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Abstract. A new value for the parameter in Dai and Liao conjugate gradient algorithm is presented. 

This is based on the clustering the eigenvalues of the matrix which determine the search direction 

of this algorithm. This value of the parameter lead us to a variant of the Dai and Liao algorithm 

which is more efficient and more robust than the variants of the same algorithm based on the 

minimizing the condition number of the matrix associated to the search direction. Global 

convergence of this variant of the algorithm is briefly discussed. 
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1. Introduction 
For solving the unconstrained nonlinear optimization problem 

                                                               min{ ( ), },nf x x                                                          (1) 

where : nf   is continuously differentiable and bounded below, using an extended 

conjugacy condition, Dai and Liao [9] (DL), suggested the following conjugate gradient 

algorithm: 

                                                                 1 ,k k k kx x d                                                               (2) 

the stepsize k  is positive and the search directions kd  are computed as: 

                                                     1 1 ,DL

k k k kd g s      0 0 ,d g                                                (3) 

                                                     1 1 ,
T T

DL k k k k
k kT T

k k k k

y g s g
t

y s y s
                                                             (4) 

where kt  is a nonnegative parameter, ( )k kg f x , 1k k ky g g   and 1 .k k ks x x   Usually, the 

steplength k  is computed according to the Wolfe line search conditions: 

                                                    ( ) ( ) ,T

k k k k k k kf x d f x g d                                                  (5) 

                                                                 1 ,T T

k k k kg d g d                                                              (6) 

where 0 1.     A characteristic of this algorithm is that its numerical performances are very 

dependent on the parameter kt  [3].  

Observe that if 0,kt   then DL

k  reduces to the conjugate gradient parameter proposed by 

Hestenes and Stiefel [12]. Besides, we see that if 
2

2 / ,T

k k k kt y y s  then the conjugate gradient 

algorithm proposed by Hager and Zhang [11] is obtained. Also, if 
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2 2
/ / ,T T

k k k k k k k kt y y s y s s    where 
k  is a parameter corresponding to the scaling factor in 

the scaled memoryless BFGS method, then we get the conjugate gradient of Dai and Kou [8].  

 Based on a singular values study, Babaie-Kafaki and Ghanbari [6] presented two optimal 

choices of the parameter 
kt  in (4). The idea of these selections of the parameter 

kt  is to minimize 

the condition number of the matrix representing the search direction. Intensive numerical 

experiments proved that the resulting algorithms are indeed more efficient and more robust than 

the conjugate gradient algorithms suggested by Hager and Zhang and that of Dai and Kou. 

 In this paper we propose another approach for the selection of the parameter 
kt  in (4). 

The idea of this approach is to cluster the eigenvalues of the matrix representing the search 

direction. This is taken from linear conjugate gradient algorithms where clustering the 

eigenvalues is very benefic.  

 As in [6], in section 2, using the minimization of the condition number of the matrix 

representing the search direction, two optimal values of the parameter kt  in (4) are presented. 

Section 3 is dedicated to present a new selection procedure based on clustering the eigenvalues of 

the matrix representing the search direction. In section 4 the numerical experiments and 

comparisons between these two approaches and CG-DESCENT are presented.  

 

2. The values of the parameter kt  based on minimizing the condition number [6] 

Observe that from (3) and (4) the search direction of the DL algorithm can be very easy written 

as: 

                                                                1 1 1,k k kd H g                                                              (7) 

where  

                                                         1 .
T T

k k k k
k kT T

k k k k

s y s s
H I t

y s y s
                                                       (8) 

Therefore, the DL method can be viewed as a quasi-Newton one in which the inverse Hessian is 

approximated by the nonsymmetric matrix 1.kH   

As we know, the numerical performances and the efficiency of the quasi-Newton 

methods are determined by the condition number 1( )kH   of the successive approximations of 

the inverse Hessian 1
1.kH 
  A matrix with a large condition number is called an ill-conditioned 

matrix. Ill-conditioned matrices may produce instability in numerical computation with them, i.e. 

if 1( )kH   is large, then small values of relative error of 1kg   in (7) may produce large relative 

error of the search direction 1.kd   For minimizing the condition number of the matrix 1,kH   

representing the DL search direction, Babaie-Kafaki and Ghanbari [6] suggested two choices. 

