Descent Conjugate Gradient Algorithm with quasi-Newton updates

Neculai Andrei

Research Institute for Informatics, Center for Advanced Modeling and Optimization,
8-10, Averescu Avenue, Bucharest 1, Romania.

E-mail: nandrei@ici.ro
	Abstract. Another conjugate gradient algorithm, based on an improvement of the Perry’s method, is presented. In this algorithm the computation of the search direction is based on the quasi-Newton condition rather than the conjugacy one. The idea of Perry to compute the conjugate gradient parameter by equating the conjugate gradient direction with the quasi-Newton one is modified by an appropriate scaling of the conjugate gradient direction. The value of this scaling parameter is determined in such a way to ensure the sufficient descent condition of the search direction. The global convergence of the algorithm is proved for uniformly convex functions. Numerical experiments, using 800 unconstrained optimization test problems, prove that this algorithm is more efficient and more robust than CG-DESCENT. Using five applications from the MINPACK-2 collection with
[image: image1.wmf]6

10

 variables, we show that the suggested conjugate gradient algorithm is top performer versus CG-DESCENT.

Keywords: Unconstrained optimization; conjugate gradient algorithms; conjugacy condition; quasi-Newton condition; sufficient descent condition; numerical comparisons.
1. Introduction

For solving large scale unconstrained optimization problem

[image: image2.wmf]min(),

fx

 (1)
where
[image: image3.wmf]:

n

f

®

¡¡

 is a continuously differentiable function, bounded from below, one of the most elegant, efficient and simplest methods is the conjugate gradient method. By modest storage requirements, this method represents a significant improvement over the steepest descent algorithms, being very well suited for solving large-scale problems. Besides the corresponding algorithms are not complicated, offering the possibility to be very easy integrated in some other complex industrial and economic applications.
Starting from an initial guess
[image: image4.wmf]0

,

n

x

Î

¡

 a nonlinear conjugate gradient algorithm generates a sequence
[image: image5.wmf]{}

k

x

 as:

[image: image6.wmf]1

,

kkkk

xxd

a

+

=+

 (2)

where
[image: image7.wmf]0

k

a

>

 is obtained by line search, and the directions
[image: image8.wmf]k

d

 are computed as:

[image: image9.wmf]11

,

kkkk

dgs

b

++

=-+

[image: image10.wmf]00

.

dg

=-

 (3)

In (3),
[image: image11.wmf]k

b

 is known as the conjugate gradient parameter,
[image: image12.wmf]1

kkk

sxx

+

=-

 and
[image: image13.wmf]().

kk

gfx

=Ñ

 In (2) the search direction
[image: image14.wmf],

k

d

 assumed to be descent, plays the main role. On the other hand, the step size
[image: image15.wmf]k

a

 guarantees the global convergence in some cases and is crucial in efficiency of the algorithm. Usually, the line search in the conjugate gradient algorithms is based on the standard Wolfe conditions [30, 31]:

[image: image16.wmf]()(),

T

kkkkkkk

fxdfxgd

ara

+-£

 (4)

[image: image17.wmf](),

TT

kkkkkk

gxddgd

as

+³

 (5)

where
[image: image18.wmf]k

d

 is supposed to be a descent direction and
[image: image19.wmf]01/21.

rs

<£<<

 Also, the strong Wolfe line search conditions consisting of (4) and the following strengthened version of (5):

[image: image20.wmf]1

TT

kkkk

gdgd

s

+

£-

 (6)

can be used.

Different conjugate gradient algorithms correspond to different choices for the scalar parameter
[image: image21.wmf]k

b

 used to generate the search direction (3). Some conjugate gradient methods like Fletcher and Reeves (FR) [13], Dai and Yuan (DY) [10] and Conjugate descent (CD) proposed by Fletcher [12]:

[image: image22.wmf]11

,

T

FR

kk

k

T

kk

gg

gg

b

++

=

[image: image23.wmf]11

,

T

DY

kk

k

T

kk

gg

ys

b

++

=

[image: image24.wmf]11

,

T

CD

kk

k

T

kk

gg

gs

b

++

=

-

have strong convergence properties, but they may have modest computational performance due to jamming. On the other hand, the methods of Hestenes and Stiefel (HS) [18], Polak and Ribière [25] and Polyak [26] (PRP), or Liu and Storey (LS) [19]:

[image: image25.wmf]1

,

T

HS

kk

k

T

kk

gy

ys

b

+

=

[image: image26.wmf]1

,

T

PRP

kk

k

T

kk

gy

gg

b

+

=

[image: image27.wmf]1

,

T

LS

kk

k

T

kk

gy

gs

b

+

=

-

may not generally be convergent, but they often have better computational performance.

If the initial direction
[image: image28.wmf]0

d

 is selected as
[image: image29.wmf]00

.

dg

=-

 and the objective function to be minimized is a convex quadratic function:

[image: image30.wmf]1

(),

2

TT

fxxAxbxc

=++

 (7)

and the exact line searches are used, that is

[image: image31.wmf]0

argmin(),

kkk

fxd

a

aa

>

=+

 (8)

then the conjugacy condition

[image: image32.wmf]0

T

ij

dAd

=

 (9)

holds for all
[image: image33.wmf].

ij

¹

This relation is the original condition used by Hestenes and Stiefel [18] to derive the conjugate gradient algorithms, mainly for solving symmetric positive-definite systems of linear equations. Let us denote, as usual,
[image: image34.wmf]1

.

kkk

ygg

+

=-

Then, for general nonlinear twice differential function
[image: image35.wmf],

f

 by the mean value theorem, there exists some
[image: image36.wmf](0,1)

x

Î

 such that

[image: image37.wmf]2

11

().

