 1,000,000 variables. A comparison between DCGQN (Powell restart criterion, 
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) and CG-DESCENT (version 1.4, Wolfe line search, default settings, 
[image: image238.wmf]6

()10

k

fx

-

¥

Ñ£

) for solving these applications is given in Table 2. 

Table 2. 
Performance of DCGQN versus CG-DESCENT. 1,000,000 variables. CPU seconds 

	
	DCGQN
	CG-DESCENT

	
	#iter
	#fg
	cpu
	#iter
	#fg
	cpu

	A1
	1113
	2257
	355.84
	1145
	2291
	481.40

	A2
	2845
	5718
	1141.47
	3370
	6741
	1869.77

	A3
	4770
	9636
	2814.16
	4814
	9630
	3979.26

	A4
	1413
	2864
	2110.20
	1802
	3605
	3802.37

	A5
	1279
	2587
	575.62
	1225
	2451
	756.96

	TOTAL
	11420
	23062
	6997.29
	12356
	24718
	10889.76


Form Table 2, we see that, subject to the CPU time metric, the DCGQN algorithm is top performer and the difference is significant, about 3892.47 seconds for solving all these five applications. 

5. Conclusions
Plenty of conjugate gradient algorithms are known in the literature. In this paper we have presented another one based on the quasi-Newton condition. The search direction is computed by equating a scaling of the classical conjugate gradient search direction with the quasi-Newton one. The scaling parameter is determined in such a way that the resulting search direction of the algorithm satisfies the sufficient descent condition. In our algorithm the step length is computed using the classical Wolfe line search conditions. The updating formulas (2) and (24) are not complicated and we proved that it satisfies the sufficient descent condition 
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 independent of the line search procedure as long as 
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 For uniformly convex function the convergence of the algorithm was proved under classical assumptions. In numerical experiments the algorithm proved to be more efficient and more robust versus CG-DESCENT on a large number of unconstrained optimization test problems. For solving large-scale nonlinear engineering optimization from MINPACK-2 collection the implementation of our algorithm proves to be way more efficient than the CG-DESCENT implementation.
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