Both of them are based on the estimations of the upper bound of the condition number of 1.kH   

Using two special upper bounds of the condition number of 1,kH   in [6] the following choices of 

the parameter kt  are determined: 

                                                                 *

1 2

T
kk k

k

kk

yy s
t

ss
                                                             (9) 

and  

                                                                      *

2 ,
k

k

k

y
t

s
                                                               (10) 

which can be considered as optimal values for the parameter kt  in DL conjugate gradient 

algorithm. Numerical experiments presented in [6] illustrate that both these variants of DL 

conjugate gradient algorithms (2)-(4), denoted as M1 for the first choice of kt  given by (9) and 
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M2 for the second selection of 
kt  given by (10) are more efficient and more robust than CG-

DESCENT by Hager and Zhang [11] and DK+ by Dai and Kou [8]. 

 

3. The value of parameter 
kt  based on clustering the eigenvalues 

As we know, in a small neighborhood of the current point, the nonlinear objective function in (1) 

behaves like a quadratic one for which the results from linear conjugate gradient can apply. In 

fact, the first conjugate gradient algorithm was introduced by Hestenes and Stiefel [12] to 

minimize positive definite quadratic objective functions. This algorithm for solving positive 

definite linear algebraic systems of equations ,Ax b  ,n nA   ,nb  is known as linear 

conjugate gradient. In exact arithmetic the linear conjugate gradient algorithm gives the correct 

solution within n  steps. In this case this can be considered as a direct method. However, in 

practice, this algorithm is regarded as an iterative method (see Reid [17]) because a sufficiently 

accurate approximation solution is often obtained in far fewer than n  steps. In absence of 

rounding errors, the theoretical convergence rate has been studied by many authors. The 

conclusion is that the rate of convergence of linear conjugate gradient depends strongly on the 

distribution of eigenvalues of the matrix .A  Further insights concerning this problem of 

convergence was studied by many researchers, see for example: Axelsson [4], Axelsson and 

Lindskog [5], Strakoš [18], Van der Sluis and Van der Vorst [20], Meurant [15], Winther [21]. 

For faster convergence of linear conjugate gradient algorithms some approaches can be 

considered like: the presence of isolated smallest and/or largest eigenvalues of the matrix 1,kH   

as well as gaps inside the eigenvalues spectrum [5], clustering of the eigenvalues about one point 

[21] or about several points [14], or preconditioning [13]. If the matrix has a number of certain 

distinct eigenvalues contained in m  disjoint intervals of very small length, then the linear 

conjugate gradient method will produce a very small residual after m  iterations. This is an 

important property of linear conjugate gradient method and we try to use it in nonlinear case. The 

idea of this variant of the DL algorithm, we present in this paper, is to determine kt  by clustering 

the eigenvalues of 1,kH   by minimizing the largest eigenvalue of the matrix 1kH  . The structure 

of the eigenvalues of the matrix 1kH   is given by the following theorem. 

 

Theorem 3.1. Let 1kH   be defined by (8). Suppose that the stepsize k  in (2) is selected by the 

Wolfe line search conditions (5) and (6). Then 1kH   is a nonsingular matrix and its eigenvalues 

consist of 1 ( 2n   multiplicity), 1k


  and 1,k


  where 

                                                      1

1
(1 ) 1 ,

2
k k k k kt b t b


                                                     (11) 

or 1  ( 1n   multiplicity) and ,k kt b  where  

                                                                  

2

0.
k

k T

k k

s
b

y s
                                                              (12) 