TT

kkkkkkkk

dydfxdd

axa

++

=Ñ+

 (10)
Therefore, is seems reasonable to replace the old conjugacy condition (9) from quadratic case with the following one:

[image: image38.wmf]1

0.

T

kk

dy

+

=

 (11)

In order to improve the convergence of the conjugate gradient algorithm, Perry [24] extended the conjugacy condition by incorporating the second-order information. In this respect he used the quasi-Newton condition also known as secant equation:

[image: image39.wmf]1

,

kkk

Hys

+

=

 (12)

where
[image: image40.wmf]1

k

H

+

 is a symmetric approximation to the inverse Hessian of function
[image: image41.wmf].

f

 Since for the quasi-Newton method the search direction is computed as
[image: image42.wmf]111

,

kkk

dHg

+++

=-

it follows that:

[image: image43.wmf]111111

()(),

TTTT

kkkkkkkkkk

dyHgygHygs

++++++

=-=-=-

thus obtaining a new conjugacy condition. Later on, Dai and Liao [8] extended this condition and suggested the following new one as:

[image: image44.wmf]11

(),

TT

kkkk

dyugs

++

=-

 (13)

where
[image: image45.wmf]0

u

³

 is a scalar. Observe that if the line search is exact, then (13) reduces to the classical conjugacy condition given by (11).

Usually, conjugate gradient algorithms are based on conjugacy condition. In this paper, in order to compute the multiplier
[image: image46.wmf]k

b

 in (3), our computational scheme relies on the quasi-Newton condition (12). Perry [24], considering the HS conjugate gradient algorithm, observed that the search direction (3) can be rewritten as:

[image: image47.wmf]1111

.

T

HS

kk

kkkk

T

kk

sy

dIgQg

ys

++++

éù

=--º-

êú

ëû

 (14)

Notice that
[image: image48.wmf]1

HS

k

Q

+

 in (14) plays the role of an approximation to the inverse Hessian but is not symmetric. Besides, it is not a memoryless quasi-Newton update. However,
[image: image49.wmf]1

k

d

+

 in (14) satisfies the conjugacy condition (11). In order to improve the approximation to the inverse Hessian given by (14), Perry [24] notes that under inexact line search, it is more appropriate to choose the approximation to the inverse Hessian to satisfy the quasi-Newton condition (12) rather than simply conjugacy condition. The idea of Perry was to equate
[image: image50.wmf]11

kkkk

dgs

b

++

=-+

 to
[image: image51.wmf]1

11

,

kk

Bg

-

++

-

 where
[image: image52.wmf]1

k

B

+

 is an approximation to the Hessian
[image: image53.wmf]2

1

().

k

fx

+

Ñ

 Therefore, by the equality

[image: image54.wmf]1

111

,

kkkkk

gsBg

b

-

+++

-+=-

 (15)
after some simple algebraic manipulations we get the Perry’s choice for
[image: image55.wmf]k

b

 and the corresponding search direction as:

[image: image56.wmf]11

TT

kkkk

k

T

kk

ygsg

ys

b

++

-

=

 (16)

[image: image57.wmf]1111

.

TT

P

kkkk

kkkk

TT

kkkk

syss

dIgQg

ysys

++++

éù

=--+º-

êú

ëû

 (17)
It is worth saying that if the exact line search direction is performed, than (17) is identical to the HS conjugate gradient algorithm expressed as in (14). More than this
[image: image58.wmf]1

P

k

Q

+

 is not symmetric and does not satisfy the true quasi-Newton (secant) condition. However, the Perry’s direction (17) satisfies the Dai and Liao [8] conjugacy condition (13) with
[image: image59.wmf]1.

u

=

The purpose of this paper is to improve the Perry’s approach. In section 2 a critical development of the Perry’s approach is considered by showing its limits and suggesting a new descent conjugate gradient algorithm with quasi-Newton updates. Section 3 is devoted to prove the convergence of the corresponding algorithm for uniformly convex functions. In section 4 the numerical performances of this algorithm on 800 unconstrained optimization test problems and comparisons versus CG-DESCENT [17] are presented. By solving five applications from the MINPACK-2 collection [5] with
[image: image60.wmf]6

10

 variables we show that our algorithm is top performer versus CG-DESCENT.
2. Descent Conjugate Gradient Algorithm with quasi-Newton updates
In order to define the algorithm, in this section, we consider a strategy based on the quasi-Newton condition rather than the conjugacy condition. The advantage of this approach is the inclusion of the second order information, contained in the Hessian matrix, into the computational scheme, thus improving the convergence of the corresponding algorithm.

For the very beginning, observe that the quasi-Newton direction
[image: image61.wmf]1

111

kkk

dBg

-

+++

=-

 is a linear combination of the columns of an approximation to the inverse Hessian
[image: image62.wmf]1

1

k

B

-

+

, where the coefficients in this linear combination are the negative components of the gradient
[image: image63.wmf]1

.

k

g

+

 On the other hand, the conjugate search direction
[image: image64.wmf]11

kkkk

dgs

b

++

=-+

 mainly is the negative gradient
[image: image65.wmf]1

k

g

+

 altered by a scaling of the previous search direction. The difference between these two search directions is significant and, as we can see, apparently a lot of information given by the inverse Hessian is not considered in the search direction of the conjugate gradient algorithm. However, in some conjugate gradient algorithms, for example the Hestenes and Stiefel [18], the conjugate parameter
[image: image66.wmf]k

b

 in the search direction is obtained by requiring the search direction
[image: image67.wmf]1

k

d

+

 to be
[image: image68.wmf]k

B

-conjugate to
[image: image69.wmf],

k

d

 i.e. enforcing the condition
[image: image70.wmf]1

0.

T

kkk

dBd

+

=

 This is an important property, but this condition is involving
[image: image71.wmf]k

B

 and not its inverse. Using the quasi-Newton condition improves the conjugate gradient search direction to take into consideration the information given by the inverse Hessian.
As we have seen the Perry scheme [24] is based on the quasi-Newton condition, i.e. the derivation of the
[image: image72.wmf]k

b

 in (16) is determined by the equating
[image: image73.wmf]11

kkkk

dgs

b

++

=-+

 to
[image: image74.wmf]1

1

,

kk

Bg

-

+

-

 where
[image: image75.wmf]1

k

B

+

 is an approximation of the Hessian. However, if the Newton direction
[image: image76.wmf]1

11

kk

Bg

-

++

-

 is contained into the cone generated by
[image: image77.wmf]1

k

g

+

-

 and
[image: image78.wmf],

k

s

 then
[image: image79.wmf]k

b

 cannot alone ensure the equality (15). It is clear that the above condition (15) guarantees that
[image: image80.wmf]1

kkk

gs

b

+

-+

 and the quasi-Newton direction
[image: image81.wmf]1

11

kk

Bg

-

++

-

 are only collinear [29]. In order to skip over this limitation, as in [29], we introduce an appropriate scaling of the conjugate gradient direction and consider the equality:

[image: image82.wmf]1

11111

,

kkkkkkk

gsBg

qqb

-

+++++

-+=-

 (18)

where
[image: image83.wmf]1

0

k

q

+

>

 is a scaling parameter which follows to be determined. As above, after some simple algebraic manipulations on (18) we get a new expression for the conjugate gradient parameter
[image: image84.wmf]k

b

 and the corresponding direction as:

[image: image85.wmf]111

(1/)

,

TT

kkkkk

k

T

kk

ygsg

ys

q

b

+++

-

=

 (19)

[image: image86.wmf]1111

1

1

.

TT

kkkk

kkkk

TT

kkkkk

syss

dIgPg

ysys

q

++++

+

éù

=--+º-

êú

ëû

 (20)

Observe that with
[image: image87.wmf]1

1,

k

q

+

=

 (20) coincides with Perry’s direction (17). On the other hand, with
[image: image88.wmf]1

,

k

q

+

®¥

 then (20) coincides with HS search direction (14). Therefore, (20) provides a general frame where a continuous variation between the Hestenss and Stiefel [18] conjugate gradient algorithm and Perry’s one [24] is obtained. Besides, if the line search is exact (
[image: image89.wmf]1

0

T

kk

sg

+

=

), than the algorithm is indifferent to the selection of
[image: image90.wmf]1

.

k

q

+

 In this case the search direction given by (20) is identical with HS strategy.
Remark 2.1. An important property of
[image: image91.wmf]k

b

 given by (19) is that it is also the solution of the following one-parameter quadratic model of function
[image: image92.wmf]f

 on
[image: image93.wmf]:

b

[image: image94.wmf]11

1

min()()(),

2

TT

kk

gddBd

b

bbb

++

+

where
[image: image95.wmf]1

(),

kk

dgs

bb

+

=-+

 the symmetrical and positive definite matrix
[image: image96.wmf]1

k

B

+

 is an approximation of the Hessian
[image: image97.wmf]2

1

()

k

fx

+

Ñ

 such that the generalized quasi-Newton equation
[image: image98.wmf]11

,

kkkk

Bsy

q

++

=

 with
[image: image99.wmf]1

0,

k

q

+

¹

 is satisfied. Therefore, with other words, the solution of the symmetrical linear algebraic system
[image: image100.wmf]11

()

kk

Bdg

b

++

=-

 can be expressed as
[image: image101.wmf]11

(),

kk

dPg

b

++

=-

 where
[image: image102.wmf]1

k

P

+

is defined by (20) is not a symmetrical matrix. This is indeed a remarkable property (see also [20]). (

In the following, we shall develop a procedure for
[image: image103.wmf]1

k

q

+

computation. The idea is to find
[image: image104.wmf]1

k

q

+

 in such a way to ensure the sufficient descent condition of the search direction (20).
Proposition 2.1. If

[image: image105.wmf]1

2

,

T

kk

k

k

ys

y

q

+

=

 (21)

then the search direction (20) satisfies the sufficient descent condition

[image: image106.wmf]2

111

3

0.

4

T

kkk

gdg

+++

=-£

 (22)

Proof. From (20) we get:

[image: image107.wmf]2

2

111

111

1

()()1()

.

TTT

T

kkkkkk

kkk

TT

kkkkk

ygsgsg

gdg

ysys

q

+++

+++

+

=-+-

 (23)
Now, using the classical inequality
[image: image108.wmf]22

1

,

2

T

uvuv

éù

£+

ëû

 where
[image: image109.wmf],

n

uv

Î

¡

 are arbitrary vectors, and considering

[image: image110.wmf]1

1

(),

2

T

kkk

uysg

+

=

[image: image111.wmf]1

2()

T

kkk

vsgy

+

=

we get:

[image: image112.wmf]1111

2

()()()()()

()

TTTTT

kkkkkkkkkk

TT

kkkk

ygsgygyssg

ysys

++++

=

 EMBED Equation.DSMT4 [image: image113.wmf]11

2

[(1/2)()][2()]

()

TTT

kkkkkk

T

kk

ysgsgy

ys

++

=

[image: image114.wmf]22

22

11

2

11

()2()

22

()

TT

kkkkkk

T

kk

ysgsgy

ys

++

éù

+

êú

ëû

£

 EMBED Equation.DSMT4 [image: image115.wmf]2

22

1

1

2

1()

.