Proof By the Wolfe line search conditions (5) and (6) we have .0k

T

k sy  Therefore, the vectors 

ky  and ks  are nonzero vectors. Let V  be the vector space spanned by }.,{ kk ys  We must 

consider two cases, as follows: 

Case 1. dim( ) 2.V   Hence dim( ) 2,V n    where V   is the orthogonal complement of V in 

.n  Thus, there exist a set of mutually unit orthogonal vectors 


 Vu n

i

i

k

2

1}{  such that 

,0 i

k

T

k

i

k

T

k uyus  ,2,,1  ni   

which from (8) leads to 
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1 ,i i

k k kH u u   .2,,1  ni   

Therefore, the matrix 
1kH 
 has 2n  eigenvalues equal to 1, which corresponds to 

2

1}{ 



n

i

i

ku  as 

eigenvectors. Now, we are interested to find the rest of the two remaining eigenvalues, denoted as 


1k  and 1,k


  respectively. From the formula of algebra (see for example [19]) we have  

1det( ) .k k kH t b   Hence, if 0,kt   and the line search guarantees that 0,T

k ky s   then 
1kH 
 is 

nonsingular. On the other hand from (8) we see that 1( ) 1 .k k ktr H n t b     By the relationships 

between the determinant and the trace of a matrix and its eigenvalues, it follows that the other 

eigenvalues of 
1kH 
 are the roots of the following quadratic polynomial  

                                                         2 (1 ) 0.k k k kt b t b                                                        (13) 

Clearly, the other two eigenvalues of the matrix 
1kH 
 are determined from (13) as in (11).   

Case 2. dim( ) 1.V   Hence dim( ) 1.V n    Observe that 1 ( ) .k k k k kH s t b s   Therefore, 

( , )k k kt b s  is an eigenpair of the matrix 1.kH   But, the determinant of a matrix is equal to the 

product of all its eigenvalues. In our case we have:  

 

1 1 2 2 1

2

det 1 1 1 .k n n n k k n

n

H t b       



             

But, 1det( ) .k k kH t b   Hence, 1.n   The matrix 1kH   has as eigenvalues: 1  of 1n   multiplicity 

and .k kt b                                                                                                                                            

 

Observe that if 1/ ,k kt b  then in both the above cases all the eigenvalues of 1kH   are 

clustered in a point, i.e. the distance among them is minimized. Hence, another value for the 

parameter kt  in DL algorithm, different from *
1kt  and *

2kt  given by Babaie-Kafaki and Ghanbari 

[6], can be computed as:  

                                                                      *

2
.

T

k k
k

k

y s
t

s
                                                               (14) 

The value *
kt  given by (14) can be considered as optimal subject to the criterion to minimize the 

distance among the eigenvalues of the iteration matrix 1.kH   Therefore, considering in (4) 
* ,k kt t  then we get the DLE conjugate gradient parameter *DL

k  as: 

                                                           * 1 1

2

T T
DL k k k k
k T

k k k

y g s g

y s s
                                                        (15) 

for which the eigenvalues of 1kH   are clustered in a point. 

 

Remark 3.1. Assume that the level set  0: ( ) ( )nS x f x f x    is bounded, where 0x  is the 

starting point of the iterative method (2). Suppose that in a neighborhood N  of S  the function 

f  is continuously differentiable and its gradient is Lipschitz continuous, i.e. there exists a 

constant 0L   such that ( ) ( ) ,f x f y L x y     for all , .x y N  Under these assumptions, 

by Cauchy-Schwarz inequality, from (14) it is simple to see that * .kt L  Hence, if the search 

directions are descent and the stepsizes are determined to satisfy the strong Wolfe conditions, 

then Theorem 3.3 of Dai and Liao [9] ensures the global convergence of the algorithm for 

uniformly convex objective functions. On the other hand, if (15) is modified as 
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                                                   * 1 1

2
max ,0 ,

T T
DL k k k k
k T

k k k

y g s g

y s s
  

 
  

 
                                            (16) 

and the  search directions satisfy the sufficient descent condition, then Theorem 6 of Dai and Liao 

[9] ensures the global convergence of the algorithm for general nonlinear objective functions.    