4()

T

kk

kk

T

kk

sg

gy

ys

+

+

=+

Hence,

[image: image116.wmf]2

2

2

1

111

1

3()1

.

4

T

k

T

kk

kkk

TT

kkkkk

y

sg

gdg

ysys

q

+

+++

+

éù

£-+-

êú

êú

ëû

Obviously, if
[image: image117.wmf]1

k

q

+

is selected as in (21), then the search direction satisfies the sufficient descent condition (22). (
It is worth saying that with (21) the search direction (20) is

[image: image118.wmf]2

11

11

.

TT

k

kkkk

kkk

TTT

kkkkkk

y

ygsg

dgs

ysysys

++

++

éù

=-+-

êú

êú

ëû

 (24)

It is worth saying that if

[image: image119.wmf]1

2

,

T

kk

k

k

ys

y

q

+

£

 (25)

then the search direction (24) satisfies a modified sufficient descent condition. In our numerical experiments the value of the parameter
[image: image120.wmf]1

k

q

+

 is computed as in (21).

Proposition 2.2. The search direction (24) satisfies the Dai and Liao conjugacy condition
[image: image121.wmf]11

(),

TT

kkkkk

ydvsg

++

=-

 where
[image: image122.wmf]2

/()0.

T

kkkk

vyys

=³

Proof. By direct computation from (24) we get

[image: image123.wmf]2

111

()().

k

TTT

kkkkkkk

T

kk

y

ydsgvsg

ys

+++

=-º-

Using the Wolfe line search (4) and (5) we have that
[image: image124.wmf]0

T

kk

ys

>

 showing that the Dai and Liao conjugacy condition is satisfied by the search direction (24). (
The search direction (24) in our algorithm is not very much different by the search direction given by Hager and Zhang [16]. It is worth emphasizing that the computational scheme of Hager and Zhang is obtained by ex abrupto deleting a term from the search direction for the memoryless quasi-Newton scheme of Perry [23] and Shanno [28]. On the other hand, our computational scheme (2)-(24) is generated by equating a scaling of the conjugate gradient direction with the quasi-Newton direction, where the scaling parameter is determined such as the resulting search direction satisfies the sufficient descent condition.

In conjugate gradient methods the step lengths may differ from 1 in a very unpredictable manner [22]. They can be larger or smaller than 1 depending on how the problem is scaled. In the following we consider an acceleration scheme we have presented in [3] (see also [2]). Basically the acceleration scheme modifies the step length
[image: image125.wmf]k

a

 in a multiplicative manner to improve the reduction of the function values along the iterations. In accelerated algorithm instead of (2) the new estimation of the minimum point is computed as

[image: image126.wmf]1

kkkkk

xxd

xa

+

=+

, (26)

where

[image: image127.wmf]k

k

k

a

b

x

=-

, (27)

[image: image128.wmf],

T

kkkk

agd

a

=

[image: image129.wmf](),

T

kkkzk

bggd

a

=--

EMBED Equation.DSMT4[image: image130.wmf]()

z

gfz

=Ñ

 and
[image: image131.wmf]kkk

zxd

a

=+

. Hence, if
[image: image132.wmf]0,

k

b

¹

 then the new estimation of the solution is computed as
[image: image133.wmf]1

kkkkk

xxd

xa

+

=+

, otherwise
[image: image134.wmf]1

kkkk

xxd

a

+

=+

. Using the definitions of
[image: image135.wmf]g

k

,

EMBED Equation.DSMT4[image: image136.wmf],

k

s

[image: image137.wmf]y

k

and the above acceleration scheme (26) and (27) we can present the following conjugate gradient algorithm.
Algorithm DCGQN

	Step 1.
	Select the initial starting point
[image: image138.wmf]0

xdomf

Î

 and compute:
[image: image139.wmf]00

()

ffx

=

 and
[image: image140.wmf]00

().

gfx

=Ñ

 Set
[image: image141.wmf]00

dg

=-

 and
[image: image142.wmf]0.

k

=

 Select a value for the parameter
[image: image143.wmf]e

.

	Step 2.
	Test a criterion for stopping the iterations. For example, if
[image: image144.wmf]k

g

e

¥

£

, then stop; otherwise continue with step 3.

	Step 3.
	Using the Wolfe line search conditions (4) and (5) determine the steplength
[image: image145.wmf].

k

a

	Step 4.
	Compute:
[image: image146.wmf]kkk

zxd

a

=+

,
[image: image147.wmf]()

z

gfz

=Ñ

 and
[image: image148.wmf].

kkz

ygg

=-

	Step 5.
	Compute:
[image: image149.wmf]T

kkkk

agd

a

=

, and
[image: image150.wmf]T

kkkk

byd

a

=-

.

	Step 6.
	If
[image: image151.wmf]0,

k

b

¹

 then compute
[image: image152.wmf]/

kkk

ab

x

=-

 and update the variables as
[image: image153.wmf]1

kkkkk

xxd

xa

+

=+

, otherwise update the variables as
[image: image154.wmf]1

kkkk

xxd

a

+

=+

. Compute
[image: image155.wmf]1

k

f

+

 and
[image: image156.wmf]1

.

k

g

+

 Compute
[image: image157.wmf]1

kkk

ygg

+

=-

 and
[image: image158.wmf]1

.

kkk

sxx

+

=-

	Step 7.
	Compute the search direction
[image: image159.wmf]1

k

d

+

as in (24).

	Step 8.
	Restart criterion. If the restart criterion of Powell
[image: image160.wmf]2

11

0.2

T

kkk

ggg

++

>

 is satisfied, then set
[image: image161.wmf]11

kk

dg

++

=-

.