 

Remark 3.2. Observe that 1kH   given by (8) is non-symmetric. In [16] it is proved that in linear 

conjugate gradient method clustering the eigenvalues for non-symmetric matrices do not 

necessarily lead to fast convergence. However, in our case, by construction, the vast majority of 

eigenvalues of 1kH   are equal to 1,  only one or at most two being different by 1. Therefore, 

clustering the eigenvalues of 1kH   in a point means modifying at most two eigenvalues. This is 

the reason we get a fast convergence of DLE algorithm.                                                                

 

 

4. Numerical results and comparisons 

The algorithm given by (2) and (3), where DL

k  is replaced by *DL

k  from (16), is called DLE. We 

selected a number of 80 large-scale unconstrained optimization test functions in generalized or 

extended form, presented in [2], where the vast majority of problems are taken from CUTEr 

collection [7]. For each test function we have considered 10 numerical experiments with the 

number of variables increasing as 1000,2000, ,10000.n   Therefore, the numerical experiments 

with these algorithms (DLE, M1 and M2) include a set of 800 unconstrained optimization test 

functions, of different structures and complexities. 

The algorithms we compare in these numerical experiments find local solutions. 

Therefore, the comparisons of algorithms are given in the following context. Let 1ALG

if and 
2ALG

if  be the optimal value found by ALG1 and ALG2, for problem 1, ,800,i   respectively. 

We say that, in the particular problem ,i  the performance of ALG1 was better than the 

performance of ALG2 if:  

                                                             1 2 310ALG ALG

i if f                                                        (17) 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the 

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient 

evaluations, or the CPU time corresponding to ALG2, respectively. The test problems where the 

algorithms do not converge to the same function value, according to criterion (17), are discarded 

from comparisons.  

All algorithms considered in these numerical experiments DLE, M1 and M2 use the 

Wolfe line search conditions with cubic interpolation, 0.0001,   0.8   and the same 

stopping criterion 610 ,kg 


 where .


represents the maximum absolute component of a 

vector. The algorithms, equipped with an acceleration procedure (see [1]) and the Powell-Beale 

restart criterion, were implemented in double precision Fortran using loop unrolling of depth 5 

and compiled with f77 (default compiler settings) and run on a Workstation Intel Pentium 4 with 

1.8 GHz. All codes are authored by Andrei.  

 Figure 1 presents the Dolan and Moré [10] performance profile subject to CPU 

computing time metric of DLE algorithm versus M1 variant of DL conjugate gradient algorithm 

where in (4) *

1.k kt t  Similarly, Figure 2 presents a comparison between DLE versus M2 variant 

of DL conjugate gradient algorithm where in (4) *

2.k kt t  Form Figure 1, we see that out of 800 

problems, we considered in this numerical study, only for 789 problems does the criterion (17) 

hold. For example, comparing DLE versus M1, in Figure 1, subject to the number of iterations, 

we see that DLE was better in 187 problems (i.e. it achieved the minimum number of iterations 
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for solving 187 problems), M1 was better in 161 problems and they achieved the same number of 

iterations in 441 problems. Similarly, subject to the number of function and gradient evaluations, 

DLE was better in 227 problems, M1 was better in 192 problems and they achieved the same 

number of evaluations in 370 problems. Subject to CPU computing time, DLE was better in 187 

problems, M1 was better in 156 problems and they achieved the same computing time, for 

solving 789 problems, in 446 problems. In these figures we plot the fraction P  of problems for 

which any given method is within a factor   of the best time.  