	Step 9.
	Compute the initial guess
[image: image162.wmf]a

a

k

k

k

k

d

d

=

-

-

1

1

/

,

 set
[image: image163.wmf]k

k

=

+

1

 and continue with step 2. (

If function
[image: image164.wmf]f

 is bounded along the direction
[image: image165.wmf]k

d

 then there exists a stepsize
[image: image166.wmf]k

a

 satisfying the Wolfe line search conditions (4) and (5). In our algorithm when the Powell restart condition [27] is satisfied, then we restart the algorithm with the negative gradient
[image: image167.wmf]1

.

k

g

+

-

 Some more sophisticated reasons for restarting the conjugate gradient algorithms have been proposed in the literature [9]. However, in this paper we are interested in the performance of a conjugate gradient algorithm that uses this restart criterion of Powell associated to a direction satisfying both the descent and the conjugacy conditions. Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion are sufficient to prove the global convergence of the algorithm. The first trial of the step length crucially affects the practical behavior of the algorithm. At every iteration
[image: image168.wmf]1

k

³

 the starting guess for the step
[image: image169.wmf]k

a

 in the line search is computed as
[image: image170.wmf]11

/.

kkk

dd

a

--

 For uniformly convex functions, we can prove the linear convergence of the acceleration scheme given by (26) and (27) [3].

3. Global convergence analysis

Assume that:

(i) The level set
[image: image171.wmf]{

}

0

:()()

n

Sxfxfx

=Î£

¡

 is bounded.
(ii) In a neighborhood
[image: image172.wmf]N

 of
[image: image173.wmf]S

 the function
[image: image174.wmf]f

 is continuously differentiable and its gradient is Lipschitz continuous, i.e. there exists a constant
[image: image175.wmf]0

L

>

 such that
[image: image176.wmf]()(),

fxfyLxy

Ñ-Ñ£-

 for all
[image: image177.wmf],.

xyN

Î

Under these assumptions on
[image: image178.wmf]f

 there exists a constant
[image: image179.wmf]0

G³

 such that
[image: image180.wmf]()

fx

Ñ£G

 for all
[image: image181.wmf].

xS

Î

 Notice that the assumption that the function
[image: image182.wmf]f

 is bounded below is weaker that the usual assumption that the level set is bounded.

Although the search directions generated by the algorithm are always descent directions, to ensure convergence of the algorithm we need to constrain the choice of the step-length
[image: image183.wmf].

k

a

 The following proposition shows that the Wolfe line search always gives a lower bound for the step-length
[image: image184.wmf].

k

a

Proposition 3.1. Suppose that
[image: image185.wmf]k

d

 is a descent direction and the gradient
[image: image186.wmf]f

Ñ

satisfies the Lipschitz condition

[image: image187.wmf]()()

kk

fxfxLxx

Ñ-Ñ£-

for all
[image: image188.wmf]x

 on the line segment connecting
[image: image189.wmf]k

x

 and
[image: image190.wmf]1

,

k

x

+

 where
[image: image191.wmf]L

 is a positive constant. If the line search satisfies the strong Wolfe conditions (4) and (6), then

[image: image192.wmf]2

(1)

.

T

kk

k

k

gd

Ld

s

a

-

³

Proof. Subtracting
[image: image193.wmf]T

kk

gd

 from both sides of (6) and using the Lipschitz continuity we get

[image: image194.wmf]2

1

(1)().

TTT

kkkkkkkkkkk

gdggdydydLd

sa

+

-£-=££

Since
[image: image195.wmf]k

d

 is a descent direction and
[image: image196.wmf]1,

s

<

 we get the conclusion of the proposition ■

For any conjugate gradient method with strong Wolfe line search the following general result holds [22].

Proposition 3.2. Suppose that the above assumptions hold. Consider a conjugate gradient algorithm in which, for all
[image: image197.wmf]0,

k

³

 the search direction
[image: image198.wmf]k

d

 is a descent direction and the steplength
[image: image199.wmf]k

a

 is determined by the Wolfe line search conditions. If

[image: image200.wmf]2

0

1

,

k

k

d

³

=¥

å

 (28)

then the algorithm converges in the sense that

[image: image201.wmf]liminf0.

k

k

g

®¥

=

 (29)

For uniformly convex functions we can prove that the norm of the direction
[image: image202.wmf]1

k

d

+

 computed as in (24) is bounded above. Therefore, by proposition 3.2 we can prove the following result.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm DCGQN where the search direction
[image: image203.wmf]k

d

 is given by (24). Suppose that
[image: image204.wmf]k

d

 is a descent direction and
[image: image205.wmf]k

a

 is computed by the Wolfe line search. Suppose that
[image: image206.wmf]f

 is a uniformly convex function on
[image: image207.wmf],

S

 i.e. there exists a constant
[image: image208.wmf]0

m

>

 such that

[image: image209.wmf]2

(()())()

T

fxfyxyxy

m

Ñ-Ñ-³-

 (30)

for all
[image: image210.wmf],.

xyN

Î

 Then

[image: image211.wmf]lim0.

k

k

g

®¥

=

 (31)

Proof. From Lipschitz continuity we have
[image: image212.wmf].

kk

yLs

£

 On the other hand, from uniform convexity it follows that
[image: image213.wmf]2

.

T

kkk

yss

m

³

 Now, using (24) we have

[image: image214.wmf]2

11

11

TT

kkkk

k

kkkk

TTT

kkkkkk

ygsg

y

dgss

ysysys

++

++

£++

[image: image215.wmf]2

222

kkkkk

kkk

ysyss

sss

mmm

GG

£G++

 EMBED Equation.DSMT4 [image: image216.wmf]2

2

,

LL

mm

GG

£G++

showing that (28) is true. By proposition 3.2 it follows that (29) is true, which for uniformly convex functions is equivalent to (31) (
For general nonlinear functions, having in view that the search direction (24) is very close to the search direction used in CG-DESCENT algorithm, the convergence of the algorithm follows the same procedure as that used by Hager and Zhang in [16].
4. Numerical results

The DCGQN algorithm was implemented in double precision Fortran using loop unrolling of depth 5 and compiled with f77 (default compiler settings) and run on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained optimization test functions in generalized or extended form, of different structure and complexity, presented in [1]. For each test function we have considered 10 numerical experiments with the number of variables increasing as
[image: image217.wmf]1000,2000,,10000.

n

=

K

 The algorithm uses the Wolfe line search conditions with cubic interpolation,
[image: image218.wmf]0.0001,

r

=

[image: image219.wmf]0.8

s

=

 and the same stopping criterion
[image: image220.wmf]6

10,

k

g

-

¥

£

where
[image: image221.wmf].

¥

is the maximum absolute component of a vector.

Since, CG-DESCENT [17] is among the best nonlinear conjugate gradient algorithms proposed in the literature, but not necessarily the best, in the following we compare our algorithm DCGQN versus CG-DESCENT. The algorithms we compare in these numerical experiments find local solutions. Therefore, the comparisons of algorithms are given in the following context. Let
[image: image222.wmf]1

ALG

i

f

and
[image: image223.wmf]2

ALG

i

f

 be the optimal value found by ALG1 and ALG2, for problem
[image: image224.wmf]1,,800,

i

=

K

 respectively. We say that, in the particular problem
[image: image225.wmf],

i

 the performance of ALG1 was better than the performance of ALG2 if:

[image: image226.wmf]123

10

ALGALG

ii

ff

-

-<

 (32)

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the CPU time of ALG1 was less than the number of iterations, or the number of function-gradient evaluations, or the CPU time corresponding to ALG2, respectively.

Figure 1 shows the Dolan and Moré’s [11] performance profiles subject to CPU time metric. Form figure 1, comparing DCGQN versus CG-DESCENT with Wolfe line search, subject to the number of iterations, we see that DCGQN was better in 641 problems (i.e. it achieved the minimum number of iterations for solving 641 problems), CG-DESCENT was better in 74 problems and they achieved the same number of iterations in 56 problems, etc. Out of 800 problems, we considered in this numerical study, only for 771 problems does the criterion (32) hold. Therefore, in comparison with CG-DESCENT, on average, DCGQN appears to generate the best search direction and the best step-length. We see that this computational scheme based on scaling the conjugate gradient search direction and equating it to quasi-Newton direction lead us to a conjugate gradient algorithm which substantially outperforms the CG-DESCENT, being way more efficient and more robust.

[image: image227.png]095 1
09 1
085 1
DCGQN CG-DESCENT =
#iter 641 74 56
08 #g 484 251 36
cpu 258 233 280
075 1
07 . . 7
i CPU time metric, 771 problems

065
0 2 4 6 8 10 12 14 16

Fig.1. DCGQN versus CG-DESCENT.
In the following, in the second set of numerical experiments, we present comparisons between DCGQN and CG-DESCENT conjugate gradient algorithms for solving some applications from the MINPACK-2 test problem collection [5]. In Table 1 we present these applications, as well as the values of their parameters.
Table 1.
Applications from the MINPACK-2 collection.
	A1
	Elastic–plastic torsion [14, pp. 41–55],
[image: image228.wmf]5

c

=

	A2
	Pressure distribution in a journal bearing [7],
[image: image229.wmf]10,

b

=

[image: image230.wmf]0.1

e

=

	A3
	Optimal design with composite materials [15],
[image: image231.wmf]0.008

l

=

	A4
	Steady-state combustion [4, pp. 292–299], [6],
[image: image232.wmf]5

l

=

	A5
	Minimal surfaces with Enneper conditions [21, pp. 80–85]

The infinite-dimensional version of these problems is transformed into a finite element approximation by triangulation. Thus a finite-dimensional minimization problem is obtained whose variables are the values of the piecewise linear function at the vertices of the triangulation. The discretization steps are
[image: image233.wmf]1,000

nx

=

 and
[image: image234.wmf]1,000,

ny

=

 thus obtaining minimization problems with 1,000,000 variables. A comparison between DCGQN (Powell restart criterion,
[image: image235.wmf]6

()10,

k

fx

-

¥

Ñ£

[image: image236.wmf]0.0001,

r

=

 EMBED Equation.DSMT4 [image: image237.wmf]0.8

s

=

) and CG-DESCENT (version 1.4, Wolfe line search, default settings,
[image: image238.wmf]6

()10

k

fx

-

¥

Ñ£

) for solving these applications is given in Table 2.

Table 2.
Performance of DCGQN versus CG-DESCENT. 1,000,000 variables. CPU seconds

	
	DCGQN
	CG-DESCENT

	
	#iter
	#fg
	cpu
	#iter
	#fg
	cpu

	A1
	1113
	2257
	355.84
	1145
	2291
	481.40

	A2
	2845
	5718
	1141.47
	3370
	6741
	1869.77

	A3
	4770
	9636
	2814.16
	4814
	9630
	3979.26

	A4
	1413
	2864
	2110.20
	1802
	3605
	3802.37

	A5
	1279
	2587
	575.62
	1225
	2451
	756.96

	TOTAL
	11420
	23062
	6997.29
	12356
	24718
	10889.76

Form Table 2, we see that, subject to the CPU time metric, the DCGQN algorithm is top performer and the difference is significant, about 3892.47 seconds for solving all these five applications.