In the performance profile plots the top curve corresponds to the method that solved the 

most problems in a time that was within a factor   of the best time. The percentage of the test 

problems for which a method is the fastest is given on the left axis of the plot. The right-hand side 

of the plot gives the percentage of the test problems that were successfully solved by these 

algorithms, respectively. Mainly, the right side is a measure of the robustness of an algorithm. 

 

 
Fig. 1. DLE versus M1 subject to cpu time metric. 

 

 
Fig. 2. DLE versus M2 subject to cpu time metric. 
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We see that DLE algorithm is more efficient than both M1 and M2 variants of DL algorithm 

suggested by Babaie-Kafaki and Ghanbari [6]. Also, DLE is slightly more robust than M2. 

Therefore, in comparison with M1 and M2, on average, DLE appears to generate the best search 

direction. We see that this computational scheme based on clustering the eigenvalues of the 

matrix representing the search direction constitutes a very serious alternative to those algorithms 

based on minimizing the condition number of the same matrix. Similar performance plots are 

obtained subject to the number of iterations and the number of function and gradient evaluations 

metrics. 

 In the second set of numerical experiments, in order to see the importance of an optimal 

selection of the parameter kt  in the Dai and Liao algorithm, we compare DLE versus CG-

DESCENT by Hager and Zhang [11] (version 1.4, Wolfe line search, default 

settings, 6( ) 10kf x 


  ). Observe that CG-DESCENT, which is among the best nonlinear 

conjugate gradient algorithms proposed in the literature, but not necessarily the best, is an ad hoc 

conjugate gradient algorithm obtained by taking ex abrupto 
2

2 / T

k k k kt y y s  in (4). Figure 3 

presents the Dolan and Moré performance profiles of these algorithms. 

 

 
Fig. 3. DLE versus CG-DESCENT subject to cpu time metric. 

 

 

From Figure 3 we see that DLE is top performer versus CG-DESCENT, and the difference is 

especially significant subject to robustness. Both these algorithms have similar efficiency. 

Therefore, we have the computational evidence that clustering the eigenvalues of the iteration 

matrix in Dai and Liao conjugate gradient algorithm lead us to a more efficient and clearly more 

robust algorithm. Selection of an optimal value for the parameter kt  in the Dai and Liao 

algorithm has a crucial effect on its performances.  

 

 

5. Conclusions  

For the parameter kt  in Dai and Liao conjugate gradient algorithm, Babaie-Kafaki and Ghanbari 

[6] proposed two optimal values. These are determined by minimizing two estimations of the 

upper bound of the condition number of the matrix which generates the search directions in this 
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algorithm. Observe that *
1kt  and *

2kt  given by (9) and (10) respectively are not optimal in the real 

sense of the word, because they are not minimizing the condition number of the iteration matrix, 

but instead two estimations of the upper bound of it. On the other hand, in this paper, using the 

idea of clustering the eigenvalues of the matrix determined by the search direction of the Dai and 

Liao conjugate gradient algorithm a new optimal value of the parameter 
kt  is obtained. Global 

convergence of this new variant of the Dai and Liao algorithm is discussed. Using 800 large-scale 

unconstrained optimization test problems, of different structures and complexities, we have the 

computational evidence that the algorithm based on clustering the eigenvalues is more efficient 

than its variants using the minimization of the estimates of the upper bound of the condition 

number. All these algorithms have similar robustness. The first conclusion of this paper, 

confirmed by intensive numerical experiments, shows that both these approaches based on 

minimizing the condition number of the matrix which generates the search directions on one 

hand, and by clustering the eigenvalues of the same matrix, on the other hand, lead us to efficient 

and robust algorithms. The approach based on clustering the eigenvalues is clearly more efficient. 

On the other hand, the second conclusion is that the Dai-Liao algorithm with parameter kt  

selected in an optimal manner by clustering the eigenvalues of the iteration matrix, i.e. by 

minimizing the distance among the eigenvalues of the iteration matrix, is more efficient and 

clearly more robust than the CG-DESCENT algorithm. 
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