5. Conclusions
Plenty of conjugate gradient algorithms are known in the literature. In this paper we have presented another one based on the quasi-Newton condition. The search direction is computed by equating a scaling of the classical conjugate gradient search direction with the quasi-Newton one. The scaling parameter is determined in such a way that the resulting search direction of the algorithm satisfies the sufficient descent condition. In our algorithm the step length is computed using the classical Wolfe line search conditions. The updating formulas (2) and (24) are not complicated and we proved that it satisfies the sufficient descent condition
[image: image239.wmf]3

,

4

T

kkk

gdg

£-

 independent of the line search procedure as long as
[image: image240.wmf]0.

T

kk

ys

>

 For uniformly convex function the convergence of the algorithm was proved under classical assumptions. In numerical experiments the algorithm proved to be more efficient and more robust versus CG-DESCENT on a large number of unconstrained optimization test problems. For solving large-scale nonlinear engineering optimization from MINPACK-2 collection the implementation of our algorithm proves to be way more efficient than the CG-DESCENT implementation.
References

[1] Andrei, N., An unconstrained optimization test functions collection. Advanced Modeling and Optimization, 10 (2008), pp. 147-161.

[2] Andrei, N., An acceleration of gradient descent algorithm with backtracking for unconstrained optimization, Numerical Algorithms, 42 (2006), pp. 63-73.
[3] Andrei, N., Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, 213 (2009), 361-369.
[4] Aris, R., The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Oxford, 1975.

[5] Averick, B.M., Carter, R.G., Moré, J.J., Xue, G.L., The MINPACK-2 test problem collection, Mathematics and Computer Science Division, Argonne National Laboratory, Preprint MCS-P153-0692, June 1992.

[6] Bebernes, J., Eberly, D., Mathematical Problems from Combustion Theory, in: Applied Mathematical Sciences, vol. 83, Springer-Verlag, 1989.

[7] Cimatti, G., On a problem of the theory of lubrication governed by a variational inequality, Applied Mathematics and Optimization 3 (1977) 227–242.

[8] Dai, Y.H. and Liao, L.Z., New conjugate conditions and related nonlinear conjugate gradient methods, Appl. Math. Optim. 43, 87-101 (2001)

[9] Dai, Y.H., Liao, L.Z., Duan, Li, On restart procedures for the conjugate gradient method. Numerical Algorithms 35 (2004), pp. 249-260.

[10] Dai, Y.H., Yuan, Y., A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), pp. 177-182.
[11] Dolan, E., Morè, J.J., Benchmarking optimization software with performance profiles. Mathematical Programming Ser. A, 91, 2002, pp.201-213.
[12] Fletcher, R., Practical Methods of Optimization, vol. 1: Unconstrained Optimization, John Wiley & Sons, New York, 1987.

[13] Fletcher, R. and Reeves, C.M., Function minimization by conjugate gradients Comput. J. 7, 149-154 (1964)

[14] Glowinski, R., Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, Berlin, 1984.

[15] Goodman, J., Kohn, R., Reyna, L., Numerical study of a relaxed variational problem from optimal design, Computer Methods in Applied Mechanics and Engineering 57 (1986) 107–127.
[16] Hager, W.W., Zhang, H., A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on Optimization, 16, (2005) 170-192.

[17] Hager, W.W., Zhang, H., Algorithm 851: CG-DESCENT, a conjugate gradient method with guaranteed descent. ACM Transaction on Mathematical Software, 32 (2006) 113-137.

[18] Hestenes, M.R., Stiefel, E.L., Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), pp.409-436.

[19] Liu, Y., Storey, C., Efficient generalized conjugate gradient algorithms, Part 1: Theory. Journal of Optimization Theory and Applications, 69 (1991), pp.129-137.
[20] Liu, D., Xu, G., A Perry descent conjugate gradient method with restricted spectrum. Technical Report of Optimization No: 2010-11-08, Control Theory Laboratory, Department of Mathematics, University of Tianjin, 2011. [Optimization Online, March 2011.]
[21] Nitsche, J.C.C., Lectures On Minimal Surfaces, Vol. 1, Cambridge University Press, 1989.

[22] Nocedal, J., Conjugate gradient methods and nonlinear optimization. In Linear and nonlinear Conjugate Gradient related methods, L. Adams and J.L. Nazareth (eds.), SIAM, 1996, pp.9-23.
[23] Perry, A., A class of conjugate gradient algorithms with a two step variable metric memory. Discussion paper 269, Center for Mathematical Studies in Economics and Management Science, Northwestern University, 1977.
[24] Perry, A., A modified conjugate gradient algorithm. Operations Research, Technical Notes, 26 (1978) 1073-1078.

[25] Polak, E., Ribière, G., Note sur la convergence de directions conjuguée, Rev. Francaise Informat Recherche Operationelle, 3e Année 16 (1969) 35-43.

[26] Polyak, B.T., The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9, (1969), pp. 94-112.

[27] Powell, M.J.D., Restart procedures of the conjugate gradient method. Mathematical Programming, 2 (1977), pp.241-254.
[28] Shanno, D.F., On the convergence of a new conjugate gradient algorithm. SIAM J. Numer. Anal., 15 (1978), pp.1247-1257.

[29] Sherali, H.D., Ulular, O., Conjugate gradient methods using quasi-Newton updates with inexact line search. Journal of Mathematical Analysis and Applications, 150, (1990), pp.359-377.
[30] Wolfe, P., (1969) Convergence conditions for ascent methods. SIAM Review, 11, 1969, pp. 226-235.

[31] Wolfe, P., (1971) Convergence conditions for ascent methiods. II: Some corrections. SIAM Review, 13, 1971, pp.185-188.

November 6, 2015

PAGE
11

_1505818434.unknown

_1505888778.unknown

_1506145197.unknown

_1506161177.unknown

_1506233306.unknown

_1506245649.unknown

_1506315773.unknown

_1506402155.unknown

_1508305696.unknown

_1508306073.unknown

_1506323087.unknown

_1506323120.unknown

_1506315325.unknown

_1506315547.unknown

_1506246328.unknown

_1506233419.unknown

_1506233477.unknown

_1506233587.unknown

_1506233668.unknown

_1506233692.unknown

_1506233635.unknown

_1506233578.unknown

_1506233455.unknown

_1506233353.unknown

_1506233364.unknown

_1506233347.unknown

_1506162123.unknown

_1506162641.unknown

_1506163315.unknown

_1506179441.unknown

_1506181208.unknown

_1506169502.unknown

_1506169781.unknown

_1506163422.unknown

_1506169461.unknown

_1506163076.unknown

_1506163192.unknown

_1506163009.unknown

_1506162390.unknown

_1506162485.unknown

_1506162248.unknown

_1506161736.unknown

_1506161823.unknown

_1506162021.unknown

_1506161822.unknown

_1506161591.unknown

_1506161618.unknown

_1506161250.unknown

_1506148057.unknown

_1506148886.unknown

_1506149615.unknown

_1506149821.unknown

_1506149471.unknown

_1506148356.unknown

_1506148682.unknown

_1506148332.unknown

_1506147675.unknown

_1506147707.unknown

_1506147957.unknown

_1506147687.unknown

_1506146859.unknown

_1506147644.unknown

_1506145378.unknown

_1506142951.unknown

_1506144522.unknown

_1506144729.unknown

_1506144754.unknown

_1506144549.unknown

_1506144652.unknown

_1506144424.unknown

_1506144504.unknown

_1506143111.unknown

_1505890872.unknown

_1505891183.unknown

_1505891789.unknown

_1505890913.unknown

_1505891145.unknown

_1505889546.unknown

_1505890830.unknown

_1505889785.unknown

_1505889046.unknown

_1505889086.unknown

_1505886562.unknown

_1505887267.unknown

_1505888655.unknown

_1505888710.unknown

_1505888747.unknown

_1505888677.unknown

_1505887357.unknown

_1505887561.unknown

_1505887288.unknown

_1505886946.unknown

_1505887037.unknown

_1505887212.unknown

_1505887012.unknown

_1505886820.unknown

_1505886833.unknown

_1505886671.unknown

_1505886060.unknown

_1505886216.unknown

_1505886451.unknown

_1505886503.unknown

_1505886293.unknown

_1505886094.unknown

_1505886129.unknown

_1505886068.unknown

_1505885878.unknown

_1505885940.unknown

_1505885967.unknown

_1505886059.unknown

_1505885892.unknown

_1505819332.unknown

_1505884815.unknown

_1505885843.unknown

_1505819423.unknown

_1505884800.unknown

_1505819394.unknown

_1505818639.unknown

_1505818936.unknown

_1505818464.unknown

_1505818489.unknown

_1388302860.unknown

_1471164201.unknown

_1471245693.unknown

_1495952164.unknown

_1505817796.unknown

_1505817903.unknown

_1505818348.unknown

_1505817882.unknown

_1505817659.unknown

_1505817743.unknown

_1497245161.unknown

_1472318986.unknown

_1472327070.unknown

_1472327136.unknown

_1472327280.unknown

_1472327281.unknown

_1472327146.unknown

_1472327101.unknown

_1472318995.unknown

_1472319012.unknown

_1472318957.unknown

_1472318981.unknown

_1472318511.unknown

_1472318541.unknown

_1472318563.unknown

_1471245703.unknown

_1471164789.unknown

_1471245499.unknown

_1471245621.unknown

_1471245683.unknown

_1471245521.unknown

_1471245582.unknown

_1471245568.unknown

_1471245511.unknown

_1471244370.unknown

_1471245475.unknown

_1471245486.unknown

_1471244427.unknown

_1471164937.unknown

_1471244331.unknown

_1471244349.unknown

_1471166201.unknown

_1471164894.unknown

_1471164570.unknown

_1471164603.unknown

_1471164657.unknown

_1471164586.unknown

_1471164493.unknown

_1471164550.unknown

_1471164462.unknown

_1388303573.unknown

_1471163298.unknown

_1471163354.unknown

_1471163413.unknown

_1471163319.unknown

_1388303798.unknown

_1471163280.unknown

_1448123014.unknown

_1388303721.unknown

_1388302933.unknown

_1388303501.unknown

_1388303530.unknown

_1388302948.unknown

_1388302903.unknown

_1388302925.unknown

_1388302886.unknown

_1296223109.unknown

_1314768047.unknown

_1314768351.unknown

_1388302256.unknown

_1388302732.unknown

_1315285278.unknown

_1314768213.unknown

_1314768222.unknown

_1314768053.unknown

_1296223116.unknown

_1307516407.unknown

_1314768006.unknown

_1314768027.unknown

_1307516429.unknown

_1296223121.unknown

_1296223112.unknown

_1296223115.unknown

_1296223111.unknown

_1254288320.unknown

_1254292127.unknown

_1254292371.unknown

_1265302100.unknown

_1265302740.unknown

_1254292389.unknown

_1254292487.unknown

_1254292163.unknown

_1254292253.unknown

_1254292144.unknown

_1254288745.unknown

_1254291090.unknown

_1254288640.unknown

_1254252903.unknown

_1254253104.unknown

_1254253231.unknown

_1254288142.unknown

_1254288181.unknown

_1254253241.unknown

_1254253142.unknown

_1254252961.unknown

_1254252868.unknown

_1254252883.unknown

_1254251797.unknown

_1254252835.unknown

_1254252130.unknown

_1223122826.unknown

_1254251418.unknown

_1223122825.unknown

